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Introduction 

One of the most puzzling aspects of quantum 

mechanics is that it appears to be impossible to 

simultaneously know to arbitrary accuracy both the 

momentum and position of a particle. This uncertainity, 

usually associated with Heisenberg, involves a limit set 

by Planck’s constant: p x h∆ ∆ ∼ . While familiar to every 

student of physics, this relation does not find a 

satisfactory explanation in conventional mechanics. 

However, it was pointed out some time ago that an 

explanation might in principle be available if the world 

has more than four dimensions (Wesson, 2002). Higher 

dimensions are currently popular as a means of unifying 

the interactions of physics. In particular, in five 

dimensions the laws of mechanics are perforce 5D rather 

than 4D in nature; and the difference can show up as a 

small perturbation which leads to an effect similar to 

quantum uncertainty. The aim of the present work is to 

take a new look at this subject, using results which have 

been found recently in 5D relativity. 

One of the foundations of 5D relativity follows from 

an old embedding theorem of Campbell. Thus any 4D 

metric describing a vacuum in general relativity can be 

smoothly embedded in a 5D metric of so-called 

canonical type (Mashhoon et al., 1994; 1998). Recent 

work has focussed on more general types of embeddings 

(Romero et al., 1996; Dahia et al., 2003; 2008), 

cosmology and dynamics in 5D (Ponce de Leon, 1998; 

2008; 2007; Liu and Mashhoon, 1995), the nature of 

inflation (Bellini, 2005; 2011) and astroparticle physics 

(Israelit, 2008; 2009). Of particular note is the 

application of the canonical metric to quantum 

mechanics (Wesson, 2011a; 2011b) and the discovery of 

a canonical solution to the 5D field equations which in 4D 

has the properties of a de Broglie wave (Wesson, 2013). 

Some results from these sources will be used below to 

help elucidate Heisenberg’s uncertainty relation. 

A relation of the form p x h∆ ∆ ∼  can be seen to be 

peculiar even from the viewpoint of conventional 4D 

mechanics. For when it is divided by two increments 

in the proper time, it yields in the limit a statement to 

the effect that there is a force acting parallel to the 

velocity with a scalar product that is finite. This is 

contrary to the well-known orthogonality condition in 

4D relativity, where the scalar product of the 

acceleration and the 4-velocity is zero. On the other 

hand, it will be shown in the next section that when 

4D spacetime is extended to 5D, an extra force (per 

unit mass) comes in which does indeed act parallel to 

the 4-velocity, thereby providing a possible 

explanation for the uncertainty relation. The technical 

analysis of section 2 is discussed in a more qualitative 

fashion in section 3. 

5D Dynamics and 4D Uncertainty 

For a test particle situated in the vacuum, it is 

natural to consider the canonical metric, because as 

noted above this is the 5D form which embeds all 

vacuum solutions of the 4D Einstein equations 

(Wesson, 2002; Mashhoon et al., 1994; 1998). In 

accordance with modern quantum field theory, the 

vacuum is regarded as an energetic medium with an 

energy density measured by the cosmological 

constant. These parameters can be positive or 

negative, depending on whether the extra dimension is 

spacelike or timelike (both are allowed in 5D 

relativity). The coordinates are x
A
 = x

a
, l for spacetime 

and the extra dimension (A = 0-4, a = 0-3, x
4
 = l). The 

fundamental constants will usually be absorbed to 

streamline the working, except where they are made 

explicit to aid physical understanding. Other aspects 

of the nomenclature are standard. 

The 5D canonical metric in its simplest form can be 

written as: 
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 = − 
 

 (1) 

 

Here L is a constant length related to the 4D 

cosmological constant. The 4D interval is given by 
2ds g dx dxα β

αβ=  and the metric of spacetime ( , )g x lγ
αβ  

can be used to normalize the 4-velocities /u dx dsγ γ≡  via 

1g u uα β
αβ = . Using this and employing the 4D proper 

time s as affine parameter, it is straightforward to 

extremize the 5D interval (1). The result is a set of 

equations of motion for spacetime and a relation for the 

motion in the extra dimension Equation 2 and 3: 
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It is seen that in spacetime, conventional geodesic 

motion is perturbed by an extra force (per unit mass) or 

acceleration f
µ
, which is finite if there is motion in the 

extra dimension (dl/ds ≠ 0) and the 4D metric depends 

on the extra coordinate ( 4, 0gαβ ≠  where a comma 

denotes the partial derivative). These quantities also 

figure in the equation of motion for the extra dimension. 

The extra acceleration in spacetime given by (2) is on 

inspection found to consist of a part (
n

f µ ) normal to the 

4-velocity u
µ
 and a part ( pf µ ) parallel to it. The normal 

component is akin to conventional forces and obeys the 

usual orthogonality condition 0nf uµ µ = . But the parallel 

component has no analog in 4D and is a unique indicator 

of an extra dimension with 0pf uµ µ ≠ . This parallel 

component can be written as Equation 4: 

 

( )4,
2

p

u dl
f g u u

ds

µ
µ α β

αβ= −   (4) 

 

It is generally non-zero and since it depends on the 

relative velocity between the 4D and 5D frames it is 

inertial in the Einstein sense. But it is zero if there is no 

coupling between 4D and the fifth dimension ( 4, 0gαβ = ). 

This holds for what is sometimes called the pure-

canonical metric, where ( only)g g xγαβ αβ= and the extra 

coordinate enters only through the quadratic warp factor. 

It is important to realize, however, that this situation 

presumes that the 4-velocities are normalized without 

this factor, via 1g u uα β
αβ =  (see above). The fact that the 

pure-canonical metric may show no deviation from 

conventional geodesic motion depends on a special 

choice of coordinates. It is therefore necessary to inquire 

further and ask about the generality of the force (4). This 

can be done by considering an unfactorized l-dependent 

metric with a general normalization condition on the 4-

velocities Equation 5: 

 
2 2( , )

( , ) 1

dS g x l dx dx dl

g x l u u

γ α β
αβ

γ α β
αβ

= −

=
  (5) 

 

The second of these relations may be differentiated 

with respect to s and a term expanded using the Christoffel 

symbols, to show that the motion again consists of the 

conventional geodesic with a perturbation. Remarkably, 

the latter has the same form as (4) above, but with 

( , )g x lγ
αβ in place of ( , )g x lγ

αβ . This means that the fifth 

force (per unit mass) has the form (4) generally, regardless 

of the coordinate system being employed. 

This raises the interesting possibility that the force 

(4) may have measurable effects in certain situations 

even if the metric is of canonical type. To investigate 

this, let us consider the canonical metric in the more 

general form where it has been applied to quantum 

mechanics (Wesson, 2011a; 2011b; Wesson, 2013). 

Thus a shift l→(l-l0) is applied along the extra axis. The 

metric then has the form (5) with 2 2

0( ) ( )g l l L g xγαβ αβ
−= − , 

which can be written alternatively as Equation 6: 

 
2

2 2 20
l l

dS ds dl
L

− = + 
 

 (6) 

 

The extra coordinate is now taken to be timelike, 

which results in the presence of oscillations in the 

vacuum which have the same properties as de Broglie 

waves (Wesson, 2013). A detailed investigation shows 

that these waves have associated with them particles of 

mass m, specified by the Compton wavelength L = h/mc 

(which is constant). The shift in (6) also causes the 

appearance of a hypersurface at l = l0 where the energy 

density of the vacuum formally diverges. This can be 

called a membrane (though it has properties different 

from those of the Z2 hypersurface in Membrane theory). 

The waves engendered by (6) travel along the 

membrane, following null geodesics with dS
2
 = 0. This 

condition in (6) means that dl/(l-l0) ∼ds/L, where for 

simplicity the sign choice associated with the 

reversibility of the motion in x
4
 and the 1−  associated 
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with the timelike extra dimension have both been 

dropped (they make no difference to the physics). It is 

important to realize that near the membrane, dl/(l-l0)→1 

necessarily, so ds→L also. Recalling that L = h/mc, the 

last relation shows that near the membrane there is 

quantization with mc ds∼h. 

The foregoing discussion of the shifted-canonical 

metric (6) can be combined with the previously derived 

expression for the extra force (4). The latter now reads 

,4( / 2)( )( / )pf u g u u dl dsµ µ α β
αβ= −  where the 4-velocities are 

normalized via 1.g u uα β
αβ =  Since gαβ  is now proportional 

to (l-l0)
2
, the scalar coupling term is ( ) 1

,4 02g u u l lα β
αβ

−
= −  

and the magnitude of the force is Equation 7: 
 

( )0

p

u dl u
f

l l ds L

µ µ
µ = =

−
 (7) 

 
This can be rewritten as: 

 

1
or

du dx dx
du

ds L ds L

µ µ µ
µ= =  

 

Then we can form the scalar quantity 2 /du dx ds Lµ
µ = . 

This may in turn be re-expressed using the condition 

( )0/ 1dl l l− →  wherein / 1ds L →  (see above). The result 

is du dx Lµ
µ = . Substituting for L = h/mc from before and 

replacing the change in velocity by the change in 

momentum gives Equation 8: 
 

dp dx hµ
µ =  (8) 

 
This is the same type of relation as the uncertainty 

limit typical of quantum mechanics. 

Discussion and Conclusion 

The analysis given above is admittedly fairly technical. 
However, it is also logical and involves a minimal 
extension of conventional mechanics. There are several 
approaches to higher-dimensional physics (Carr, 2007) 
and Membrane theory and Space-Time-Matter theory are 
notable in being in agreement with known data. The 
analysis of Section 2 follows the latter approach and it is 
instructive to summarize the derivation. 

Given an extra dimension, it is natural that the laws 
of motion should be 5D rather than 4D in nature. Most 
particles are effectively situated in 4D vacuum and the 
most general 5D embedding for this is the shifted-
canonical metric. This leads to a model with waves as 
well as particles, concentrated around a kind of 
membrane caused by the shift along the extra axis. 
Unless the coordinates are specially chosen, this 
metric like others is characterized by an extra 

acceleration or force (per unit mass), which acts in 
spacetime. It is a signature of its 5D origin that this 
force acts parallel to the 4-velocity, unlike other 4D 
forces. Near the membrane, the metric obliges a 
relation between the increment in proper time and the 
Compton wavelength which leads to quantization. The 
same condition causes the change in the momentum 
and the change in the position of a particle to be 
correlated. This takes a form similar to what is 
familiar from quantum uncertainty. 

That this is a reasonable result can be appreciated by 

expanding on a comment made previously. In 4D, it is 

nearly always the case that the 4-velocities /u dx dsα α≡  

of a massive particle are normalized via the condition 

1u uα α = . Differentiating this with respect to the 4D 

proper time s and defining a force (per unit mass) 

/f du ds
α α≡  gives 0f uα α = . This orthogonality 

condition is obeyed by known 4D forces, such as the 

pressure due to a perfect fluid or the electrodynamic 

force on a moving charge. However, the situation is 

different if there is another dimension. Then the 

corresponding normalization condition on the velocities 

is A

A
u u =  constant ( 0 4)A = − , which differentiated gives 

4

4
0f u f uα

α = − ≠ . That is, unless the coordinates are 

specially chosen, the 4D orthogonality condition is 

broken by the fifth dimension. 
If quantum uncertainty is in fact due to an extra 

dimension, further investigations of 4D dynamics can be 
made using the approach outlined here. Perhaps the most 
obvious subject for further work concerns virtual 
particles, which are inferred to exist but cannot be 
observed directly due to the nature of their interactions. 
However, virtual particles are believed to lead to certain 
effects which are observed, such as vacuum polarization 
and the energy/range dependence of the fine-structure 
‘constant’. It would be interesting to re-examine such 
effects using 5D relativity. 
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