Journal of Computer Science

Broken Character Image Restoration Using Genetic Snake Algorithm: Deep Concavity Problem

Qusay Omran Mosa and Mohammad Faidzul Nasrudin

DOI : 10.3844/jcssp.2016.81.87

Journal of Computer Science

Volume 12, Issue 2

Pages 81-87


Active contours also known as snakes became a familiar and widely used in the field of image segmentation and restoration of historical documents in last few decades. Gradient Vector Flow (GVF) snake successes in overcome of converge to boundary concavities which represents the drawback of traditional snakes. Deep concavity problem it has become Obstacle faced GVF snake when restoring broken characters of historical documents. In this study we proposed algorithm to use genetic algorithm with GVF snake algorithm in order to optimize snake points to get right positions in deep concavity boundaries, also adding a Divergence factor as the third force to enhance the restoring and recognizing results. The experimental results show that our proposed algorithm has more capture than GVF alone.


© 2016 Qusay Omran Mosa and Mohammad Faidzul Nasrudin. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.