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Abstract: Experimental data on the strength of new annealed float glass 

tested in an ambient environment was collected. A comparison was made 

between four standard distributions, the normal, lognormal, Gumbel and 

Weibull, with respect to the performance in modelling the strength. The 

Weibull distribution outperformed the normal and lognormal distributions 

when the data contained edge only failure origins. When the data was 

selected to contain surface only failure origins it is indicated that the 

extreme value distributions performed poorly. The Weibull model is known 

to have a basis in a failure-mechanism concept based on the weakest-link 

principle. The Gumbel distribution can also be derived from failure-based 

mechanics and be associated with certain types of flaw size distribution. 

The Weibull model, however, is a better choice for a failure model of glass 

edge strength compared to the normal and lognormal distributions and at 

least as good as a Gumbel distribution. The surface strength is complicated 

to model and none of the standard distributions which were examined are 

capable of producing a proper model. The sample size also has a profound 

impact on the performance of the surface strength models. 
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Introduction 

The normal distribution was previously used by 

glass manufacturers to model the fracture stress. In e.g., 

the early Pilkington design charts, the design stress was 

based on the 1%-fractile of a normal distribution with a 

coefficient of variation of 0.20 (Calderone, 1999). 

Today, the Weibull distribution is commonly used to 

model the fracture stress data from experiments on 

glass. However, a number of researchers have 

questioned whether the Weibull distribution is in fact 

superior to an ordinary normal or lognormal 

distribution as a model of the fracture stress in glass. 

Based on the test results of a large set of full-size 

rectangular plates of both new and old annealed float 

glass, Calderone (1999) found that the lognormal 

distribution provided a better fit with the experimental 

data than the Weibull distribution. The lognormal 

distribution has support on the right half axis only and 

that gives it a logical advantage over the normal distribution 

because the strength is a positive number. Later studies by 

Calderone et al. (2001) and Calderone et al. (2005) 

recommended that the Weibull distribution should in fact 

not be used to predict the strength of window glass 

panels. However, the 32 samples of data in Calderone 

(1999) were of limited size ranging from 5 to 9 

specimens each. Lü (1997) carried out tests on glass in 

three-point and four-point bending and concluded, based 

on the correlation coefficient of the fitted line in the 

probability plots, that all three standard distributions, i.e., 

the normal, lognormal and Weibull, were applicable as 

failure models. Veer et al. (2009) carried out tests on glass 

beams in four-point bending and concluded that on the 

one hand, the lognormal distribution provided a fit that 

was at least as good as the Weibull model. On the other 

hand, it was concluded that none of the standard 

distributions properly modelled the data on annealed glass. 

So far and to the best of our knowledge, no one has 

made a comparison of the standard distributions based 

on a comprehensive survey of the published data results 

that are available in the open literature. In fact, a 

substantial portion of the total number of experiments 

that have been reported were conducted only recently 

within the last decade. 
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Moreover, it is sometimes believed that the edge 

strength in glass differs from the surface strength. This 

is reflected in the structural standards in different ways. 

For example, DIN 18008:2010 gives a reduction factor 

to be applied when calculating the edge strength, the 

factor of which is 0.8. Hence, the edge condition is 

always considered to be inferior to the surface 

condition. On the other hand, prEN 16612:2017 

provides a different set of reduction factors for the edge 

strength depending on the edge treatment, i.e., cut, 

arrised, ground, or polished. In the case of the polished 

edge, the edge reduction factor is unity which amounts 

to no reduction at all. This implies that the polished 

edge condition is considered to be equal to the pristine 

surface. In summary it is possible then, but not self-

evident perhaps, that different models should be used 

for the edge and surface fractures in glass. 

The question of which standard distribution that 

provides the best fit has important implications. 

Currently, there is a draft for a European standard for 

strength of glass in building, prEN 16612:2017, that 

bases its estimate of the characteristic value of the 

strength of glass on test results that were fitted with a 

Weibull distribution. The characteristic value of the 

bending strength is defined from the 5% fractile in the 

distribution for monolithic panes of annealed float glass. 

In this study, the performance of the following four 

standard statistical distributions is examined, viz. the 

normal, lognormal, Gumbel and Weibull distributions. 

Standard Distributions 

A Weibull distribution with the parameter values 
m = 6 and k = 74 MPa was fitted to test results on 
annealed float glass specimens that were performed as 
a basis for the DIN 1249-10:1990 (Haldimann, 2006). 
The tests were carried out using the R400 double ring 
bending device at a stress rate of approximately 
2 MPa s

−1
. The characteristic value of the bending 

strength was estimated at 45 MPa which was the 5% 
fractile in the distribution. This value was subsequently 
adopted in the draft standard which currently is referred 
to as prEN 16612:2017. 

The Weibull distribution (Weibull, 1939) has the 

cumulative distribution function: 

 

( ) 1 exp

m

F
k

σ

σ

  
= − −     

 (1) 

 

where, k and m>0 denote the scale and shape parameters, 

respectively. Glass strength is governed by the existence 

of surface flaws which magnify the stresses locally 

(Griffith, 1920). The stress-raising property of a given 

flaw can be determined from the associated crack size 

and shape using fracture mechanics (Mencik, 1992). Let 

f(a) denote the flaw size density function with a 

signifying the flaw size. Suppose ac denotes the critical 

crack size that prompts failure of the crack. In the case of 

a plane crack with geometry factor Y that is subjected to 

a uniform uniaxial stress σ, it can be shown that: 
 

2
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K
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where, KIc represents the fracture toughness (Mencik, 

1992). Let Pf(∆A, ac) denote the failure probability in the 

small region ∆A at the critical crack depth ac. It can be 

shown that (Lamon, 2016): 
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Suppose the total area is: 
 
A N A= ∆  (4) 
 
for some number N. By application of the weakest link 

principle while assuming that the regions are non-

interacting it is found that the survival probability is: 
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Substituting for Equation 3 and 4 in Equation 5 while 

observing the standard limit: 
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it follows after some rearrangement that: 
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Suppose f(a) is a Pareto density function, i.e.: 
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where, c and a0 are scale and shape parameters 

(Forbes et al., 2011). Inserting Equation 8 into Equation 

7 while substituting for Equation 2 yields the Weibull 

distribution, Equation 1, with: 
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In fact, for reasons of extreme value theory 

(Beirlant et al., 2004), the Weibull distribution is the 

limiting distribution when the flaw size distribution 

decays like a power-law in the tail. This means that the 

Weibull distribution emerges for the strength model 

when the flaw size distribution is e.g., Pareto, Cauchy, t, 

or F. Another common extreme value distribution is the 

Gumbel distribution which has the density function: 

 

( )
1
exp exp expf

s s s

σ µ σ µ
σ

 − −   
= −    

    
 (11) 

 

where, µ and s signify the location and scale parameters, 

respectively. It is the limiting distribution when the flaw 

size distribution decays exponentially in the tail. This 

includes flaw size distributions such as the normal, 

lognormal, exponential, gamma and χ
2
 (Trustrum and De 

Jayatilaka, 1983). 

The normal distribution has the probability density 

function (Forbes et al., 2011): 
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where, µ and s
2
 are the mean and variance, respectively. 

The use of a normal distribution as a standard model for 

data is due to the Central Limit Theorem (Beirlant et al., 

2004) which states that averages of many samples will 

tend to follow a normal distribution. 

The lognormal distribution arises from the normal 

distribution through a change of variables transformation. If 

Y is a random variable with a normal distribution, then X 

= exp(Y) has a lognormal distribution with the density 

function (Forbes et al., 2011): 
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In Equation 13, µ and s
2
 denote the mean and 

variance of the related normal distribution. By token of 

the Central Limit Theorem, the lognormal distribution 

would be a natural model for geometric means. 

Method 

Data on the strength of annealed float glass was 
collected from a set of references, see Table 1 for the 
complete list including details on the experimental 
setups. The strength was the maximum principal tensile 
stress at the fracture origin location. Only those data 
samples were extracted from the references and included 
in the analysis which fulfilled the following conditions: 
the glass was monolithic annealed float glass in the as-

received condition that was tested in an ambient 
environment. The experiments were conducted using 
either the double ring bending device, the three or four-
point bending device, or the setup that allows for a 
uniform pressure to be applied to a laterally supported 
plate. In the case of four-point bending tests, the 
recorded strength value was discarded in case the failure 
origin was located outside the load span. In one case of 
double ring bending tests, viz. Simiu et al. (1984), the 
fracture stress values that corresponded to failure origins 
outside the loading ring area were adjusted using 
Equation 14 in order to reflect the maximum principal 
tensile stress at the failure origin. This was possible to 
do because the fracture origins were recorded by   
Simiu et al. (1984). Otherwise, all the recorded strength 
values were taken as-received. The radial stress outside 
the loading ring area in a double ring bending setup at 
the distance r from the centre point is: 
 

( ) ( )
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 −
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 (14) 

 

where, r2 is the equivalent outer radius used for a square 

shaped specimen with side length 2L, viz: 

 

( )2
1 2r L= +  (15) 

 

In Equation 14, F is the failure load, b is the plate 

thickness, v is Poisson's ratio, r0 is the loading ring 

radius and r1 is the support ring radius. 

An overview of the experiments including a more 

detailed presentation of each data sample can be found 

in Kinsella (2018). All data samples that were larger 

in size than 5, 15, 30 and 45, respectively, were fitted 

with the four standard probability distributions. The 

parameter estimation was performed with the 

maximum likelihood method. The goodness-of-fit was 

calculated with the Anderson-Darling statistic 

(D'Agostino and Stephens, 1986) and a set of four p-

values were derived for each sample, the p-values 

being associated with the normal, lognormal, Gumbel 

and Weibull distributions, respectively. 

The float process production method causes the 

diffusion of tin into the surface that was in contact with 

the molten tin bath and this side is termed the tin side. 

The other side is the air side. When the statistical models 

were fitted to the data samples, it was not taken into 

account whether the fracture origin was located on the 

tin side of the glass or on the air side. 

The method used to measure and compare the potential 

of various statistical models allows for the effect of 

different surface area size or edge length and different 

stress state to be taken into account by adaptation of the 
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two parameter values. This is done in the maximum 

likelihood estimation. However, the method of analysis 

used in this study does not take into account that the 

strength in e.g., uniaxial stress states is of one type of 

distribution, e.g., Weibull, while in biaxial stress states is 

of a different type of distribution, e.g., normal. 

In some experiments the fracture origin mode was not 

recorded while the data contained a mixture of surface 

and edge fractures or there was an ambiguity towards 

the fracture origin due to multiple potential fracture 

locations. Hence only a mixed failure origin mode 

could be determined in those cases. This pertains to a 

number of cases with the four-point bending device 

with the loading taking place out-of-plane and with 

laterally supported plates subjected to uniform 

pressure. In the examination that follows, it was 

assumed that when a glass beam was tested in the four-

point bending device with in-plane loading, then the type 

of fracture produced was an edge failure origin. For an 

illustration of the meaning of in-plane and out-of-plane 

loading with the four-point bending device, see Fig. 1. The 

model fitting was performed in the following three cases, 

viz. mixed failure origins, edge only failure origins and 

surface only failure origins. 

In a first procedure, the resulting measures of 

performance were visualized in the form of boxplots. 

Subsequently, the multiple models over multiple data 

sets were compared in a Friedman test (Friedman, 1937; 

1940) under the null-hypothesis that all models perform 

equally. In case the null-hypothesis was rejected, a post-

hoc test was performed to determine which of the 

models that were significantly different. For this, the 

Wilcoxon signed-rank test (Wilcoxon, 1945) was used 

and the family-wise error was controlled with the 

Bonferroni-Holm method (Holm, 1979). 

 

 
 

Fig. 1: Illustration of the (a) out-of-plane loading of a beam in 

four-point bending and the (b) in-plane loading 

Friedman Test 

The Friedman test is a non-parametric test for 

comparing models over multiple data sets. The performance 

of the m models is calculated for each of the n data sets and 

then ranked with rank 1 corresponding to the best 

performance. The ranks can be organized in a matrix: 
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where, Rij is the rank of model i in data set j (Benavoli et al., 

2016). Under the null-hypothesis, there is no difference in 

performance between the models, in which case the average 

value of each row in R is 
( )1

2

n m +

. The test statistic is: 
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which under the null-hypothesis is χ
2
-distributed with m-

1 degrees of freedom. 

Wilcoxon Signed-Rank Test 

The Wilcoxon signed-rank test is a non-parametric 

test for comparing the performance of two models over 

multiple data sets. Under the null-hypothesis, both 

models perform equally and hence the distribution of the 

pairwise difference is symmetrical about the value 0. Let 

di denote the difference in performance between the two 

models for data set number i among n sets when the first 

model outperforms the second. In case di = 0, i.e., a tie, 

one has to exclude observations. Suppose there are an 

odd number of ties. Then one tie is excluded and half of 

the remaining ties are included. Suppose there are an 

even number of ties. Then half of the ties are included. 

The rank sum R is calculated: 
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d d
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The test statistic is: 

 

( )

( )( )

1
1

4

1
1 2 1

24

R n n

z

n n n

− +

=

+ +

 (19) 

 

which for a large number of samples is approximately 

normally distributed under the null-hypothesis 

(Demsar, 2006). 

(a) 

(b) 

P/2 P/2 

P/2 P/2 
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Bonferroni-Holm Method 

When making multiple comparisons between pairs of 

models, the Bonferroni-Holm method (Holm, 1979) can 

be used to adjust the significance level to control the 

family-wise Type 1 error, i.e. the probability of making at 

least one Type 1 error in any of the comparisons (Demsar 

2006). Suppose the desired significance level is α. Then, 

with the Bonferroni method, the corrected significance 

level is simply 
m

α

. However, this is very conservative. 

Holm (1979) provided a sequentially rejective version of 

the Bonferroni method that has larger probability of 

rejecting the false hypothesis. The hypotheses are ordered 

by their significance levels p1, p2,... with p1≤p2≤...≤pm. 

Starting with the most significant p-value, p1 is compared 

with 
m

α

 and if it is greater than so, the procedure stops 

and no p-values are significant. If, however, 
1
p

m

α

≤ , the  

corresponding hypothesis is rejected and the second p-

value is compared with 
1m

α

−

. If the corresponding 

hypothesis is also rejected, the third p-value is compared 

with 
2m

α

−

, etc. Hence, pi is compared sequentially to 

m i

α

−

 in a step-down procedure that stops when there is 

failure to reject the hypothesis. 

Limitations 

The glass included in the investigation was new and 
in the as-received condition when it was tested. 
Moreover, the glass was stressed in an ambient 
atmosphere, typically represented by an indoor 
temperature of about 20°C and a relative humidity 
between 40-70%. Only monolithic panes of annealed 
float glass was considered. Static fatigue was not taken 
into account in the analysis of the data.

 
Table 1:  List of references which were the basis for an investigation. ULP = Plate bending due to Uniform Lateral Pressure, CDR = 

Co-axial Double Ring bending, 4PB = Four-Point Bending, 3PB = Three-Point Bending 

Reference No. samples No. observations Bending mode 

Johar (1981) 9 78 ULP 

Johar (1982) 5 106 ULP 

Simiu et al. (1984) 2 85 CDR 

Carre (1996) 5 81 4PB 

Calderone (1999) 32 195 ULP 

Hess (2000) 3 15 4PB 

Fink (2000) 2 127 CDR 

Haldimann (2006) 2 20 CDR 

Veer et al. (2006) 3 32 4PB 

Sglavo et al. (2007) 8 115 3PB 

Veer et al (2009) 2 54 4PB 

Postigo (2010)* 1 41 CDR 

Veer and Rodichev (2011) 2 177 4PB 

Veer and Rodichev (2012) 2 60 4PB 

Vandebroek et al. (2012) 4 77 4PB 

Lindqvist (2013) 32 478 4PB 

Vandebroek et al. (2014) 8 202 4PB 

Kozlowski (2014) 1 6 4PB 

Kleuderlein et al. (2014) 33 830 4PB 

Schula (2015) 1 15 CDR 

Kinsella and Persson (2016) 2 58 4PB 

Muniz-Calvente et al. (2016) 2 73 CDR 4PB 

Navarrete et al. (2016) 8 69 CDR 

Yankelevsky et al. (2017) 1 56 4PB 

Osnes et al. (2018b) 3 93 4PB 

Total: 173 3143 ULP CDR 3PB 4PB 
*Obtained from Huerta et al. (2011) 

 

Table 2: Friedman test p-values based on the samples that contained at least 15 observations of the strength 

 Edge fail. origins Surf. fail. origins 

p-value 0.0000 0.0104 
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Fig. 2: Boxplots for the p-values from the Anderson-Darling tests that measured the goodness-of-fit of various standard statistical 

models of the fracture stress of annealed float glass. The results are separated according to the failure origin mode as well as 

according to the minimum number of observations per sample included in the analysis. W = Weibull, N = normal, L = 

lognormal and G = Gumbel distribution  
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Fig. 3: p-values for the pairwise comparison of model performance with the signed-rank test. (*) indicates that the p-value was 

significant while controlling for the family-wise type I error. A plus sign in front indicates that the row had a higher rank 

while a minus sign indicates that the column had a higher rank. Analysis comprises all samples of size 15 or greater. W = 

Weibull, N = Normal, L = Lognormal and G = Gumbel distribution 

 

Results 

The samples from the references in Table 1 which 

fulfilled the limitations, see Sec. Limitations, were 

modelled using the normal, lognormal, Gumbel and 

Weibull distributions. The goodness-of-fit was tested with 

the Anderson-Darling statistic. The models were fitted in 

the following three cases, viz. mixed failure origins, edge 

only failure origins and surface only failure origins. An 

overview of the performances is provided in Fig. 2 which 

contains a set of boxplots separated according to the 

failure origin mode as well as according to the minimum 

sample size in the analysis. Note that under the null-

hypothesis the p-values are uniformly distributed between 

0 and 1. Fig. 2 only contains the results from pure edge 

and surface failures, i.e., not mixed failure origins. Due to 

the fundamental difference that is apparent in the 

behaviour between edge and surface failure mode, it is not 

effective to combine the results in an analysis, see further 

the Discussion section. 

A further investigation was performed based on all 

samples that included at least 15 observations of the 

strength, the results of which follow. Similar features 

were exhibited when the analysis was selected to 

comprise minimum sample sizes of 30 and 45 

observations, respectively. A Friedman test was 

performed to make multiple comparisons over the data 

sets and the null-hypothesis was rejected in both cases 

corresponding to edge only failure origins and surface 

only failure origins, see further Table 2 for the p-values. 

Finally, pairwise comparisons were made between the 

models using the Wilcoxon signed-rank test and the 

family-wise Type I error was controlled using the 

Bonferroni-Holm correction method, see Fig. 3. The 

results show that in the case of edge failure origins, the 

normal and lognormal distributions did not perform as 

well as the Weibull distribution. In the case of surface 

only failure origins, however, none of the pairwise 

comparisons rendered a statistical significance. 

Discussion 

The Weibull model has been praised for its utility in 

a wide range of applications (Weibull, 1959). 

According to a recent survey (Rinne, 2009), there are a 

great number of papers and monographs that 

demonstrate the successful application of the Weibull 

model in some 180 distinct topics that encompass 

nearly all scientific disciplines. Part of the reason for 

the versatility may lie in the fact that the Weibull 

distribution is one of the three extreme value distributions. 

It emerges naturally as the limiting distribution of the 

minimum or maximum value in a sample. 

The utility of the Weibull model has been called into 

question, however, both from within the structural glass 

engineering community and from outside. As was noted 

in the Introduction section, certain experiments on glass 

have indicated that the Weibull model does not perform 

better than a normal or lognormal distribution. These 

experiments have included laterally supported plates 

subjected to uniform loading as well as beams in three-

point and four-point bending. However, the fact that the 

Weibull model does not appear to outperform other 

standard models may be due to the sample sizes being 

too limited. In order to illustrate this, consider Fig. 4 

which illustrates the results when drawing 1000 random 

samples from a Weibull distribution with different 

sample sizes and fitting the standard distributions to the 

drawn samples. The Weibull parameter values were 

selected as m = 6 and k = 74 MPa, i.e., the same 

distribution as was mentioned already in Sec. Standard 

Distributions. The figure indicates that it may be hard or 

indeed impossible to distinguish properly between a 

Weibull model and models based on other standard 

distributions when the sample sizes are limited. In 

particular this applies to detecting a difference in 

performance between the Weibull model with these 

parameter values and the model based on a normal 

distribution. 
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Fig. 4: Simulations of the p-values based on 1000 random samples from a Weibull distribution of varying sample size 
 

From the point of view of structural glass 

engineering, however, the Weibull model has a logical 

basis. According to experiments with Hertzian 

indentation fracture (Poloniecki and Wilshaw, 1971; 

Poloniecki, 1974), flaw size in glass can be closely fitted 

by an inverse gamma distribution: 
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which is like a Pareto distribution in the tail. In Sec. 

Standard Distributions, it was shown that the Weibull 

distribution can be derived from the weakest-link 

principle when supposing a Pareto flaw size density 

function, see Equation 3 to 10. Hence, a strong case 

can be made for applying the Weibull distribution to 

model glass strength when the stress state is uniform 

and uniaxial over each crack (De Jayatilaka and 

Trustrum, 1977). Notwithstanding, a number of 

studies have questioned the utility of the Weibull 

distribution while noting that it does not perform 

better than a normal or lognormal distribution. In fact, 

some studies have recommended to abandon the 

Weibull model altogether and use a normal or 

lognormal distribution instead. However, when one is 

unable to distinguish between fitted distributions, 

preference should be given to the model that has a 

physical and theoretical foundation, in this case a 

model that is logically based on fracture mechanics. 

In recent attempts to model glass surface fracture 

in Monte Carlo simulations with distributed Griffith 

flaws, it was assumed by some researchers that flaw 

size is governed by a density function that decays like 

an exponential distribution (Yankelevsky, 2014; 

Pathirana et al., 2017; Osnes et al., 2018a; 2018b). 

Assuming a single population of flaws with a size 

distribution that decays exponentially would naturally 

lead to Gumbel-like distributions for the strength in the 

limit, assuming a uniform and uniaxial stress normal to 

the crack planes. However, a Gumbel-like distribution 

for the strength model of the surface of glass is not 

supported by the empirical data. 

In connection with this study, a comprehensive 

survey of the data on annealed glass strength was 

performed (Kinsella, 2018). Based on the results it was 

noted that when taking the whole collection of empirical 

data into account, the Weibull distribution turns out to be 

a better model for the strength than the normal and 

lognormal distributions in the case of edge failure 

origins. The performance was investigated in a statistical 

testing procedure and found to be significant, see Fig. 3, 

with the following exception: The Weibull distribution 

was not found to be significantly better than a Gumbel 

distribution. Nevertheless, it is indicated in Fig. 2 and 3 

that the Weibull model is at least as good as the Gumbel 

distribution. The test procedure was based on the 

Friedman non-parametric method and a post-hoc test 

with the Wilcoxon signed-rank test. In the case of 

surface only failure origins, the multiple comparisons 

using the Friedman test rendered a rejection of the null-

hypothesis meaning that it can be concluded that there 

are significant differences in performance between the 

four standard models in this case. In fact, the boxplots in 

Fig. 2 clearly suggest that the extreme value Weibull and 

Gumbel distributions can be dismissed as a model for the 

surface strength of glass. However, the number of 

relevant data samples is limited in the case of surface 

failure origin data. 

Simple size: 5        Simple size: 15         Simple size: 30        Simple size: 45        Simple size: 90 
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The analysis depends on a choice for the minimum 

sample size to be included. In this study, the main 

analysis considered samples of size 15 or greater, cf. Fig. 

3. It might be argued that even greater sample sizes are 

needed to distinguish properly between the different 

models when only a limited or moderate number of 

samples are available, such as is typically the case in the 

respective experimental campaigns considered in this 

study. The dependence on sample size is clearly 

indicated in Fig. 4 which contains simulation results of 

the goodness-of-fit while varying the underlying sample 

size. However, the empirical data only provides a limited 

number of samples when the sample size is 30 or greater. 

Nonetheless, the following conclusions can be drawn 

from Fig. 2 while noting the effect of the minimum 

sample size upon the results. When all samples are 

included which contain at least five observations, no 

particular effect can be seen between the different 

models for the surface strength. However, as the 

minimum sample size increases, the Weibull distribution 

performs poorly while the normal and lognormal 

distributions appear to perform better. In order to address 

this phenomenon properly, an investigation was carried 

out into the properties of the underlying samples. Fig. 5 

illustrates the results from this investigation in the form 

of three diagrams. The top diagram shows the size of 

surface area in maximum tension as a function of the 

minimum sample size. The y-axis scaling is logarithmic 

for the sake of visual clarity. The surface areas were not 

included in Fig. 5 in the case of laterally supported plates 

subjected to uniform pressure because of the difficulty 

associated with assigning a value to the size of surface 

area in maximum tension. The diagram shows that the 

whole range of surface sizes are present at the first two 

levels, i.e., sample sizes greater than or equal to 5 and 

15. However, already as the sample sizes are restricted to 

15 or greater, the extreme value Gumbel distribution is 

clearly performing poorly as can be seen in Fig. 2. The 

extreme value Weibull distribution seems to be 

performing worse than at the first level, i.e. for sample 

sizes restricted to 5 or greater. Furthermore, a 

considerable portion of the whole range of surface sizes 

is still present at the third level, i.e., for sample sizes 

restricted to 30 or greater. However, both the extreme 

value distributions perform poorly as can be seen in Fig. 2. 

Finally, at the last level, i.e., for sample sizes restricted to 

45 or greater, the surface area sizes that remain are the 

following, viz. approx. 2000, 2400 and 3800 mm
2
. The 

extreme value distributions perform poorly again. The 

conclusion is that the poor performance of the extreme 

value distributions cannot simply be explained as a 

consequence of the surface size converging towards a 

small size or a large size. In other words, it is not simply 

the surface size that governs the features of Fig. 2. Next, 

consider the middle diagram in Fig. 5 which shows the 

bending modes of the underlying samples. Here, ULP 

refers to the setup that allows for a uniform lateral 

pressure to be applied to linearly supported plates, CDR 

refers to the coaxial double ring bending device, while 

3PB and 4PB refer to the three and four-point bending 

devices, respectively. The diagram shows that both a 

uniaxial stress state from the four-point bending device 

and an equibiaxial stress state from the double ring 

bending device are present at all levels of samples sizes. 

Hence, the attributes of Fig. 2 cannot be explained as a 

consequence of the stress state converging towards one or 

the other configuration. Rather, there is a mixture of stress 

states present at each level. Next, the bottom diagram in 

Fig. 5 shows whether the fracture origin was located on 

the tin side, air side, or whether it was unknown because 

it was not recorded in the publication. With many of the 

samples, the publication did not record the configuration 

of the glass specimens in terms of the tin and air side 

being in the tension zone. This likely implies that there 

was a mixture of tin and air side failures. This would be 

so, because if the experimentor made the effort to 

identify the tin and air side of each specimen properly 

and configure them accordingly in the testing device, 

then this would probably have been recorded or at least 

mentioned in the ensuing publication. Hence, the 

conclusion can be drawn that a mixture of tin and air 

side failures are present at all levels of sample size. 

This demonstrates that the features of the surface origin 

failures in Fig. 2 probably cannot be explained as a 

consequence of the configuration of the test specimens 

in the testing device with respect to the air or tin side 

in tension. In other words, it is probably not the case 

that the fracture origins converge towards either pure 

tin side or pure air side failures as the sample sizes are 

restricted to at least 15, 30 and 45, respectively.  

The following explanation for the features of the 

surface origin failures in Fig. 2 is suggested. When the 

surface condition in glass is considered, there is no 

single population of flaws that govern the failure because 

if so were the case, then the Weibull and Gumbel 

distributions would have performed much better. Hence 

it is indicated that multiple flaw populations are present 

on the surface. If the underlying flaw size distribution is 

governed by multiple unimodal populations which are 

superposed, it is natural to expect a more symmetrical 

and “rounded out" shape for the extreme value such as 

would correspond better with a normal distribution. By 

the same token, when the minimum sample sizes are 

small, then it would be logical that the Weibull and 

Gumbel models perform better because the probability 

decreases that you sample all the underlying flaw 

populations hence resulting in a better fit. 



David Kinsella et al. / International Journal of Structural Glass and Advanced Materials Research 2018, Volume 2: 178.190 

DOI: 10.3844/sgamrsp.2018.178.190 

 

187 

 
 

 
 

Fig. 5: Properties of the underlying samples that generated the surface origin boxplots in Fig. 2 

 
On the other hand, the generally equal performance 

of the models in the case of ≤5 sample size may just as 
well be attributed to small-sample effects, i.e., the 
difficulty of detecting any effects when the sample sizes 
are small. Moreover, the fact that the normal distribution 
performs better when the sample sizes increase should 
not be taken as argument for adopting this distribution as 
a model for the surface strength. From a weakest-link 
perspective, the normal distribution is not suitable. As 
already mentioned, there may be a logical explanation 
for the better performance of the normal distribution 
compared to the extreme value distributions that has to 
do with the presence of multiple flaw populations. 

However, attempts to address the presence of 
multiple flaw populations may lead to more or less 
exotic distributions for the flaw size. So far, attempts 
have been made by Pathirana et al. (2017), Kinsella and 
Persson (2018b) and Pisano and Royer-Carfagni (2017) 
to model surface failure in glass with a multimodal flaw 
size distribution approach. 

With the edge strength data, the conclusions are 

different. Here, it is readily seen that the Weibull 

distribution overall performs better than the normal and 

lognormal distributions and at least as well as the 

Gumbel distribution, irrespective of the minimum 

sample size in the analysis. This indicates that when the 

edge strength is considered, there is a tendency towards a 

unimodal flaw size distribution that governs the failure. 

This may be logical when you consider the mechanical 

treatment of the edge which undergoes various operations 

such as scoring and machining. As a comparison, consider 

when the glass surface is artificially scratched by 

sandblasting (Blank, 1993; Schula, 2015). Then the 

result is generally to produce a better Weibull fit 

compared with the original pristine surface. 

In summary then, it can be concluded that the edge 

and surface condition in glass differ fundamentally. A 

proper analysis of the strength has then to discriminate 

between these failure origins. However, it may be that 

certain kinds of testing device can be used as a proxy for 

either the edge of the surface condition. In other words, 

when a given test device produces failures with the 

majority of one kind, then it may be that this data can be 

combined without producing significant errors. This 

proxy-effect has not been quantified in the present study 
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but it will be considered in a future investigation. In a 

recent paper (Yankelevsky et al., 2018), it was examined 

whether edge failures should be excluded from the 

analysis of the data sample that is produced with the four-

point bending device with out-of-plane loading or whether 

they may be included. The examination was based on a 

reference sample of 83 specimens that were tested in 

accordance with ASTM C158-02. The results from the 

investigation were not conclusive with regards the 

possible proxy-effect of the bending device, nevertheless 

the authors recommended to exclude edge failures. 

The majority of experimental data points included in 

this investigation pertain to the edge strength of glass. As 

a matter of fact, the edge strength is of great importance 

for the strength design of a structural glass component. 

The edge is thought to contain more weaknesses than the 

surface, probably due to machining operations done to the 

edge while scoring, cutting and processing (Veer and 

Rodichev, 2011; Vandebroek et al., 2014). When a 

laterally supported plate is subject to uniform pressure, 

significant tensile stresses occur near the edges, see e.g., 

Kinsella and Persson (2018a) which contains an analysis 

of the fracture origins in laterally supported plates 

subject to uniform pressure. For glass beams and pillars, 

the edges are always subject to significant tensile stress 

in the design state. Hence, in practical situations the edge 

strength can hardly be neglected for most types of 

structural units, including laterally supported plates. Also 

during handling, transportation and maintenance, the 

edge is prone to damage. The fact that the Weibull 

distribution outperforms the normal and lognormal 

distributions in the case of edge only failure origins is an 

argument for adopting this model rather than the others. 

The lognormal distribution might seem like a better 

candidate than the normal distribution because the strength 

is a positive number and the lognormal model lacks support 

on the left-hand side of the real axis. Nevertheless, a better 

fit was indicated using the normal distribution. 

In summary, the Weibull distribution is 

recommended as a basic model for the edge strength of 

glass for reasons of empirical evidence and physics. The 

empirical evidence is that the Weibull model is generally 

superior to a normal and lognormal distribution and at 

least as good as a Gumbel distribution in the case of 

edge failure origins. For physics-based reasons, the 

extreme value Weibull and Gumbel models are 

preferable because they derive from the weakest-link 

principle and thus harmonize with an essential brittle 

material concept. In fact, assuming a population of 

material flaws with a unimodal crack size distribution that 

is Pareto, F, Cauchy, or t in the tail, the Weibull 

distribution can be deductively derived from the weakest-

link principle. This supposes that the stress state is 

uniform and uniaxial over each crack. In the case of the 

normal and lognormal distributions, however, there is no 

such failure-mechanism basis. However, the Weibull and 

Gumbel models are unsuited to represent the strength of 

glass when the fracture originates from the surface. 

Finally, there exist numerous strength prediction 

models for use with glass. For example, Monte Carlo 

simulations of glass fracture with stochastic Griffith flaws 

have recently been performed by Yankelevsky (2014), 

Pathirana et al. (2017), Yankelevsky et al. (2017),     

Osnes et al. (2018a; 2018b) and Kinsella and Persson 

(2018b). In such case, no closed form exists for the 

probability distribution. It could be an interesting future 

research project to compare the performance of a larger 

set of models over a comprehensive set of data samples. 

Conclusion 

Based on a large set of empirical data, the Weibull 

distribution outperforms the normal and lognormal 

distributions and is at least as good as a Gumbel 

distribution as a model for glass strength when the 

fracture data is selected to comprise edge only failure 

origins. In the case of surface only failure origins, it is 

indicated that the normal and lognormal distributions 

perform better than the extreme value distributions. The 

analysis of the surface strength is dependent on the 

sample size. A proper distinction between the tentative 

models is more straight-forward to make, the greater the 

sample sizes that are included in the analysis. It is 

suggested that when the minimum sample size is much 

smaller than 15 then no distinction is possible to make. 

The Weibull and Gumbel models have a logical basis in 

a failure-mechanism that applies to brittle glass 

behaviour assuming a weakest-link argument. The 

Weibull model is therefore recommended instead of a 

normal or lognormal distribution to model glass fracture 

when the edge strength is considered. The analysis of the 

surface strength distribution is complicated. This is 

probably due to the presence of multiple flaw 

populations. Neither extreme value Weibull or Gumbel 

nor normal or lognormal distributions are able to 

properly model the surface strength of glass. 
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