Research Article Open Access

A Novel Distinguishability Based Weighted Feature Selection Algorithms for Improved Classification of Gene Microarray Dataset

J. Jeyachidra1 and M. Punithavalli2
  • 1 Periyar Maniammai University, India
  • 2 , India

Abstract

Data mining played vital role in comprehending, analyzing, understanding and interpreting microarray technology expression data. That includes search for genes that had similar or correlated patterns of expression. For that, the feature selection was one of the frequently used important techniques for data preprocessing. Many feature selection algorithms had been developed. Yet the persisting problem was in selecting optimal subset of features from the colon tumor dataset. The use of feature selection reduced the number of features, removed irrelevant, redundant or noise data thereby improving the accuracy, efficiency, applicability and understandability of the learning process. Dimensionality reduction and feature subset selection were important components of classification techniques. In this study, the authors presented a comparative study of existing six feature selection methods and the proposed two algorithms of their own.

Journal of Computer Science
Volume 11 No. 2, 2015, 443-452

DOI: https://doi.org/10.3844/jcssp.2015.443.452

Submitted On: 3 January 2014 Published On: 2 February 2015

How to Cite: Jeyachidra, J. & Punithavalli, M. (2015). A Novel Distinguishability Based Weighted Feature Selection Algorithms for Improved Classification of Gene Microarray Dataset. Journal of Computer Science, 11(2), 443-452. https://doi.org/10.3844/jcssp.2015.443.452

  • 2,916 Views
  • 2,327 Downloads
  • 2 Citations

Download

Keywords

  • Feature Selection
  • Microarray Data
  • Classification
  • C4.5
  • Bayes