Research Article Open Access

Comparative Performance of Supervised Learning Algorithms for Flood Prediction in Kemaman, Terengganu

Nur Najihah Shaaban1, Norlida Hassan1, Aida Mustapha1 and Salama A. Mostafa1
  • 1 Universiti Tun Hussein Onn Malaysia, Malaysia

Abstract

Flood is one of the most destructive phenomena all over the world. Because the flooding uncertainties and the urgency to prepare for disaster management, three specific technique approaches are compared in this study to predict the flood occurrence based on historical rainfall data. The study involved the rainfall data in Kemaman, Terengganu between 2017 and 2018 extracted from the official portal of the state of Terengganu. The dataset covers daily rainfall reading between January to December of the particular year in millimeter (mm) per day along with flood risks occurrence. This prediction experiment will be conducted using three variations algorithms, which are Decision Tree, Naive Bayes and Support Vector Machine. The comparison using three different algorithms was used to define the best algorithms that work with historical rainfall datasets to predict flood in terms of accuracy, precision, recall and F1-score. In the future, the prediction results are hoped to alert government authorities to make an early strategy to handle flood problems in Malaysia by analyzing the rainfall pattern.

Journal of Computer Science
Volume 17 No. 5, 2021, 451-458

DOI: https://doi.org/10.3844/jcssp.2021.451.458

Submitted On: 6 October 2020 Published On: 7 May 2021

How to Cite: Shaaban, N. N., Hassan, N., Mustapha, A. & Mostafa, S. A. (2021). Comparative Performance of Supervised Learning Algorithms for Flood Prediction in Kemaman, Terengganu. Journal of Computer Science, 17(5), 451-458. https://doi.org/10.3844/jcssp.2021.451.458

  • 2,540 Views
  • 1,013 Downloads
  • 53 Citations

Download

Keywords

  • Rainfall Prediction
  • Flood
  • Supervised Learning
  • Machine Learning