Research Article Open Access

Input-Output Feedback Linearization Cascade Controller Using Genetic Algorithm for Rotary Inverted Pendulum System

Iraj Hassanzadeh, Saleh Mobayen and Abbas Harifi

Abstract

The Rotary Inverted Pendulum (RIP) system is a significant classical problem of control engineering which has been investigated in the past decades. This study presents an optimum Input- Output Feedback Linearization (IOFL) cascade controller utilized Genetic Algorithm (GA). Due to the non-minimum phase behavior of the system, IOFL controller leads to unstable internal dynamics. Therefore a cascade structure is proposed consisting IOFL controller for inner loop with PD controller forming the outer loop. The primary design goal is to balance the pendulum in an inverted position. The control criterion is to minimize the Integral Absolute Error (IAE) of system angles. By minimizing the objective function related to IAE using Binary Genetic Algorithm (BGA), the optimal controller parameters can be assigned. The results verified capability and competent characteristics of the proposed controller. The method can be considered as a promising way for control of various similar nonlinear and under-actuated systems.

American Journal of Applied Sciences
Volume 5 No. 10, 2008, 1322-1328

DOI: https://doi.org/10.3844/ajassp.2008.1322.1328

Submitted On: 12 February 2008 Published On: 31 October 2008

How to Cite: Hassanzadeh, I., Mobayen, S. & Harifi, A. (2008). Input-Output Feedback Linearization Cascade Controller Using Genetic Algorithm for Rotary Inverted Pendulum System . American Journal of Applied Sciences, 5(10), 1322-1328. https://doi.org/10.3844/ajassp.2008.1322.1328

  • 3,667 Views
  • 3,145 Downloads
  • 20 Citations

Download

Keywords

  • Rotary inverted pendulum
  • input-output feedback linearization
  • binary genetic algorithm
  • under-actuated system
  • nonlinear model