Research Article Open Access

Protective Role of Ganoderma lucidum Polysaccharides Against Stress Induced by Heavy Metals in Caenorhabditis elegans

Huixiu Ma1, Dehui Dai1, Guicai Chen1 and Weilian Hu1
  • 1 School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China

Abstract

This study aimed to investigate the protective effects and mechanisms of different Ganoderma lucidum Polysaccharides (GLPs) on the damage caused by heavy metal ions. The polysaccharides (GLP-B, GLP-F, and GLP-S) were obtained from G. lucidum fruiting body powder, fermentation powder, and spore powder. The contents of polysaccharides in these sources were 0.95, 4.69, and 1.46%, respectively. The monosaccharide composition and functional groups of polysaccharides from different sources were analyzed by PMP pre-column derivatization and Fourier transform infrared spectroscopy, respectively. Results showed that the monosaccharide composition, molar ratio, and functional groups of them were significantly different. The antioxidant activities in vitro were investigated based on iron ion chelating ability and scavenging hydroxyl radical, superoxide radical, and DPPH free radical assays. Results showed that GLP-F, GLP-B, and GLP-S demonstrated significant antioxidant activity. Among them, the strongest effect of GLP-F for hydroxylic group radicals; GLP-S showed the strongest antioxidant capacity in superoxide radical scavenging; GLP-B showed the strongest antioxidant capacity in iron ion chelating. The four heavy metal ions stress model (Cu2+, Cd2+, Mn2+, and Ni2+) was established using the Caenorhabditis elegans. Results showed that the lifespan, locomotion behavior, and antioxidant index of C. elegans were significantly changed by heavy metal ions (p<0.05). All of these three polysaccharides can significantly improve the lifespan and locomotion behavior of C. elegans under heavy metal stress (p<0.05). It was found that GLP-F, GLP-B, and GLP-S can significantly reduce the Malondialdehyde (MDA) content, as well as regulate the changes in Superoxide Dismutase (SOD) and Catalase (CAT) activity induced by heavy metal stress in C. elegans (p<0.05). This study showed that GLPs exhibited a protective effect on the toxicity of heavy metal ions, which may be related to the regulation of antioxidant index in vivo. Among the three polysaccharides, GLP-F and GLP-S were better than GLP-B. The mycelial fermentation powder, due to its high polysaccharide content, has promising market applications in reducing heavy metal stress.

References

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305
Aljerf, L., & Aljerf, N. (2023). Food products quality and nutrition in relation to public. Balancing health and disease. Progress in Nutrition, 25(1), e2023024. https://doi.org/10.23751/pn.v25i1.13928
Aljerf, L., Williams, M., Ajong, A. B., Onydinma, U. P., Dehmchi, F., Pham, V. T., Bhatnagar, S., & Belboukhari, N. (2021). Comparative Study of the Biochemical Response Behavior of Some Highly Toxic Minerals on Selenosis in Rats. Revista de Chimie, 72(2), 9–18. https://doi.org/10.37358/rc.21.2.8415
Celep, E., Aydın, A., & Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food and Chemical Toxicology, 50(9), 3329–3335. https://doi.org/10.1016/j.fct.2012.06.010
Chen, H. Y., & Yen, G. C. (2007). Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chemistry, 101(2), 686–694. https://doi.org/10.1016/j.foodchem.2006.02.047
Chen, S., Guan, X., Yong, T., Gao, X., Xiao, C., Xie, Y., Chen, D., Hu, H., & Wu, Q. (2022). Structural characterization and hepatoprotective activity of an acidic polysaccharide from Ganoderma lucidum. Food Chemistry: X, 13, 100204. https://doi.org/10.1016/j.fochx.2022.100204
Chen, T. Q., Wu, J. G., Kan, Y. J., Yang, C., Wu, Y. B., & Wu, J. Z. (2018). Antioxidant and Hepatoprotective Activities of Crude Polysaccharide Extracts from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), by Ultrasonic-Circulating Extraction. International Journal of Medicinal Mushrooms, 20(6), 581–593. https://doi.org/10.1615/intjmedmushrooms.2018026536
Elbasiouny, H., Darwesh, M., Elbeltagy, H., Abo-alhamd, F. G., Amer, A. A., Elsegaiy, M. A., Khattab, I. A., Elsharawy, E. A., Ebehiry, F., El-Ramady, H., & Brevik, E. C. (2021). Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: a review. Environmental Monitoring and Assessment, 193(7), 449. https://doi.org/10.1007/s10661-021-09236-2
Fan, L., Li, J., Deng, K., & Ai, L. (2012). Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydrate Polymers, 87(2), 1849–1854. https://doi.org/10.1016/j.carbpol.2011.10.018
Hallauer, J., Geng, X., Yang, H.-C., Shen, J., Tsai, K.-J., & Liu, Z. (2016). The Effect of Chronic Arsenic Exposure in Zebrafish. Zebrafish, 13(5), 405–412. https://doi.org/10.1089/zeb.2016.1252
Hu, X., Zhang, R., Xie, Y., Wang, H., & Ge, M. (2017). The Protective Effects of Polysaccharides from Agaricus blazei Murill Against Cadmium-Induced Oxidant Stress and Inflammatory Damage in Chicken Livers. Biological Trace Element Research, 178, 117–126. https://doi.org/10.1007/s12011-016-0905-y
Hu, Y., Wang, S.-X., Wu, F.-Y., Wu, K.-J., Shi, R.-P., Qin, L.-H., Lu, C.-F., Wang, S.-Q., Wang, F.-F., & Zhou, S. (2022). Effects and Mechanism of Ganoderma lucidum Polysaccharides in the Treatment of Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats. BioMed Research International, 2022, 4314415. https://doi.org/10.1155/2022/4314415
Huang, L., Wang, H., & Shao, Y. (2023). Evaluation and decrease of uncertainty in determination of crude polysaccharide of broken Ganoderma lucidum spore powder. Acta Agriculturae Shanghai, 39(2), 88–94. https://doi.org/10.15955/j.issn1000-3924.2023.02.15
Huang, S., Mao, J., Ding, K., Zhou, Y., Zeng, X., Yang, W., Wang, P., Zhao, C., Yao, J., Xia, P., & Pei, G. (2017). Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease. Stem Cell Reports, 8(1), 84–94. https://doi.org/10.1016/j.stemcr.2016.12.007
Jayachandran, M., Xiao, J., & Xu, B. (2017). A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. International Journal of Molecular Sciences, 18(9), 1934. https://doi.org/10.3390/ijms18091934
Jeong, Y.-U., & Park, Y.-J. (2020). Ergosterol Peroxide from the Medicinal Mushroom Ganoderma lucidum Inhibits Differentiation and Lipid Accumulation of 3T3-L1 Adipocytes. International Journal of Molecular Sciences, 21(2), 460. https://doi.org/10.3390/ijms21020460
Jia, D., Tang, Y., Qin, F., Liu, B., Hu, T., & Chen, W. (2023). Ganoderma lucidum polysaccharide alleviates Cd toxicity in common carp (Cyprinus carpio): Neuropeptide, growth performance and lipid accumulation. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 271, 109663. https://doi.org/10.1016/j.cbpc.2023.109663
Kang, Q., Chen, S., Li, S., Wang, B., Liu, X., Hao, L., & Lu, J. (2019). Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, 124, 1137–1144. https://doi.org/10.1016/j.ijbiomac.2018.11.215
Lawes, M., Pinkas, A., Frohlich, B. A., Iroegbu, J. D., Ijomone, O. M., & Aschner, M. (2020). Metal-induced neurotoxicity in a RAGE-expressing C. elegans model. NeuroToxicology, 80, 71–75. https://doi.org/10.1016/j.neuro.2020.06.013
Li, J., Gu, F., Cai, C., Hu, M., Fan, L., Hao, J., & Yu, G. (2020). Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. International Journal of Biological Macromolecules, 143, 806–813. https://doi.org/10.1016/j.ijbiomac.2019.09.141
Li, L. F., Liu, H. B., Zhang, Q. W., Li, Z. P., Wong, T. L., Fung, H. Y., Zhang, J. X., Bai, S. P., Lu, A. P., & Han, Q. B. (2018). Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Scientific Reports, 8, 6172. https://doi.org/10.1038/s41598-018-22885-7
Li, R., Zhang, L., Tang, Z., Li, T., Li, G., Zhang, R., & Ge, M. (2019). Effects of Fungal Polysaccharide on Oxidative Damage and TLR4 Pathway to the Central Immune Organs in Cadmium Intoxication in Chickens. Biological Trace Element Research, 191, 464–473. https://doi.org/10.1007/s12011-018-1627-0
Lin, M., Colon-Perez, L. M., Sambo, D. O., Miller, D. R., Lebowitz, J. J., Jimenez-Rondan, F., Cousins, R. J., Horenstein, N., Aydemir, T. B., Febo, M., & Khoshbouei, H. (2020). Mechanism of Manganese Dysregulation of Dopamine Neuronal Activity. The Journal of Neuroscience, 40(30), 5871–5891. https://doi.org/10.1523/jneurosci.2830-19.2020
Liu, G., Zhang, J., Kan, Q., Song, M., Hou, T., An, S., Lin, H., Chen, H., Hu, L., Xiao, J., Chen, Y., & Cao, Y. (2022). Extraction, Structural Characterization, and Immunomodulatory Activity of a High Molecular Weight Polysaccharide From Ganoderma lucidum. Frontiers in Nutrition, 9, 846080. https://doi.org/10.3389/fnut.2022.846080
Liu, L., Feng, J., Gao, K., Zhou, S., Yan, M., Tang, C., Zhou, J., Liu, Y., & Zhang, J. (2022). Influence of carbon and nitrogen sources on structural features and immunomodulatory activity of exopolysaccharides from Ganoderma lucidum. Process Biochemistry, 119, 96–105. https://doi.org/10.1016/j.procbio.2022.05.016
Philippsen, D. F., Tamagno, W. A., Vanin, A. P., Concato, A. C., Bragagnolo, L., Prestes, E., Korf, E. P., & Kaizer, R. R. (2021). Copper uses in organic production are safe to the nervous system of Caenorhabditis elegans? Environmental Quality Management, 30(4), 61–70. https://doi.org/10.1002/tqem.21736
Pohanka, M. (2019). Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratislava Medical Journal, 120(6), 397–409. https://doi.org/10.4149/bll_2019_065
Pu, X., Fan, W., Yu, S., Li, Y., Ma, X., Liu, L., Ren, J., & Zhang, W. (2015). Polysaccharides from Angelica and Astragalus exert hepatoprotective effects against carbon-tetrachloride-induced intoxication in mice. Canadian Journal of Physiology and Pharmacology, 93(1), 39–43. https://doi.org/10.1139/cjpp-2014-0331
Shahid, A., Huang, M., Liu, M., Shamim, M. A., Parsa, C., Orlando, R., & Huang, Y. (2022). The medicinal mushroom Ganoderma lucidum attenuates UV-induced skin carcinogenesis and immunosuppression. PLOS ONE, 17(3), e0265615. https://doi.org/10.1371/journal.pone.0265615
Shen, L., Xiao, J., Ye, H., & Wang, D. (2009). Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environmental Toxicology and Pharmacology, 28(1), 125–132. https://doi.org/10.1016/j.etap.2009.03.009
Song, C. F., Wang, S. G., Yang, J., Cui, Z. W., & Gu, Y. H. (2015). Optimization of Vacuum-Microwave Radiation Pretreatment on Extraction of Ganoderma Polysaccharides. Mathematical Problems in Engineering, 2015, 792832. https://doi.org/10.1155/2015/792832
Song, S., Han, Y., Zhang, Y., Ma, H., Zhang, L., Huo, J., Wang, P., Liang, M., & Gao, M. (2019). Protective role of citric acid against oxidative stress induced by heavy metals in Caenorhabditis elegans. Environmental Science and Pollution Research, 26, 36820–36831. https://doi.org/10.1007/s11356-019-06853-w
Souid, G., Souayed, N., Yaktiti, F., & Maaroufi, K. (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicology and Environmental Safety, 89, 1–7. https://doi.org/10.1016/j.ecoenv.2012.12.015
Sule, K., Umbsaar, J., & Prenner, E. J. (2020). Mechanisms of Co, Ni, and Mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862(8), 183250. https://doi.org/10.1016/j.bbamem.2020.183250
Tamagno, W. A., Santini, W., Santos, A., Alves, C., Bilibio, D., Sutorillo, N. T., Zamberlan, D. C., Kaizer, R. R., & Barcellos, L. J. G. (2022). Pitaya fruit extract ameliorates the healthspan on copper-induced toxicity of Caenorhabditis elegans. Journal of Food Biochemistry, 46(3), e14050. https://doi.org/10.1111/jfbc.14050
Tan, X., Sun, J., Xu, Z., Li, H., Hu, J., Ning, H., Qin, Z., Pei, H., Sun, T., & Zhang, X. (2018). Effect of heat stress on production and in-vitro antioxidant activity of polysaccharides in Ganoderma lucidum. Bioprocess and Biosystems Engineering, 41, 135–141. https://doi.org/10.1007/s00449-017-1850-7
Tong, Y., Hua, X., Zhao, W., Liu, D., Zhang, J., Zhang, W., Chen, W., & Yang, R. (2020). Protective effects of Lactobacillus plantarum CCFM436 against acute manganese toxicity in mice. Food Bioscience, 35, 100583. https://doi.org/10.1016/j.fbio.2020.100583
Tsalik, E. L., & Hobert, O. (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology, 56(2), 178–197. https://doi.org/10.1002/neu.10245
Ukaogo, P. O., Aljerf, L., Nwaru, E. C., Imrana, I., Tang, J., Bethel Ajong, A., Emole, P. O., Siddhant, O., & Ukaogo, C. T. (2024). Evaluation and risk assessment of heavy metals in King tuber mushroom in the contest of COVID-19 pandemic lockdown in Sokoto state, Nigeria. Kuwait Journal of Science, 51(2), 100193. https://doi.org/10.1016/j.kjs.2024.100193
Ukaogo, P. O., Tang, J., Ahuchaogu, A. A., Igwe, O. U., Obike, A. I., Emole, P. O., Aljerf, L., Onah, O. E., Tijjani, A., & Ajong, A. B. (2022). Evaluation of concentrations of trace metal(loid)s in indigenous crab species and human health risk implications. Emerging Contaminants, 8, 371–380. https://doi.org/10.1016/j.emcon.2022.07.001
Wang, D., & Xing, X. (2008). Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Environmental Sciences, 20(9), 1132–1137. https://doi.org/10.1016/s1001-0742(08)62160-9
Wang, D., & Xing, X. (2009). Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environmental Toxicology and Pharmacology, 28(3), 459–464. https://doi.org/10.1016/j.etap.2009.07.008
Xin-zhi, S., Ying, L., Wei, L., & Li-mei, G. (2017). Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regeneration Research, 12(6), 953–958. https://doi.org/10.4103/1673-5374.208590
Yan, J.-K., Li, L., Wang, Z.-M., & Wu, J.-Y. (2010). Structural elucidation of an exopolysaccharide from mycelial fermentation of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Carbohydrate Polymers, 79(1), 125–130. https://doi.org/10.1016/j.carbpol.2009.07.047
Yang, X., Han, Y., Mu, Y., Yang, P., Gu, W., & Zhang, M. (2020). Multigenerational effects of cadmium on the lifespan and fertility of Drosophila melanogaster. Chemosphere, 245, 125533. https://doi.org/10.1016/j.chemosphere.2019.125533
Yang, X., Zhao, Y., Wang, Q., Wang, H., & Mei, Q. (2005). Analysis of the Monosaccharide Components in Angelica Polysaccharides by High Performance Liquid Chromatography. Analytical Sciences, 21(10), 1177–1180. https://doi.org/10.2116/analsci.21.1177
Ye, H., Ye, B., & Wang, D. (2008). Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiology of Learning and Memory, 90(1), 10–18. https://doi.org/10.1016/j.nlm.2007.12.001
Ye, M., Qiu, T., Peng, W., Chen, W., Ye, Y., & Lin, Y. R. (2011). Purification, characterization and hypoglycemic activity of extracellular polysaccharides from Lachnum calyculiforme. Carbohydrate Polymers, 86(1), 285–290. https://doi.org/10.1016/j.carbpol.2011.04.051
Yu, H.-T., Zhen, J., Xu, J.-X., Cai, L., Leng, J.-Y., Ji, H.-L., & Keller, B. B. (2020). Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothionein-dependent and independent mechanisms. Acta Pharmacologica Sinica, 41(5), 638–649. https://doi.org/10.1038/s41401-019-0320-y
Zhang, W., Zhi, H., & Sun, H. (2020). Effects of Heavy Metal Pollution on Fitness and Swimming Performance of Bufo raddei Tadpole. Bulletin of Environmental Contamination and Toxicology, 105, 387–392. https://doi.org/10.1007/s00128-020-02953-3
Zhang, Y., Cai, H., Tao, Z., Yuan, C., Jiang, Z., Liu, J., Kurihara, H., & Xu, W. (2021). Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster. Food Science and Human Wellness, 10(1), 38–44. https://doi.org/10.1016/j.fshw.2020.05.011
Zhang, Y., Zhao, C., Zhang, H., Liu, R., Wang, S., Pu, Y., & Yin, L. (2021). Integrating transcriptomics and behavior tests reveals how the C. elegans responds to copper induced aging. Ecotoxicology and Environmental Safety, 222, 112494. https://doi.org/10.1016/j.ecoenv.2021.112494
Zhao, L.-L., Ru, Y.-F., Liu, M., Tang, J.-N., Zheng, J.-F., Wu, B., Gu, Y.-H., & Shi, H.-J. (2017). Reproductive effects of cadmium on sperm function and early embryonic development in vitro. PLOS ONE, 12(11), e0186727. https://doi.org/10.1371/journal.pone.0186727
Zhao, Y., Li, Q., Wang, M., Wang, Y., Piao, C., Yu, H., Liu, J., & Li, Z. (2023). Structural characterization of polysaccharides after fermentation from Ganoderma lucidum and its antioxidant activity in HepG2 cells induced by H2O2. Food Chemistry: X, 18, 100682. https://doi.org/10.1016/j.fochx.2023.100682
Zheng, S., Zhang, W., & Liu, S. (2020). Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities. PLOS ONE, 15(12), e0244749. https://doi.org/10.1371/journal.pone.0244749
Zhou, H., Liu, G., Huang, F., Wu, X., & Yang, H. (2014). Improved production, purification and bioactivity of a polysaccharide from submerged cultured Ganoderma lucidum. Archives of Pharmacal Research, 37, 1530–1537. https://doi.org/10.1007/s12272-014-0391-8

American Journal of Biochemistry and Biotechnology
Volume 20 No. 2, 2024, 112-125

DOI: https://doi.org/10.3844/ajbbsp.2024.112.125

Submitted On: 19 January 2024 Published On: 18 May 2024

How to Cite: Ma, H., Dai, D., Chen, G. & Hu, W. (2024). Protective Role of Ganoderma lucidum Polysaccharides Against Stress Induced by Heavy Metals in Caenorhabditis elegans. American Journal of Biochemistry and Biotechnology, 20(2), 112-125. https://doi.org/10.3844/ajbbsp.2024.112.125

  • 471 Views
  • 131 Downloads
  • 0 Citations

Download

Keywords

  • Ganoderma lucidum
  • Antioxidant Activity
  • Antioxidative Index
  • Heavy Metals
  • Caenorhabditis elegans