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Abstract: In studies of atomic and molecular systems, approximate 

analytical methods play a significant role. This is because they can be used 

for benchmarking the results of numerical methods. Besides they offer a 

physical insight into the phenomena under consideration an insight 

impossible to achieve by numerical methods. Many approximate analytical 

methods were developed in such a way that each method has both the 

classical version and the quantum version. In the present paper we point out 

that for Rydberg (i.e., highly-excited) states of atomic systems, for a given 

analytical method, its classical version has a much broader range of validity than 

the corresponding quantum version. We illustrate this with two examples. The 

first example is the Stark effect in hydrogen atoms. The second example is 

hydrogen atoms in the field of high-frequency laser radiation. The advantage 

of classical approximate analytical methods for studying Rydberg states over 

the quantum counterparts is a counterintuitive result. 
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Introduction 

Approximate analytical methods for studying atomic 

and molecular systems are important for the following 

reasons. First, they provide a physical insight that 

numerical methods lack. Second, they provide the test 

bench for verifying the results of numerical methods. 

Let us start by discussing the standard Perturbation 

Theory (PT) for time-independent interactions. The 

overwhelming majority of textbooks on quantum 

mechanics create an impression that the PT is the quantum 

invention e.g., textbooks (Bertlmann and Friis, 2023; 

McIntyre, 2023; Larkoski, 2023; Nastase, 2022; Zettili, 

2009; Zwiebach, 2022; Berera and Debbio, 2021; 

Cohen-Tannoudji et al., 2020; Griffiths and Schroeter, 

2018; Weinberg, 2015; Townsend, 2012) However, in 

reality the PT was first developed in classical mechanics 

by Poincaré and Magini (1899). The application of the 

classical PT to atomic (and some molecular) systems was 

presented in all detail in Born's book (Born, 1925). 

Moreover, the textbooks on quantum mechanics do 

not present the following important facts. Namely, for 

Rydberg (i.e., highly excited) states of atomic and 

molecular systems, that is for the states for which not only 

the quantum PT but also the classical PT is appropriate, 

the region of validity of the classical PT is much broader 

than the region of validity Eα of the quantum PT. In other 

words, Rydberg states that classical PT has a built-in 

advantage over quantum PT. 

Indeed, the validity condition of the quantum PT is 

that the quantum energy correction ΔEα to the unperturbed 

energy level 0E  must obey the condition: 
 
|ΔEα| << |Eα

(0) – Eβ
(0)|  (1) 

 
For any level α and for any level β different from α. In 

distinction, the validity condition of the classical PT is 

that the classical energy correction ΔE to the state of the 

energy E must obey the condition: 
 
|ΔE| << |E| (2) 
 

For the Rydberg states, condition (2) is much less 

restrictive than condition, (1) for the following underlying 

reason. For the accurate description of the classical 

motion, it is sufficient to calculate the action S with a 

relative error much smaller than unity. In distinction, for 

the accurate determination of the quantum (or 

quasiclassical) wave function, it is necessary to calculate 

the action S with an absolute error much smaller than 

unity. Since S >>1 for Rydberg states, then the quantum 

validity condition is much more restrictive than the 

classical validity condition. 

In the present paper, first, we illustrate this by the 

example of the Stark effect in hydrogen atoms. The 
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corresponding energy corrections are well-known in the 

research and teaching communities. 

Second, we illustrate the same thesis with a much less 

known example: Hydrogen atoms in the field of high-

frequency laser radiation. Here "high-frequency" means 

that the laser frequency ω is much greater than then any 

frequency Ω characterizing the unperturbed hydrogen 

atom. This problem was treated not by the PT, but by the 

analytical method of separating rapid and slow 

subsystem-both in quantum and classical versions. 

We emphasize that Rydberg atoms are still a hot topic for 

studies e.g., papers (Robicheaux et al., 2024; Nguyen et al., 

2023; Ebadi et al., 2022; Cong et al., 2022; Cohen and 

Thompson, 2021) published in the last 3 years and 

references therein. 

Comparison of the Ranges of Validity of the 

Quantum and Classical Perturbation Theories for 

the Stark Effect in Hydrogen Atoms 

The well-known quantum expression for the linear 

Stark effect in hydrogen in atomic units, i.e., in units 

where ħ = e = me = 1, caused by the uniform electric field 

F, is e.g., the textbook (Landau et al., 1965): 
 

1 23 / 2,nqE nqF q n n = = −  (3) 

 
where, n is the principal quantum number while n1 and n2 

are the parabolic quantum numbers. Since the quantum 

number q (sometimes called the electric quantum number) 

takes the (2n + 1) values-(n-1), -(n-2), …, (n-1), then the 

maximum value of the energy correction: 
 

= 3 -1nqmax(ΔE ) n(n )F  (4) 

 
For this quantum PT result to be valid, the width of 

this band must be much smaller than the separation 

between the adjacent unperturbed levels (0) (0)

1n nE E+ − . For n 

>>1 (Rydberg states), this translates into: 
 
3n2F << 1/n3 (5) 
 

Or: 
 
F << Fquant ~ 1/n5 (6) 
 
where, Fquant is the quantum critical value of the electric field. 

The corresponding classical expression for the linear 

stark effect is e.g., book (Born, 1925): 
 

3 / 2eE JJ F =  (7) 
 
where, J and Je are the action variables (the generalized 

momenta) of the corresponding canonical action-angle 

variables. Here the action variable J is physically related 

to the conservation of the unperturbed energy and the 

action variable Je is physically related to the conservation 

of the Runge Lenz vector A for the unperturbed system 

(the definition of the classical Runge-Lenz vector can be 

found, e.g., in the textbook (Landau and Lifshitz, 1960). 

The action variable Je takes the values: -J, -(J-1), J. (We 

note that J > 0). Therefore, the maximum value of the 

energy correction is: 
 

2max(ΔE)=3J F / 2  (8) 
 

The unperturbed energy is (Poincaré and Magini 1899): 
 

21/ (2 )E J= −  (9) 
 

So, the validity condition (2) takes the form: 
 
ΔE ≤ max(ΔE) = 3J2F/2 << 1/(2J2) (10) 
 

Leading to the requirement: 
 
F << 1/J4 (11) 
 

The action variable J is the classical counterpart of the 

principal quantum number n, so it can be substituted by n in 

Eq. (11) and the validity range becomes: 
 
F << Fclass ~ 1/n4 (12) 
 

The ratio of the classical Fclass and quantum Fquant 

values of the critical electric fields is: 
 
Fclass/Fquant ~ n (13) 
 

Thus, for Rydberg states (n >>1), the validity range of 

the classical energy correction is indeed by orders of 

magnitude broader than the validity range of the quantum 

energy correction. 

Comparison of the Ranges of Validity of the 

Quantum and Classical Analytical Methods for 

Studying Hydrogen Atoms in the Field of High-

Frequency Laser Radiation 

The system in point is a hydrogen atom under the 

linearly polarized laser field F(t) = F0 cosωt in the 

situation where: 
 
Ω/ω << 1 (14) 
 

Here in the classical case, Ω is the Kepler 

frequency. In the quantum case, Ω is the maximum 

atomic transition frequency. 

In both the quantum and classical studies of this 

system chapters 2 and 3 of the book (Oks, 2019), instead 

of the PT, the authors employed the analytical method 

based on the of rapid and slow subsystems. In other 

words, instead of using as the small parameter the relative 

littleness of the perturbation, the authors used the ratio 

Ω/ω as the small parameter. 

The gist of this analytical method is the following. In 

the first step, one solves for the rapid subsystem at the 

frozen coordinates of the slow subsystem. In the next step, 

by using the solution obtained in the first step, one 

averages the Hamiltonian (or the Hamilton function) of 

the slow subsystem over the motion of the rapid 
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subsystem. As a result, the truncated Hamiltonian (or the 

Hamilton function) for the slow subsystem acquires an 

additional term: The effective potential. In classical 

mechanics, the method of effective potentials (which is 

how the method of separating rapid and slow subsystems 

is also called) was introduced in its simplest form by 

Kapitsa as presented in the textbook (Landau and 

Lifshitz, 1960). The quantum description of this 

method can be found in its simplest form, e.g., in the 

book (Galitski et al., 2013). 

The application of the quantum and classical methods 

of effective potentials to the system under consideration 

yielded at the first stage the following effective potential 

(added to the unperturbed Hamiltonian or to the 

unperturbed Hamilton function) in atomic units: 
 

2 2 2 2 3

0[ / (2 ) ](1 3cos ) /effV F r = −  (15) 
 

Here r and θ are the absolute value of the radius-vector 

and the polar angle of the atomic electron, respectively; 

the z-axis being parallel to the laser field F. 

This effective potential has several remarkable 

properties. First, it is mathematically equivalent to the 

effective potential for the motion of a satellite around an 

oblate planet (such as, e.g., the Earth) e.g., book 

(Beletsky, 2001). In other words, the atomic problem 

under consideration has the celestial analogy. 

Second, any physical system described by this 

potential has higher than geometrical (i.e., algebraic) 

symmetry. While the geometrical symmetry is axial, the 

actual symmetry is spherical. Indeed, from the 

geometrical (axial) symmetry of this potential follows that 

only the projection Mz (but not the square M2) of the 

angular momentum is conserved. However, it turned out 

that M2 is also conserved-just like for the spherical 

symmetry. Due to this fact, the effect of this potential on the 

energy of the system can be calculated using the simpler, 

“non-degenerate” version of the PT instead of the more 

complicated, “degenerate” version of the PT. 

As a result, the following quantum correction to the 

unperturbed energy has been obtained book (Oks, 2019) 

where n, l, and m are the spherical quantum numbers, |m| 

≤ l ≤ (n-1): 
 

2 2 2 4 2 3

/ 0 0/ (2 ) ( / )[3 ( 1)] / [ (2 3)( 1) (2 1)]n mE F F m l l n l l l l  = + − + + + −   (16) 
 

for l >0 and: 
 

2 2 2 3 4

00 0 0/ (2 ) / (3 )nE F F n  = +  (17) 
 

For l = 0. The maximum value max (ΔEnlm) = ΔEn00. 

For ω<<1/n3/2, one has: 
 

3 4max( ) / ( )n / mΔE F 3n ω 2
0  (18) 

 

It should be noted that for n >>1, the condition (14) 

yields ω>>1/n3 so that there is a large range of laser 

frequencies 1/n3<<ω<<1/n3/2, for which Eq. (18) is valid. 

So, for the validity of Eqs. (16-17) it is required 

(according to Eq. 1): 
 
max(ΔEnlm) ≈ F0

2/(3n3ω4) << 1/n3 (19) 
 

So that: 
 
F0 << F0,quant ~ ω2 (20) 
 
where, F0, quant is the quantum critical value of the laser 

field amplitude. In the classical study of the same system 

book (Oks, 2019); there was obtained: 
 

2 4 2 2 3 5

1 2 3 0 3 2 1 2( , ) [ / (8 )](3 ) / ( )E J J J F J J J J = −  (21) 
 

Here the notations are the same as in the sect. 21 of the 

book (Poincaré and Magini, 1899), namely: 
 

1 2 3, ,rJ J J J J J J J J    = + + = + =  (22) 
 
where, Jr, Jθ, and Jφ are the action variables corresponding to 

the r-, θ- and φ-motions, respectively (|J3| ≤ J2 ≤ J1, J2 > 0). 

The validity condition (2) takes the form: 
 
|ΔE| ≤ ΔEmax = ΔE(J1, 1, 0) = F0

2/(4ω4J1
3) << 1/(2J1

2) (23) 
 

Leading to the requirement: 
 
F0 << J1

1/2ω2 (24) 
 

The action variable J1 is the classical counterpart of the 

principal quantum number n so that it can be substituted by 

n in Eq. (24) and the validity range becomes: 
 
F0 << F0,class ~ n1/2ω2 (25) 
 

The ratio of the classical F0, class, and quantum F0, quant 

values of the critical amplitudes of the laser field is: 
 
F0,class/F0,quant ~ n1/2 (26) 
 

Since the energy density of the laser field ε is ( )2

0 / 8F  , 

then the ratio of the corresponding critical energy 

densities is: 
 
εclass/εquant ~ (F0,class/F0,quant)2 ~ n (27) 
 

Thus, for Rydberg states (n>>1), the validity range of 
the classical energy correction is indeed by orders of 

magnitude broader than the validity range of the quantum 
energy correction. 

Conclusion 

We pointed out that for Rydberg (i.e., highly-excited) 
states of atomic systems, for a given analytical method, its 
classical version has a much broader range of validity than 
the corresponding quantum version. We illustrated this 

fact with two examples. 
The first example is the Stark effect in hydrogen 

atoms. We showed that the ratio of the classical Fclass and 
quantum Fquant values of the critical electric fields is 
Fclass/Fquant. ~ n>>1. 
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The second example is hydrogen atoms in the field of 

high-frequency laser radiation. We demonstrated that the 

ratio of the corresponding critical energy densities is 

εclass/εquant ~ n>>1. 

Thus, for Rydberg states (n>>1), the validity range of 

the classical analytical methods is indeed by orders of 

magnitude wider than the validity range of the quantum 

analytical methods. The advantage of classical 

approximate analytical methods for studying Rydberg states 

over the quantum counterparts is a counterintuitive result. 
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