Research Article Open Access

Robust Outlier Detection in Linear Regression

Nethal K. Jajo and Xizhi Wu

Abstract

New methodology of robust outlier detection based on Robustly Studentized Robust Residuals (RSRR) examination is well established in linear regression analysis. Two new robust location estimators of linear regression parameters are developed in simple and multiple cases. Based on these robust estimators we obtain RSRR. We used RSRR to derive a new measure of distance to be used in outlier detection. A graphical display using new measure of distance is constructed for detecting multiple outliers. This graphical display provides a distinguish between detected outlier observations and hidden influential (non-outlier) observations. Real data example and simulation technique were used for illustration and confidential. 1991 Mathematics subject classification (Amer. Math. Soc.), Primary 62J20; Secondary 62G35.

American Journal of Applied Sciences
Volume 1 No. 2, 2004, 136-148

DOI: https://doi.org/10.3844/ajassp.2004.136.148

Submitted On: 17 February 2005 Published On: 30 June 2004

How to Cite: Jajo, N. K. & Wu, X. (2004). Robust Outlier Detection in Linear Regression. American Journal of Applied Sciences, 1(2), 136-148. https://doi.org/10.3844/ajassp.2004.136.148

  • 3,098 Views
  • 2,382 Downloads
  • 1 Citations

Download

Keywords

  • Name of Keyword