References
                            Abioui, H., Idarrou, A., Bouzit, A., & Mammass, D. (2018). Towards a Novel and Generic Approach for OWL Ontology Weighting. 
Procedia Computer Science, 
127, 426–435. 
https://doi.org/10.1016/j.procs.2018.01.140Adhikari, A., Dutta, B., Dutta, A., Mondal, D., & Singh, S. (2018). An intrinsic information content-based semantic similarity measure considering the disjoint common subsumers of concepts of an ontology. 
Journal of the Association for Information Science and Technology, 
69(8), 1023–1034. 
https://doi.org/10.1002/asi.24021Alizadeh, D., Alesheikh, A. A., & Sharif, M. (2021). Prediction of vessels locations and maritime traffic using similarity measurement of trajectory. 
Annals of GIS, 
27(2), 151–162. 
https://doi.org/10.1080/19475683.2020.1840434Banu, A., Fatima, S. S., & Khan, K. U. R. (2015). Information content based semantic similarity measure for concepts subsumed by multiple concepts. International Journal Web Applications, 7(3), 85–94.
  Batet, M., & Sánchez, D. (2020). Leveraging synonymy and polysemy to improve semantic similarity assessments based on intrinsic information content. 
Artificial Intelligence Review, 
53(3), 2023–2041. 
https://doi.org/10.1007/s10462-019-09725-4Beeri, C., Formica, A., & Missikoff, M. (1999). Inheritance hierarchy design in object-oriented databases. 
Data & Knowledge Engineering, 
30(3), 191–216. 
https://doi.org/10.1016/s0169-023x(99)00011-7Berrhail, F., & Belhadef, H. (2020). Genetic Algorithm-based Feature Selection Approach for Enhancing the Effectiveness of Similarity Searching in Ligand-based Virtual Screening. 
Current Bioinformatics, 
15(5), 431–444. 
https://doi.org/10.2174/1574893614666191119123935Bloehdorn, S., & Moschitti, A. (2007). 
Combined Syntactic and Semantic Kernels for Text Classification (G. Amati, C. Carpineto, & G. Romano, Eds.; Vol. 4425). Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-540-71496-5_29Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). A Web Search Engine-Based Approach to Measure Semantic Similarity between Words. 
IEEE Transactions on Knowledge and Data Engineering, 
23(7), 977–990. 
https://doi.org/10.1109/tkde.2010.172Cazzanti, L., & Gupta, M. R. (2006). Information-theoretic and Set-theoretic Similarity. 
2006 IEEE International Symposium on Information Theory, 1836–1840. 
https://doi.org/10.1109/isit.2006.261752Chandrasekaran, D., & Mago, V. (2022). Evolution of Semantic Similarity—A Survey. 
ACM Computing Surveys, 
54(2), 1–37. 
https://doi.org/10.1145/3440755De Nicola, A., & D’Agostino, G. (2021). Assessment of gender divide in scientific communities. 
Scientometrics, 
126(5), 3807–3840. 
https://doi.org/10.1007/s11192-021-03885-3De Nicola, A., Formica, A., Missikoff, M., Pourabbas, E., & Taglino, F. (2023). A parametric similarity method: Comparative experiments based on semantically annotated large datasets. 
Journal of Web Semantics, 
76, 100773. 
https://doi.org/10.1016/j.websem.2023.100773De Nicola, A., Melchiori, M., & Villani, M. L. (2019). Creative design of emergency management scenarios driven by semantics: An application to smart cities. 
Information Systems, 
81, 21–48. 
https://doi.org/10.1016/j.is.2018.10.005De Nicola, A., Villani, M. L., Sujan, M., Watt, J., Costantino, F., Falegnami, A., & Patriarca, R. (2023). Development and measurement of a resilience indicator for cyber-socio-technical systems: The allostatic load. 
Journal of Industrial Information Integration, 
35, 100489. 
https://doi.org/10.1016/j.jii.2023.100489De Nicola, A., Zgheib, R., & Taglino, F. (2022). Chapter 7 - Toward a knowledge graph for medical diagnosis: issues and usage scenarios. In S. Tiwari, F. Ortiz Rodriguez, & M. A. Jabbar (Eds.), 
Semantic Models in IoT and eHealth Applications (pp. 129–142). Academic Press. 
https://doi.org/10.1016/b978-0-32-391773-5.00013-3Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. 
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 4171–4186. 
https://doi.org/10.18653/v1/N19-1423Dhami, M. K., & Harries, C. (2001). Fast and frugal versus regression models of human judgement. 
Thinking & Reasoning, 
7(1), 5–27. 
https://doi.org/10.1080/13546780042000019Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. 
Ecology, 
26(3), 297–302. 
https://doi.org/10.2307/1932409Dulmage, A. L., & Mendelsohn, N. S. (1958). Coverings of Bipartite Graphs. 
Canadian Journal of Mathematics, 
10, 517–534. 
https://doi.org/10.4153/cjm-1958-052-0Fellbaum, C., & Miller, G. (1998). Combining Local Context and WordNet Similarity for Word Sense Identification. In WordNet: An Electronic Lexical Database (pp. 265–283). MIT Press.
  Formica, A. (2019). Similarity reasoning in formal concept analysis: from one- to many-valued contexts. 
Knowledge and Information Systems, 
60(2), 715–739. 
https://doi.org/10.1007/s10115-018-1252-4Formica, A., & Missikoff, M. (2004). Inheritance processing and conflicts in structural generalization hierarchies. 
ACM Computing Surveys, 
36(3), 263–290. 
https://doi.org/10.1145/1035570.1035572Formica, A., Missikoff, M., Pourabbas, E., & Taglino, F. (2010). Semantic Search for Enterprises Competencies Management. 
Proceedings of the International Conference on Knowledge Engineering and Ontology Development (IC3K 2010) - KEOD, 183–192. 
https://doi.org/10.5220/0003069801830192Formica, A., Missikoff, M., Pourabbas, E., & Taglino, F. (2013). Semantic search for matching user requests with profiled enterprises. 
Computers in Industry, 
64(3), 191–202. 
https://doi.org/10.1016/j.compind.2012.09.007Formica, A., & Pourabbas, E. (2009). Content based similarity of geographic classes organized as partition hierarchies. 
Knowledge and Information Systems, 
20(2), 221–241. 
https://doi.org/10.1007/s10115-008-0177-8Formica, A., & Taglino, F. (2021). An Enriched Information-Theoretic Definition of Semantic Similarity in a Taxonomy. 
IEEE Access, 
9, 100583–100593. 
https://doi.org/10.1109/access.2021.3096598Formica, A., & Taglino, F. (2023). Semantic relatedness in DBpedia: A comparative and experimental assessment. 
Information Sciences, 
621, 474–505. 
https://doi.org/10.1016/j.ins.2022.11.025Gruber, T. R. (1993). A translation approach to portable ontology specifications. 
Knowledge Acquisition, 
5(2), 199–220. 
https://doi.org/10.1006/knac.1993.1008Haase, P., Siebes, R., & Van Harmelen, F. (2004). Peer Selection in Peer-to-Peer Networks with Semantic Topologies. In M. Bouzeghoub, C. Goble, V. Kashyap, & S. Spaccapietra (Eds.), 
Semantics of a Networked World. Semantics for Grid Databases (Vol. 3226, pp. 108–125). Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-540-30145-5_7Hadj Taieb, M. A., Zesch, T., & Ben Aouicha, M. (2020). A survey of semantic relatedness evaluation datasets and procedures. 
Artificial Intelligence Review, 
53(6), 4407–4448. 
https://doi.org/10.1007/s10462-019-09796-3Hassan, B., Abdelrahman, S. E., Bahgat, R., & Farag, I. (2019). UESTS: An Unsupervised Ensemble Semantic Textual Similarity Method. 
IEEE Access, 
7, 85462–85482. 
https://doi.org/10.1109/access.2019.2925006Jaccard, P. (1912). The distribution of the flora in the alpine zone. 
New Phytologist, 
11(2), 37–50. 
https://doi.org/10.1111/j.1469-8137.1912.tb05611.xJia, Z., Lu, X., Duan, H., & Li, H. (2019). Using the distance between sets of hierarchical taxonomic clinical concepts to measure patient similarity. 
BMC Medical Informatics and Decision Making, 
19(1), 91. 
https://doi.org/10.1186/s12911-019-0807-yJiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. 
In Proceedings of International Conference Research on Computational Linguistics, 19–33. 
https://doi.org/https://doi.org/10.48550/arXiv.cmp-lg/9709008Köhler, S., Schulz, M. H., Krawitz, P., Bauer, S., Dölken, S., Ott, C. E., Mundlos, C., Horn, D., Mundlos, S., & Robinson, P. N. (2009). Clinical Diagnostics in Human Genetics with Semantic Similarity Searches in Ontologies. 
American Journal of Human Genetics, 
85(4), 457–464. 
https://doi.org/10.1016/j.ajhg.2009.09.003Li, Y., McLean, D., Bandar, Z. A., O’Shea, J. D., & Crockett, K. (2006). Sentence similarity based on semantic nets and corpus statistics. 
IEEE Transactions on Knowledge and Data Engineering, 
18(8), 1138–1150. 
https://doi.org/10.1109/tkde.2006.130Likavec, S., Lombardi, I., & Cena, F. (2019). Sigmoid similarity - a new feature-based similarity measure. 
Information Sciences, 
481, 203–218. 
https://doi.org/10.1016/j.ins.2018.12.018Lin, D. (1998). An information-theoretic definition of similarity. 296–304.
  Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
  Meng, L., Gu,  Junzhong, & Zhou, Z. (2012). A new model of information content based on concept’s topology for measuring semantic similarity in WordNet. International Journal of Grid and Distributed Computing, 5(3), 81–94.
  Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. 
Language and Cognitive Processes, 
6(1), 1–28. 
https://doi.org/10.1080/01690969108406936Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. 
Proceedings of the 14th International Joint Conference on Artificial Intelligence, 448–453. 
https://doi.org/10.48550/arXiv.cmp-lg/9511007Rezaei, M., & Fränti, P. (2014). Matching Similarity for Keyword-Based Clustering. In P. Fränti, G. Brown, M. Loog, F. Escolano, & M. Pelillo (Eds.), 
Structural, Syntactic, and Statistical Pattern Recognition (pp. 193–202). Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-662-44415-3_20Rubenstein, H., & Goodenough, J. B. (1965). Contextual correlates of synonymy. 
Communications of the ACM, 
8(10), 627–633. 
https://doi.org/10.1145/365628.365657Sammut, C., & Webb, G. I. (2011). Encyclopedia of Machine Learning. Springer Science & Business Media.
  Sánchez, D., Batet, M., & Isern, D. (2011). Ontology-based information content computation. 
Knowledge-Based Systems, 
24(2), 297–303. 
https://doi.org/10.1016/j.knosys.2010.10.001Seco, N., Veale, T., & Hayes, J. (2004). An intrinsic information content metric for semantic similarity in wordnet. Proceedings European Conference on Artificial Intelligence (ECAI), 4, 1089–1090.
  Shajalal, Md., & Aono, M. (2019). Semantic textual similarity between sentences using bilingual word semantics. 
Progress in Artificial Intelligence, 
8(2), 263–272. 
https://doi.org/10.1007/s13748-019-00180-4Sharma, S., Sharma, S., Pathak, V., Kaur, P., & Singh, R. K. (2021). Drug Repurposing Using Similarity-based Target Prediction, Docking Studies and Scaffold Hopping of Lefamulin. 
Letters in Drug Design & Discovery, 
18(7), 733–743. 
https://doi.org/10.2174/1570180817999201201113712Shawe-Taylor, J., & Cristianini, N. (2004). 
Kernel methods for pattern analysis. Cambridge University Press. 
https://doi.org/10.1017/CBO9780511809682Szumlanski, S., Gomez, F., & Sims, V. K. (2013). A new set of norms for semantic relatedness measures. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 890–895.
  Taglino, F., Cumbo, F., Antognoli, G., Arisi, I., D’Onofrio, M., Perazzoni, F., Voyat, R., Fiscon, G., Conte, F., Canevelli, M., Bruno, G., Mecocci, P., & Bertolazzi, P. (2023). An ontology-based approach for modelling and querying Alzheimer’s disease data. 
BMC Medical Informatics and Decision Making, 
23(1), 153. 
https://doi.org/10.1186/s12911-023-02211-6Tien, N. H., Le, N. M., Tomohiro, Y., & Tatsuya, I. (2019). Sentence modeling via multiple word embeddings and multi-level comparison for semantic textual similarity. 
Information Processing & Management, 
56(6), 102090. 
https://doi.org/10.1016/j.ipm.2019.102090Toch, E., Reinhartz-Berger, I., & Dori, D. (2011). Humans, semantic services and similarity: A user study of semantic Web services matching and composition. 
Journal of Web Semantics, 
9(1), 16–28. 
https://doi.org/10.1016/j.websem.2010.10.002Tversky, A. (1977). Features of similarity. 
Psychological Review, 
84(4), 327–352. 
https://doi.org/10.1037//0033-295x.84.4.327Wang, F., Wang, N., Cai, S., & Zhang, W. (2020). A Similarity Measure in Formal Concept Analysis Containing General Semantic Information and Domain Information. 
IEEE Access, 
8, 75303–75312. 
https://doi.org/10.1109/access.2020.2988689Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. 
Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, 133–138. 
https://doi.org/10.3115/981732.981751Yang, S., Wei, R., Guo, J., & Tan, H. (2020). Chinese semantic document classification based on strategies of semantic similarity computation and correlation analysis. 
Journal of Web Semantics, 
63, 100578. 
https://doi.org/10.1016/j.websem.2020.100578