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Email: atanastod@abv.bg Abstract: In manuscript the hypothesis ‘that the mass, size, doubling time 

and density of the unicellular organisms (Prokaryotes and Eukaryotes) are 

determined by the gravitational constant (G, N·m
2
/kg

2
), Planck constant (h, 

J·s) and growth rate vgr (m/s)’ is investigated. By scaling analyses it is 

indicated that the growth rate of the unicellular organisms ranges in a 

narrow window of 1.0×10
−11

–1.0×10
−10

 m/s, in comparison to 10
 
orders of 

magnitudes difference between their mass. Dimension analyses 

demonstrates that the combination between the growth rate of unicellular 

organisms, gravitational constant and Planck constant provides the 

equations with dimension of mass M(vgr) = (h·vgr/G)
½
 in kilogram, length 

L(vgr) = (h·G/vgr
3
)

½ 
in meter, time T(vgr) = (h·G/vgr

5
)

½ 
in seconds and 

density ρ = vgr
.3.5

/hG
2
 in kg per 1 m

3
. For values of growth rate in numerical 

diapason of 1.0×10
−11

–1.0×10
−9.5 

m/s, the calculated numerical values for 

mass (3.0×10
−18

–1.0×10
−16 

kg), length (5.0×10
−8

–1.0×10
−5 

m), time (1.0×10
2
–

1.0×10
6 

s) and density (1.0×10
−1

–1.0×10
4 

kg/m
3
) overlap with diapason of 

experimentally measured values for cell mass (3.0×10
−18

–1.0×10
−15 

kg), 

volume to surface ratio (1.0×10
−7

–1.0×10
−4 

m), doubling time (1.0×10
3
–

1.0×10
7 
s) and density (1050-1300

 
kg/m

3
) in both bacteria and protozoa. 
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Introduction 

The origin of the first unicellular organisms on the 

Earth is one of the enigmas in the life sciences. There are 

many hypotheses for the origin of bacteria-ranging from 

astrophysical bases of Universe (Ehrenfreund et al., 

2002) and self-reproducing coacervates (Oparin, 1973; 

Colgate et al., 2003; Vasas et al., 2012) to the first 

mitotic cells (Sagan, 1967; Ratcliff et al., 2012; 

Montagnes et al., 2012). Recently, the quantum-

mechanical effects (Patte, 1967; Pati, 2004; Davies, 

2008; Tamulis and Grigalavicus, 2010; Fleming et al., 

2011) and the anthropic principles that implies that 

Universe must be consistent with the existence of life 

(Carr and Rees, 1979; Hoyle and Wickramasinghe, 

1999; Vidal, 2010; Kamenshchik and Teryaev, 2013) 

need to be extended into the understanding of life. In the 

present approach we developed the hypothesis for 

possible physical determination of the mass, size, 

doubling time and density parameters of the unicellular 

organisms on the Earth. The growth rate of unicellular 

organisms (vgr, m/s) is represented as a speed of their 

volume to surface ratio growth (V/S, m) for 

corresponding doubling time (Tdt, s) of organisms 

(Atanasov, 2007; 2012a; 2014): 
 

( )/= ×gr dtv V S T  (1) 

 

The diapason growth rate of unicellular Prokaryotes 

and Eukaryotes ranges in a narrow window between 

1.0×10
−11

-1.0×10
−10

 m s
−1

, in comparison to 10
 
orders of 

magnitudes difference between the cells mass (Atanasov, 

2012b). The connection between volume to surface ratio 

and mean doubling time Tmean(s) of phages, bacteria and 

protozoa could be approximated by a linear function: 

 

/ = ×gr meanV S v T  (2) 

 

with correlation coefficient near to 1.0 (Atanasov, 2014). 
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Fig. 1. Schematic presentation of the bacterial cell growth rate 

‘vgr’, represented by length ‘Lcell‘ and doubling time ‘Tdt’ 

of bacteria. Legend: The symbols Cm and Cd represent the 

mass-center of mother’s and daughter’s cell 
 

The physical analog of Equation 1 and 2 appears to 

correlate between distance L(m), speed v(m/s) and time 

T(s) of a given physical object: 

 

( ) ( ) ( ) /= ×L m v m s T s  (3) 

 

This analogy between Equation 1-3 gives 

possibilities regarding growth rate of unicellular 

organisms as physical characteristics (similarly to 

physical speed) and to combine with different physical 

constants, using dimensional analyses. The growth rate 

of unicellular organisms in scientific sours is present 

by number of cell doublings per day (Alberts et al., 

1994). The rate of cell elongation during one cell 

cycle is present by cell length per one doubling time 

(Cullum and Vicente, 1978). By this fashion the 

growth rate of a single cell can represents by increases 

of the linear length of the mother cell for 

corresponding doubling time (Fig. 1). 

The mother’s cell divides by binary fission and 

generates one daughter’s cell with approximately the 

same mass-size-density cellular characteristics. During 

growth and elongation of the mother cell, the mass-

center of the mother’s cell (Cm) moves in space with 

speed equals to the growth rate vgr, up to mass-center 

(Cd) of the daughter cell (Fig. 1). To eliminate 

differences between forms of cells, for example the 

representative length in all calculations is the given 

volume to surface ratio of the cells. An additional 

argument in favor of the use volume to surface ratio as 

representative length is the well known link between this 

one and metabolic and growth rate of the unicellular 

organisms (Foy et al., 1976; Foy, 1980). 

The idea to combine physical and biological 

constants and parameters is new and is not developed in 

scientific literature. In this sense, the aim of the study is 

to test the hypothesis that by dimensional equations we 

can calculate the numerical values of mass-size-time and 

density parameters of the unicellular organisms as a 

function of their growth rate. 

Data and Methods 

Experimental Data for Mass and Doubling Time 

and Calculated Data for Volume to Surface Ratio 

and Growth Rate of the Unicellular Organisms 

The experimental data for body mass M(kg), 

density ρ(kg/m
3
), minimum doubling time Tmin(s) and 

maximum doubling time Tmax(s) of unicellular 

organisms are collected from scientific publications 

and sources (Lindner, 1978; Holt, 1984; 1986; 1989; 

Hausmann, 1985; Balows et al., 1992; Alberts et al., 

1994) (data is presented in Table 1). The calculated 

data for volume to surface ratio V/S (m), mean 

doubling time Tmean(s) and growth rate vgr(m/s) of the 

cells were taken from previous publication of the 

author (Atanasov, 2005; 2007; 2012a; 2012b; 2014). 

Giving in the mind the biological variability of the 

organismal parameters in all calculations was taken 

the mean value of the cell mass and doubling time of 

unicellular organisms. Doubling time of Viruses and 

Phages was taken as time for synthesis of a particle. 

Dimensional Analyses 

The dimensional analyses is a conceptual tool 

often applied in physics and biophysics to understand 

a tentative possibility for one or another relationship, 

involving certain physical or biophysical quantities 

(Bhaskar and Nigam, 1990; Petty, 2001; Valev, 2013). 

It is routinely used to ascertain the plausibility of the 

derived equations and computations when it is known. 

If the form of the given relationship is unknown, a 

dimensional analysis is used for finding the equations 

that express these relationships. For example, a 

quantity F with any dimension (kg, m, s, kg/m
3
) is 

constructed like equations as a function of the 

fundamental physical constants (gravitational G and 

Planck h constant) and biological parameter (growth 

rate vgr
 
of unicellular organisms): 

 
α β γ

grF = G h v   (4) 

 

The exponents α, β and γ in Equation 4 are 

determined by matching the dimensions of both sides 

of the
 
equation. In our study the growth rate of the 

single organism (vgr) has a dimension of linear speed
 

(meter per second) and can be combined with 

gravitational constant (G) with dimension
 
(N·m

2
/kg

2
) 

and Planck constant (h) with dimension (J·s). These 

combinations lead to equations with
 
dimensions of 

mass (in kilogram), length (in meter), time (in second) 

and density (in kilogram per 1 m
3
). 
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Table 1. Body mass M, volume to surface ratio V/S, doubling time Tdt and growth rate vgr in 50 organisms 

Unicellular organisms Cellular Volume/Surface Doubling time (h) Growth rate  

(t, °C of growth) mass M (kg) V/S (m) Tmin-Tmax (Tmean) Vgr(m/s) [V/(S.Tmean)] 

Phages, viruses and cellular organelles 

1. T7 phage (35°) 8.6×10−20 7.85×10−9 0.335  6.54×10−12 

2. T1 phage (35°) 1.4×10−19 9.17×10−9 0.45  5.66×10−12 

3. Lambda phage (35°) 2.4×10−19 1.10×10−8 0.55 5.66×10−12 

4. T4 phage (35°) 3.6×10−19 1.26×10−8 0.65 5.38×10−12 

5. T2 phage (35°) 4.6×10−19 1.36×10−8 0.75 5.04×10−12 

6. Tobacco mosaic (20°) 5.0×10−19 1.40×10−8 0.75 5.19×10−12 

7. Cow pox virus (37°) 5.0×10−19 1.40×10−8 0.75 5.19×10−12 

8. Virus influenza (37°) 6.4×10−19 1.60×10−8 0.78 5.70×10−12 

9. Mitochondria (37°) 4.0×10−18 3.04×10−8 3.17 1.6×10−12 

Prokaryotes (Mycoplasmatales, Bacteria,  Rickettsiales, Chlamydiae, Cocci)  

10. Mycoplasma mycoides (37°) 1.0×10−17 3.78×10−8 0.335-1.22( 0.77) 7.02×10−12 

11. Hemophilus influenzae (37°) 3.0×10−17 5.42×10−8  0.43-0.75 (0.59) 1.41×10−11 

12. Listeria monocytogenes (37°) 3.0×10−17 5.42×10−8 0.33-1(0.67) 1.245×10−11 

13.Chlamydia trachomatis (37°)  3.0×10−17 5.91×10−8 2-3 (2.5) 6.57×10−12 

14. Mycoplasma arthritidis  (35°)  4.0×10−17 6.50×10−8 0.33-2 (1.15) 1.57×10−11 

15. Bdelovibrio bacteriovorus (35°) 5.0×10−17 6.51×10−8 0.33-3.5 (1.94) 1.146×10−11 

16. Haemobartonella muris (35°) 6.0×10−17 7.45×10−8 0.33-4.5 (2.44) 8.4×10−12 

17. Wolbachiawelophagi (35°) 6.0×10−17 7.45×10−8 0.42-5 (2.71) 9.0×10−12 

18. Mycroccoci (37°) 1.0×10−16 8.8×10−8 0.48-3 (1.74) 1.405×1−-11 

19. Ehrlichia canis (30°) 2.0×10−16 1.1×10−7 0.48-3 (1.74) 1.76×10−11 

20. Diplococcus pneumoniae (37°)  3.8×10−16 1.37×10−7 0.42-5 (2.71) 1.40×10−11 

21. Nitrobacter  (30°) 5.0×10−16 1.5×10−7 1-5 ( 3) 1.36×10−11 

22. Nitrosomonas (25°) 5.0×10−16 1.5×10−7 1-5 (3) 1.36×10−11 

23. Shigella flexneri (37°) 7.1×10−16 1.68×10−7 0.66-3 (1.83) 2.50×10−11 

24. Staphylococcus aureus (37°) 7.8×10−16 3.7×10−7 0.38-2 (1.2) 8.56×10−11 

25. Psychrobacter immobilis sp.(21°)  3.0×10−16 1.26×10−7 2-5 (3.5) 1.0×10−11 

26. Escherichiacoli (37°) 3.9×10−16 1.38×10−7 0.33-3 (3) 2.3×10−11 

27. Ricketsia prowazeki (37°) 5.0×10−16 1.7×10−7 8-10 (9) 1.0×10−11 

28. Thiobacillus thioparus (37°) 5.0×10−16 1.7×10−7 0.33-5 (3.5) 2.6×10−11 

29. Methanosarcina barkeri (35°) 9.7×10−16 1.86×10−7 2-66 (33) 2.97×10−12 

30. Sulfolobus acidocaldarius (80°) 1.5×10−15 2.15×10−7  2.9-20 (11.45) 5.2×10−12 

31. Azotobactervinelandii (35°) 2.0×10−15 2.37×10−7 1-3 (2) 3.28×10−11 

32.Thermotoga maritima (80°) 4.0×10−15 3.0×10−7 0.33-4.33 (2.33) 3.57×10−11 

33. Bacillus stearothermophilus (60°) 4.3×10−15 3.1×10−7 0.42-4.33 (2.35) 3.66×10−11 

34. Halobacterium   salinarium (37°) 8.6×10−15 3.82×10−7 4-8 (6) 1.77×10−11 

Eukaryotes 

35. Chlorella sorociniana (38°) 2.0×10−14 5.06×10−7 2.5-14 (8.25) 1.7×10−11 

36. Saccharomyces cereviseae (30°) 2.0×10−14 5.06×10−7 1.7-12 (6.85) 2.04×10−11 

37.Tetraselmis viridis (20°) 3.0×10−13 1.24×10−6 5-24 (14.5) 2.37×10−11 

38. Dunaliella heterosigma (20°) 3.0×10−13 1.24×10−6 5-24 (14.5) 2.37×10−11 

39. Olisthodiscus luteus (16°) 3.0×10−13 1.24×10−6 5-24 (14.5) 2.37×10−11 

40. Dictyostelium discoideum (22°) 4.3×10−13 2.5×10−6 7-12 (9.5) 7.3×10−11 

41. Euglena (25°) 8.0×10−12 3.65×10−6 6-13 (9.5) 1.07×10−10 

42. Chlamydomonas  (25°) 4.0×10−12 2.9×10−6 6-14 (10) 8.06×10−11 

43. Tetrahymena (25°) 2.0×10−11 4.94×10−6 6-30 (18) 1.62×10−11 

44. Paramecium (25°) 4.0×10−10 8.41×10−6 8-40 (24) 1.54×10−10 

45. Pelomyxa (25°) 1.0×10−9 1.8×10−5 6-50 (28) 1.80×10−10 

46. Amoeba proteus (25°) 2.0×10−8 4.80×10−4 72-120 (96) 1.4×10−11 

47. Amoeba (Chaos chaos) (25°) 3.7×10−8  5.90×10−4 72-168 (120) 4.63×10−10 

48. Stentor (25°) 8.0×10−8 7.62×10−4 96-192 (144) 1.47×10−10 

49. Fucus egg (Brown Algae) (25°) 1.87×10−10 1.03×10−5 24 1.79×10−10 

50. Pelvetia egg (Brown Algae) (25°) 4.40×10−10 1.37×10−5 24 1.79×10−10 
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Results 

The Numerical Diapasons of the Cell Mass, Volume 

to Surface Ratio, Doubling Time and Growth Rate 

in the Unicellular Organisms 

Table 1 provides data for 50 unicellular organisms 

Prokaryotes (viruses, phages and Bacteria) and 

Eukaryotes (protozoa). The difference between the body 

mass of studied unicellular organisms is 10
12 

folds (from 

8.6×10
−20 

kg in T7 phage to 8.0×10
−8 

kg in Stentor). The 

difference between the volume to surface ratio is 10
6 

folds (from 7.8×10
−9 

m in T7 phage to the 7.64×10
−4 

m 

in Stentor) and the difference between the mean 

doubling time of cells is 10
5 

folds (from 0.335h in T7 

phage to 144h in Stentor). The growth rate of single 

unicellular organisms vgr appears as a relatively 

constant parameter, changing 2 orders of magnitude 

only (from 1.0×10
−12 

to 1.0×10
−10 

m/s), in comparison 

to 12 orders of magnitude difference between the body 

mass of organisms. Growth rate of viruses and phages 

changes in diapason of 1.6×10
−12

-6.5×10
−12 

m/s with 

mean value (± SD) of 4.05±0.223×10
−12 

m/s. Growth 

rate of cellular structure such as mitochondria is 

1.6×10
−12 

m/s. The growth rate of Prokaryotes (bacterial 

cells) changes in diapason of 3.0×10
−12

-8.56×10
−11 

m/s 

with mean value (± SD) of 1.87±0.319×10
−11 

m/s. The 

growth rate of Eukaryotes changes in diapason of 

1.7×10
−11

-1.8×10
−10 

m/s with mean value (± SD) of 

1.063±0.288×10
−10 

m/s. On Fig. 2 a schematically is 

presented the diapasons of growth rate for all studied 

organisms (viruses, phages, bacteria and protozoa). 

The shown on Fig. 2 diapason (1.0×10
−11

-1.0×10
−9.5 

m/s) is used in calculations. It is taken to contain the 

common numerical values of growth rate for Prokaryotes 

and Eukaryotes. The values of 1.0×10
−11 

and 1.0×10
−10 

m/s are placed symmetrically on the left and on the right 

of this diapason (with middle point 5.0×10
−11 

m/s). The 

value of 1.0×10
−9.5 

m/s is equivalent to value 3.16×10
−10 

m/s. The used in calculations common diapason 

contained the mean values (± SD) of growth rate in 

Prokaryotes and Eukaryotes. 

Basic Dimensionless Equations between Growth 

Rate, Gravitational and Planck Constant 

The purpose of the study is to answer the hypothesis-

do unicellular organisms obtain mass-size-time and 

density characteristics by combination between growth 

rate of unicellular organisms, gravitational constant and 

Planck constant. The scheme of the possible dimensional 

combination is presented on Fig. 3. 

The empirically received equations between 

gravitational constant (G) with dimension of N·m
2 

/kg
2
, 

Planck’s constant (h) with dimension of J·s and growth 

rate (vgr) with dimension of m/s are given on Table 2. 

 
 
Fig. 2. Growth rate in Prokaryotes and Eukaryotes, according to 

data on Table 1. All Prokaryotes are named ‘bacteria’ 

and all Eukaryotes are named ‘protozoa’. The common 

diapason of growth rate (1.0×10−11-1.0×10−9.5m/s) 

represented with a black line is taken in calculations 
 

 
 
Fig. 3. The sceme of combination between growth rate (vgr)  of 

unicellular organisms, gravitational (G) and Planck (h) 

constant 
 

 
 
Fig. 4. Calculated by equation M(vgr) = (h·vgr /G)1/2 values for 

mass as a function of the growth rate vgr in diapason of 

1.0×10−11-1.0×10−9.5 m/s in log-log plots 

 
Table 2. The dimensional derived equations for mass M, length 

L, time T and density ρ based on combinations 

between the gravitational G and Planck constant h and 

growth rate vgr 

Equation (N) Combinations   Dimensions  Equation 

1. G, h, vgr kg M(vgr) = (h·vgr/G)1/2  

2. G, h, vgr m L(vgr) = (h·G/vgr
3)1/2 

3. G, h, vgr s T(vgr) = (h·G/vgr
5)1/2 

4. G, h, vgr kg/m3 ρ(vgr) = vgr
3.5/h G2 

 
The dimensional equations are presented as a function of 

growth rate vgr of the unicallular organisms. 

Analyses of the Dimensional Equation for Mass M 

(vgr) = (h·vgr /G)
1/2 

Figure 4 presents the graphical form of equation M 

(vgr) = (h·vgr /G)
1/2 

for mass in ‘kg’ as a function of the 

growth rate vgr in ‘meter per second’. 
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Keeping in mind the numerical values of gravitational 

constant G = 6.67×10
−11 

N·m
2
/kg

2
 and Planck constant h = 

6.626×10
−34 

J·s, the dimensional Equation 1 on Table 2 

takes the form of mathematical function: 
 

12 0.53.15 10−= × grM v   (5) 

 

For growth rate vgr in diapason of 1.0×10
−11

-

1.0×10
−9.5 

m/s the calculated values for mass fall in 

diapason of 3.0×10
−18

-1.0×10
−16

 kg. Figure 5 shows the 

compared, calculated and experimental diapasons of data 

for mass of Viruses, Phages, Prokaryotic and Eukaryotic 

cells. The calculated diapason of mass corresponds to the 

mass of Phages and bacteria (Mycoplasma, 

Haemophilus, Chlamydia, Bdelovibrio, Welbachia, 

Microccoci), according to experimental data for 

unicellular organisms in Table 1. 

For minimum growth rate (1.0×10
−12

-7.0×10
−12 

m/s) 

typical for Viruses and Phages, the calculated mass 

correspond to the mass of Viruses and Phages (1.0×10
−19

-

1.0×10
−18

 kg). For maximum growth rate (5.0×10
−10 

m/s) 

the calculated mass (7.0×10
−17 

kg) falls again in the 

diapason of the bacterial mass. Thus, for the growth rate in 

full diapason of 1.0×10
−12

-5.0×10
−10 

m/s the calculated 

values for mass overlap with mass of the microorganisms 

(Viruses, Phages and unicellular Prokaryotes). 

Analyses of the Dimensional Equation for Length 

L(vgr ) = (h·G/vgr
3
 )

 ½ 

Figure 6 shows the graphical form of equation L(vgr) 

= (h·G/vgr
3
)

1/2
 for length in ‘meter’ as a function of 

growth rate vgr in ‘meter per second’. 

The calculated on Fig. 6 length is a decreasing 

function of the growth rate. Giving in the mind the 

numerical values of gravitational and Planck constant the 

dimensional Equation 2 on Table 2 takes the form of 

mathematical function: 
 

22 1.52.1 10 grL v− −= ×  (6) 

 

For numerical values of growth rate in diapason of 

1.0×10
−11

–1.0×10
−9.5 

m/s, the calculated numerical 

values for length fall in diapason of 5.0×10
−8 

– 1.0×10
−5

 

m. Figure 7 present the comparison between the diapason 

of the calculated and experimental data, for volume to 

surface ratio in Prokaryotes and Eukaryotes. The 

comparison shows that the calculated diapason (from 

5.0×10
−8 

to 1.0×10
−5 

m) overlaps with experimental 

diapason of value for volume to surface ratio in 

Prokaryotic and Eukaryotic (from 1.0×10
−7 

to 5.0×10
−4 

m). 

For example, for prokaryotic E. coli the volume to 

surface ratio is 1.38×10
−7 

m, for growth rate 2.3×10
−11 

m/s. For eukaryotic Pelomyxa the volume to surface 

ratio is 1.8×10
−5 

m, for growth rate rate 1.8×10
−10 

m/s. 

 
 
Fig. 5. Diapason of calculated by equation M(vgr) = (h·vgr/G)1/2 

values for mass and the experimental data for the cell 

mass presented in Table 1 
 

 
 
Fig. 6. Calculated by equation L(vgr) = (h·G/vgr

3)1/2 values for 

length as a function of the growth rate vgr in diapason of 

1.0×10−11 –1.0×10−9.5 m/s 

 

 
 
Fig. 7. Comparison between the diapason of length, calculated 

by equation L(vgr) = (h·G/vgr
3)1/2 and the experimental 

data for cell volume to surface ratio, according to data 

on Table 1 
 

 
 
Fig. 8. Calculated by equation T = (h·G/vgr

5)1/2 values for time-

intervals as a function of the growth rate vgr in diapason 

of 1.0×10−11 –1.0×10−9.5 m/s 
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The two values fall in the calculated diapason for length, 
independently of 10

7 
folds difference between the cell 

mass of E. coli and Pelomyxa. Not only the volume to 
surface ratio but the cell size of unicellular organisms 
(length and width) overlaps with the calculated data for 
length on Fig. 7. For example the linear size of smallest 
Mycoplasma range in diapason of 0.15-0.6 µm 
(Morowitz, 1966). The size of small Rickettsia and 
Chlamydia is in diapason of 0.1-2.0 µm. The size of 
Bacteria is in diapason of 0.5-3.0 µm and the size of the 
big Eukaryotes range up to 1.0×10

−4 
m (Lindner, 1978; 

Gusev and Mineeva, 1985; Holt, 1984; 1986; 1989). 

Analyses of the Dimensional Equation for Time 

T(vgr) = (h·G/vgr
5
)

1/2
 

Figure 8 provides the graphical form of the equation 
T = (h·G/vgr

5
)

½
 for doubling time in ‘s’ as a function of 

the growth rate vgr in ’meter per second’. 
Keeping in mind the numerical values of gravitational 

and Planck constant the dimensional Equation 3 on Table 
2 takes the form of mathematical function: 
 

22 2.5
 2.2875 10T Vgr

− −
= ×  (7) 

 
For numerical values of growth rate in diapason of 

1.0×10
−11 

– 1.0×10
−9.5 

m/s, the calculated diapason for 
time-intervals fall in the diapason of 1.0×10

2
-1.0×10

6 
s. 

Experimental data presented in Table 1, for the cell 
doubling time show that the calculated diapason overlaps 
with the experimental diapason of doubling time for 
prokaryotic Phages and bacteria (5.0×10

2
-5.0×10

4 
s) and 

the doubling time for Eukaryotes (5.0×10
4
-5.0×10

7 
s). 

Figure 9 presents the comparison between the calculated 
and experimental diapason of data. 

Analyses of the Dimensional Equation for Density ρ 

= M/L
3 
= vgr

3.5 
/hG

2 

Figure 10 presents the graphical form of equation 
ρ=M/L

3
 for density in ‘kg/m

3
’ as a function of growth 

rate vgr in ‘meter per second’. 
On Figure 10 the calculated density is an increasing 

function of growth rate. Keeping in mind the numerical 
values of gravitational

 
and Planck constants, the 

dimensional Equation 4 on Table 2 take the form of 
mathematical function: 
 

53 53.4 10 grvρ = ×  (8) 

 

For growth rate in diapason of 1.0×10
−11

-1.0×10
−9.5 

m/s, 
the calculated numerical values for density fall in diapason 

of 1.0×10
−1

-1.0×10
4
 kg/m

3
. According to experimental data 

presented in Table 1, the calculated diapason of density 
contains the experimental values of density (1100-1300 
kg/m

3
) in Prokaryotes and Eukaryotes (Günter, 1975; 

Metzler, 1977). Figure 11 shows a comparison between the 
calculated and the experimental diapason. 

 
 
Fig. 9. Comparison between the calculated by equation T = 

(h·G/vgr
5)1/2 time-intervals and the experimental cell 

doubling time, presented in Table 1. Data are present in 

log-scale 
 

 
 

 
Fig. 10. Calculated by equation ρ = M/L3 = vgr

3.5/h G2 density 

as a function of growth rate vgr in diapason of 

1.0×10−11-1.0×10−9.5 m/s 

 

 
 
Fig. 11. Comparison between the diapason of calculated by 

equation ρ = vgr
3.5/h.G2 densities and the experimental 

data for cell density presented in Table 1. Data are 

present in log-scale 

 
Figure 11 demonstrates that the calculated diapason 

of density ranges about 5 orders of magnitudes (from 

10
−1

 to 10
4 

kg/m
3
) in comparison to a very small window 

of density in living organisms (from 1050 kg/m
3
 in 

multicellular to
 

1100-1300 kg/m
3
 in unicellular 

organisms) m
3 

(Günter, 1975; Metzler, 1977; Cantor and 

Schimmel, 1980). However, the density of living 

organisms appears relatively constant parameter near to 

water density~1000 kg/m
3
, because of about 70% of the 

cell body mass consists of water. For example, the 

calculated density for the smallest spherical Mycoplasma 
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with mass 2.5×10
−17 

kg and diameter 0.33 µm is 1300 

kg/m
3
. The density of viruses and phages falls in 

diapason of 1350-1370 kg/m
3
. The proteins have a 

density about 1400 kg/m
3
 and the ribosome density is 

about 1600 kg/m
3 

(Metzler, 1977; Cantor and Schimmel, 

1980). The multicellular organisms (Poikilotherms, 

Mammals and Aves) have a density ~ 1050 kg/m
3
 

(Günter, 1975) i.e., very near to the water density. 

Discussion 

The study demonstrates that the combination between 

growth rate (biological parameter of the unicellular 

organisms) and two physical constants (Planck and 

gravitational constant) leads to dimensional equations for 

mass, length, time and density. From these dimensional 

equations it can calculate the numerical values for mass, 

length, doubling time and density in the unicellular 

organisms. As confirmation of made hypothesis we can 

give some arguments from the theoretical physics. The 

arguments correspond to Planck’s equation (Edington, 

1948; Blochincev, 1970; Barrow, 2002) obtained by 

dimensional combination between the gravitational 

constant ‘G’, Planck constant ‘h’ and speed of light 

‘c’(in meter per second). The combination between these 

constant gives the Planck’s equations for mass (MPl), 

length (LPl), time (TPl) and density (ρPl): 
 

 ( )( ½ 8· /  2.176 10
Pl

M h c G kg−= = ×  (9) 

 

( )
½ 

3 35· /  1.616 10PlL h G c m−= = ×  (10) 

 

( )
½

5 44· /  5.389 10PlT h G c s−= = ×  (11) 

 
3 97 3/  1.0 10 /

Pl Pl
M L kg mρ = = ×  (12) 

 
The obtained by us dimensional equations are similar 

to Planck’s equations but in them appear the growth rate 

(vgr) of the unicellular organisms. The Planck’s ‘mass-

length-time-density’ parameters are calculated for speed 

of light c = 2.9979×10
8
 m/s, while the parameters of the 

unicellular organisms are calculated for growth rate in 

diapason of 1.0×10
−11

-1.0×10
−9.5 

m/s. The find 

similarities support non-random character of 

dimensional equations for unicellular organisms. 

The participation of the gravitational and the Planck 

constant in received equations shows possible quantum-

mechanical and gravitational nature of the events playing 

role in determination of physical parameters of 

microorganisms. In the most general cases the 

participation of the Planck’s constant in given physical 

equation is connected to quantization of parameters. The 

comparison between Planck’s and cell mass show that 

they are places in the area of classical physics. 

 The mass of the unicellular organisms (M) is placed 

between Planck’s (MPl = 2.176×10
−8

 kg) and proton 

mass (Mp+ = 1.672×10
−27

 kg) i.e., on the boundary 

between classical and quantum physical areas: 

 

 ( ) ( )
0.50.5

  Pl Pl Pl pM M M M M +× ≥ ≥ ×  (13) 

 

where, (MPl×MPl)
0.5 

= 2×10
−8

 and (MPl×Mp+)
0.5 

= 6×10
−17 

kg. The Planck length LPl

 

= 1.616×10
−35

m falls in 

quantum spatial area, while the characteristics cell length 

(from 1.0×10
−7 

to 1.0×10
−4

 m) falls in the area of the 

classical physics. Curiously, but the momentum (M×vgr) 

between bacterial mass M (from 10
−15

 to 10
−17

 kg) and 

bacterial growth rate vgr (from 10
−11

 to 10
−10

 m/s) 

satisfied the Broglie’s like equation: 

 

( )/B grL h M v= ×  (14) 

 

where, LB is the characteristic Broglie’s wavelength 

corresponding to momentum M×vgr. As example, for 

bacterial mass (10
−15

-10
−17

 kg) and growth rate (10
−11

-

10
−10

 m/s) the calculated Broglie’s wavelength lies in 

interval from 10
−8

 to 10
−6

 m. This length overlaps with 

volume to surface ratio in bacterial cells (Atanasov, 

2014) (Table 1). The cell generation times (10
3
-10

7
s) 

lies in the area of the classical physics. Curiously, but 

the ratio between the Planck constant (h) and the 

bacterial kinetic energy (M×vgr
2
/2) gives time from 10

2 

sec to 10
4
 seconds: 

 

( )22 / grTime h M v= ×  (15) 

 

This time-interval overlaps with generation time of 

bacterial cells (from 10
3
 to 10

4 
s). Interesting is the fact, 

that growth rate of microorganisms has the same order of 

magnitudes (~10
−11

) as gravitational constant. In this 

sense, the growth rate appears the smallest speed on 

cellular level (about 0.1-1.0 atoms length per second). For 

comparison, the maximum speed of synthesis of 

polypeptide and polynucleotide chain in living cells is 

about 10
−6 

m/s (Cantor and Schimmel, 1980; Atanasov, 

2007; Davies, 2008). Possible, such low speed on cellular 

level can leads to quantization of mass-energy and space-

time characteristics of the unicellular organisms. 

The independence of Planck and gravitational 

constant on temperature, physical and chemical factors 

can explain the stability of the bacterial forms of life 

during biological evolution. The bacterial cells have 

appeared and live milliards years ago on the Earth. They 

changed their genome and biochemical pathways but 

always keep constantly (and independently of 

evolutionary time) their mass, size, doubling time and 

density. This fact can be explained by mutually 
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connection between physical bacterial characteristics and 

the fundamental physical constants of the Universe. 

Conclusion 

Dimensional analyses shows that combination 

between the growth rate of the unicellular organisms, 

gravitational and Planck constants give the dimensional 

equations for mass, length, time and density. The 

calculated by these equations numerical values 

correspond to cell mass, cell length, doubling time and 

cell density of unicellular Prokaryotes and Eukaryotes. 

This shows possible non-random and based on the 

fundamental physical constants determination of the 

physical parameters of the first living organisms. 
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