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Abstract: Problem statement: The calculation of magnetospheric particle flux by dividing the 
particle count rate by the instrument geometric factor does not take into account the anisotropic 
pitch angle distribution function. A comparison of particle fluxes measured by different 
instruments fail to lead to the right comparison. To circumvent the omission of anisotropy of the 
pitch angle distribution and to make the correct comparison of particle fluxes, the instrument 
response function to different pitch angles within the sampling range of the instrument has been 
incorporated into the count rates over a certain readout time. Conclusion/Recommendations: A 
quantity in absolute comparison of magnetospheric particle flux has been found. The newly 
defined quantity of different observations does lead to the correct comparison for studying 
temporal variations. Investigators interested to study temporal features of magnetospheric 
particles over epochs may find the response functions for different instruments flown at different 
epochs useful for their study.    
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INTRODUCTION 
 
 The charged particle detectors on board satellites 
may have conical shapes characterized by certain 
opening angle, a height and a sensitive base. The 
opening angle and the height are the major factors to 
detect particles of the desired pitch angle range. 
Along with the dependence on the pitch angle (α), 
the flux of magnetospheric particles is usually a 
function of Energy (E), magnetic field (B), 
McIlwain’s parameter (L), latitude (λ), (longitude (ǿ) 
and time (t). The pitch angle distribution of 
magnetospheric particles which is usually in the form 
of sinq α is anisotropic in the sense that it does not 
indicate equal number of particles from equal intervals 
of pitch angles. But the calculation of the particle flux j 
from the counting rate N instrument geometric factor 
and the energy interval ∆E using the relation: 
 
 j N / Geometric factor E)= × ∆   (1) 

 
 Yields an isotropic flux in which N is independent 
of the direction of incidence and depends only on the 
size of the solid angle of acceptance. However, without 
taking into consideration the anisotropy factor, isotropic 
flux cannot be calculated. To study the temporal 

variation of magnetospheric fluxes, a comparison of 
measurements made at different epochs is required 
which urges the inclusion of the anisotropy factor with 
its observed range to calculate the flux. 
 The Geometric Factor (GF) in Eq. 1 does not 
include the pitch angle distribution function either 
(Sullivan, 1971). The pioneer investigators reported 
flux calculation using the above relation (Hovestadt 
et al., 1972; Moritz, 1972; Mizera and Blake, 1973; 
Scholer et al., 1975). All of this study relate to the 
observations of the equatorially mirroring particles. 
Equatorially mirroring particles (αe = 90°) peak the 
pitch angle distribution. However, the non-
equatorially mirroring particles appear as fringes in 
the pitch angle spectrum.  
 This article describes how the pitch angle 
anisotropy can be included in the calculation of particle 
flux via the calculation of the instrument response 
function to particles of different pitch angles. Scientists 
working with old and currently operating satellite data 
will find the results very useful.  
 
Response function: The observed counting rate of a 
detector telescope for a magnetospheric particle population 
in the pitch angle range α1-α2 and the energy range E1-E2 
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during a readout time interval T is given by the integral 
over the incoming particle direction r of the product of the 
particle flux j (E, B. L α, λ, ǿ, t) with the detector area A 
exposed normal to the incident direction i.e., (Miah et al., 
1989; Miah, 1994) Eq. 2a: 
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 The particle is assumed to have the most general 
form of flux Eq. 2b: 
 

b q
nj(E,B,L, , , , t) j (E,B,L, , , , t)E sin−α λ φ = α λ φ α   (2b) 

 
where, Jn is the normalization constant characteristic of 
the actual particle population, E-b is the energy 
spectrum and sinq α is the pitch angle distribution 
function. The counting rate can then be written as Eq. 
2c-2k:  
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Where: 
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With:  
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 And the efficiency functions: 
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Ω

= ω∫ ∫  (2k) 

  Does not include the integration over the pitch angle 
distribution. The counting rate then reduces to Eq. 2l:  
 

nR AFJ Q=  (2l) 
 
 And the desired quantity for absolute comparison 
of magnetospheric particle flux is Eq. 2m:  
 

nJ R / AFQ=  (2m) 

 
 The above equations (2a) through (2m) are just 
defining equations for what they stand and do not need 
any discussion. The limits of the integrations in the 
equations pertaining to an instrument will be instrument 
specific.  
 The acceptance cone of the telescope allows 
particles of a wide pitch angle spectrum to enter the 
detector. The relative efficiency of a detector for a 
given pitch angle α is defined as the fraction of the 
associated space angle intercepted by the telescope 
cone, duly weighted by the fraction of the total area 
which is perpendicular to the incoming particle beam 
and normalized by the efficiency of a half-
omnidirectional detector. 
 The details of the steps leading to the efficiency 
calculation are presented in another article (Adel, 
2008). Briefly, the detector area is divided into a 
number of equal elemental Areas (∆A). The center 
point of each ∆A is taken as the representative point of 
that segment. A telescope cone which is right circular 
only for the central point of the circular sensitive base 
and elsewhere just a circular, is imagined with the apex 
at this point. The pitch angle range is determined for 
this telescope cone. The response function for all pitch 
angles within the range is calculated for this 
representative point. The steps are repeated for all other 
representative points and then averaged over all 
segments. Next, coordinate transformations are used to 
define, in the telescope frame, the direction of the 
geomagnetic field. Then, a semi-analytic computer 
algorithm determines the points of intersection of the 
telescope and the pitch angle cones. Finally, the results 
are integrated over the pitch angle distribution and 
averaged over the entire detector area.  
 
Setup of the pitch angle and telescope frames of 
observation: The above formulation related to the 
geometry of a conical particle telescope may be 
understood with the help of Fig. 1. Both the pitch angle 
cone and the telescope cone are shown in the figure. 
The pitch angle frame is set up in such a way as Z´ axis 
points along the B direction which is also the axis of the 
pitch angle cone. X´ is perpendicular to B and lies in 
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the plane of B and the telescope axis; the Y´ axis is 
chosen to make the system right-handed. The telescope 
cone is shown with the apex at an off-centered position 
of the sensitive base area of the detector. At this 
location, it is just a circular cone. Its coordinate system 
is XYZ. OF is the telescope cone axis. The axes of the 
two cones are along their respective Z-axes. χ´´´ is the 
angle between the two cone axes. The telescope 
intercepts the arc CD of the pitch angle cone. The 
telescope axis always lie in the Z´X´ plane of the pitch 
angle frame so that the azimuth angle measured from 
this plane is zero. Further, in the pitch angle frame, the 
direction of any incident particle is specified by the 
polar angle α and an azimuth angle β´´ measured from 
the Z´ZX´ plane, positive on one side of it (β1´´) in the 
counterclockwise direction and negative on the other 
side (β2´´) in the clockwise direction.  
 
Calculation of azimuth Angle β´´ in the pitch angle 
frame: From unit vectors directed along OA, OC, OD 
and OF in the pitch angle frame, we can find the 
angles β1´´ and β2´´. β1´´ is the angle between the 
plane formed by OA and OC and the plane formed by 
OA and OF. And β2´´ is the angle between the plane 
formed by OA and AD and the plane formed by OA 
and OF. Cross products of unit vectors directed along 
OA and OC will be perpendicular to their plane and 
the cross product of the unit vectors directed along 
OA and AF will be perpendicular to their plane. The 
dot product of these unit vectors perpendicular to their 
respective planes yields β1´´. We can similarly form 
the cross product of unit vectors directed along OA 
and OD and the cross product of the unit vectors 
directed along OA and OF. The dot product of these 
two cross products yields the angle β2´´. The 
coordinates of the points C and D of intersections of 
the telescope and pitch angle cones are found by an 
iterative method described below. 
 
The iterative process: A given pitch angle within the 
instrumental pitch angle range χ´´´- α and χ´´´ + angle 
EOF is selected. The two points of intersections of the 
pitch angle cone with telescope cone are found by 
iteration setting the difference between the selected 
pitch angle and the computed pitch angle ∆α < 0.001°. 
The intersection of the opening of the pitch angle cone 
and the plane of the opening of the telescope cone is a 
conic section having the projection of the magnetic 
field vector on the plane of opening ring of the 
telescope as the axis of symmetry. In the iterative 
process, the two points of intersection are sought on 
either side of the projection of the magnetic field vector 
on the opening ring of the telescope.  

 Figure 2 is helpful in determining the X, Y, Z 
coordinates of the points of intersections. The chord 
PO´Q represents the projection of the magnetic field 
vector onto the plane of the opening ring of the 
telescope. OP is the radius of the ring and OO´ is equal 
to a, the shift of the origin along the X-axis. 
  The angle χ at the observation point is determined 
from the component of the magnetic field Eq. 3a: 
  
 2 2

1 1/2
x X y

cos (B / (B B ) )−χ = +  (3a) 
  
supplied by the magnetic field model.  
 Each time a ∆χ is added χ, X, Y and Z coordinates 
are determined Eq. 3b:  
 
X=R cos χ’ – a; Y = R sin χ; Z = H -1.7336 cm     (3b) 
 
where χ’  can be obtained from Eq. 3c:  
 

2 2 2PO` R a 2aR cos `= + − χ  (3c) 
 
And: 
 

2 2 2PO` R a 2a PO`cos (180 )= + − − χ  (3d)
  
 The detector dimensions used in this study 
pertains ONR-602 experiment (Miah, 1991a). As 
said above, Eq. 3a relates to the magnetic field model 
of the Earth, and the Eq. 3b through 3d relate to the 
geometry involved in the calculation. 
 Unit vector along the incident direction is 
calculated from X., Y and Z coordinates. A dot 
product of this vector with the unit magnetic field 
vector gives the pitch angle. Then ∆α is calculated. 
The above steps are repeated until ∆α falls lower 
than 0.001 degree. The entire operation is repeated 
on the other side of the magnetic vector position and 
the second point of intersection is found for the pitch 
angle under consideration.  
 
Accuracy of finding the points of intersections: A check 
was made to see if the two points of intersections satisfy 
both the pitch angle and the telescope cone equations. For 
this purpose, the following equation for the telescope cone 
was deduced with the cone apex at (a, 0, 0) Eq. 4a: 
 
 2 2 2 2

1 1 2 1(X H tan ) Y H (tan( ) tan )+ γ = γ + γ − γ  (4a) 
 
 In Fig. 3, angle O´O´´O = γ2 and the angle 
OO´´P´´´ = γ1. The equation can be simplified to Eq. 4b: 
 
 2 2X Y 2aX 2(R a)(R a) 0+ + − + − =  (4b) 
 
where, in the figure, a = OO´ (=O´´´O´´), the 
distance from the central point of the detector to the 
telescope cone and OP = R, the radius of the mouth 
of the telescope cone. 
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Fig. 1: Illustrations of the points of intersections of 

telescope cone CDEO and the pitch angle cone 
CDGO at points C and D. Their axes are inclined at 
an angle χ´´´. X´Y´Z´ are the pitch angle cone axes 
and XYZ are the telescope cone axes. X’ZZ´ lie in 
one plane. χ is the angle between the X-axis and the 
projection of the magnetic field or the projection 
X´ZZ´ plane in the XY-plane 

 

 
 

Fig. 2: Illustration of finding the X, Y, and Z 
coordinates of the points of intersection of the 
pitch angle and telescope cones 

 
 The pitch angle cone equation is written with the 
magnetic field vector as the axis. Later, through 
transformation of coordinates, the equation is obtained 
in the telescope cone coordinate system. The 
transformation equations used are given below. The 
equation of the pitch angle cone with the axis along the 
magnetic field is Eq. 4c:  
 
 2 2 2 2Y` Z` X` tan+ = α  (4c) 
 
where, α is the given pitch angle. The first rotation 
done is a clockwise vector rotation around the OZ-
axis through χ given in terms of the magnetic field 
components Eq. 4d: 

 
 
Fig. 3: Illustrate the telescope cone equation when the 

apex is at an off-centered point on the sensitive 
base. At this point, it is just a circular cone 

 
χ= cos-1(Bx/(Bx

2 + By
2)0.5 (4d) 

 
 The components of the rotated vectors are Eq. 4e:  
 
X’’  X’ cox   Y’ sin 

Y’’  X’ sin   Y’ cos 

Z’’  Z

= χ + χ
= − χ + χ
=

 (4e) 

 
 The next rotation is around OY´ axis through χ´´ 
= 90-χ´´´, the angle between the magnetic field 
vector and the Z-axis, in the anticlockwise direction.  
 The rotation yields Eq. 4f: 
 
X’’’ X’’cos ’’  Z’’ sin ’’

Y’’’ Y’’

Z’’’  X’’ sin ’’  Z’’ cos ’’

= χ + χ
=
= − χ + χ

 (4f) 

 
 Equation 4c, 4e and 4f define the pitch angle cone 
in the telescope cone frame.  
 Substitution of the coordinates of the two points 
of intersections found by the iteration satisfies the 
telescope cone equation exactly. However, the pitch 
angle cone equation yields a value of ~ 1 × 10−4 for 
pitch angles which are not equal to 90°. For 90° 
angles χ´´ yields ~ 1 × 10−6. The accuracy of the 
solution depends upon the condition that the 
difference between the given and the computed pitch 
angles should be less than 0.001°.  
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Efficiency calculation in the pitch angle frame: The 
integral for G can be written as Eq. 5a: 
  

 
2(dA)

q

1(dA) d A

G d d dA.r( ). sin
α

α Ω

= α ω ω α∫ ∫ ∫  (5a) 

  
where, dΩ is the domain of the solid angle ω and is 
determined from the pitch angle cone and the telescope 
cone geometry, dω = sin α dβ’’, α being the polar angle 
and β’’ the azimuth angle. The perpendicular 
component of the area element is dA.r (ω) looking into 
ω. It may be understood that G is a product of the 
detector sensitive area perpendicular to the incoming 
particle beam, an effective solid angle and the pitch 
angle distribution. Its unit is cm2.sr Eq. 5b: 
 ( ) ( )

( )
( ) ( )
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q
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dA       ’’ ,  dA,  ’’’
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α β α χ

= ∫ α α ∫ α β ∫ ω

α β α χ

  (5b) 
      
 The integral cannot be evaluated analytically. 
However, it can be evaluated semi-analytically as follows. 
 The incident vector in the pitch angle frame is 
given by Eq. 5c: 
  
r sin cos `` sin sin ``j cos k= α β + α β + α  (5c) 

 
 The vector components along dA in the pitch angle 
frame are given by Eq. 5d: 
  
dA sin `` ì 0 j cos `` k̀= χ + + χ  (5d) 
 
 The last integral is Eq. 5e and 5f:  
 
 

A A

dA.r( ). dA(sin cos ``sin ``` cos cos ```)ω = α β χ + α χ∫ ∫  (5e) 

    n  

≈ ∑∆A i(sinαi cos β’’ i sin∆χ’’’ + cos αi cos χ’’’)     (5f) 
   i=1 
 
 The entire angular integration is then Eq. 5g and 5h:  
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where, ∆α = (α2 – α1)/m is in radian units Eq. 5i-5k: 
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is the efficiency function for αj applied to the whole 
detector Eq. 5l and 5m: 
 
G AF=  (5l) 
 
where: 
  

n

j j
j 1

F F( ) f ( )
=

α ∆α α∑  (5m) 

 
₣ can be evaluated by the simple trapezoid rule. It 
has the units of steradian. The detector count rate is 
then given by Eq. 5n: 
  

nR AFJ Q=  (5n) 
 
Comparison of numerical and analytical results: 
Several tests were carried out for the efficiencies of 
both the point and the whole detector for 90° pitch 
angle with magnetic field configuration in the plane of 
the detector because the analytical tests can be done 
only for 90° pitch angles. The checked situations 
correspond to λ = 0°, φ = 90° and δ = 0°.  
 Fractional efficiency for 90° pitch angle particles is 
easily checked for the central point of the detector to be 
equal to the space angle intercepted by the diameter of 
the opening ring at the detector point, multiplied by 
the fractional area represented by that point and 
exposed normal to the particles of pitch angle 90°. 
The calculated and computed values of response 
functions show no difference for this particular point. 
The response function calculated for the same pitch 
angle was done at two other points (0.28194, 0.0 cm) 
and (0.46990, 0.0 cm) on the detector, where the 
radius vector was divided into 3 equal parts 
producing 9 equal elementary representative areas. 
No differences were found between the computed 
and analytically calculated results.  
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Magnetic field dependence of the response function: 
As to the influence by the activity of the Earth’s 
magnetosphere, the response function calculated 
depends upon the magnetic field orientation. 
Magnetospheric activities are influenced by the solar 
conditions. The response function thus depends on the 
solar conditions. Whereas no calculations were made 
for solar quiet and violent conditions, some differences 
were observed between the response functions 
calculated for the dipole field and the real geomagnetic 
field. In the dipole field, the peak efficiency was for αe 
= 90°. But in the real field geomagnetic equator, the 
response function peaks for αe = 90 ± 7°. This 
demonstrates the influence of the magnetic field 
variation, a magnetospheric activity. 
 
Normalization constant Jn: The normalization constant 
can be found from the above equation as Eq. 6: 
  
 nJ R / AFQ=  (6) 
 
 At the equator λ = 0 and B ∞ 1 L−3. For low 
altitude satellite passes (300-456 km), the range of L 
is very small. This means the dependence of Jn upon 
B an L is very small. The dependence of Jn upon the 
longitude φ is insignificant at the equator. So, the 
variation of Jn is principally with the exponent q of 
the pitch angle function and the time or epoch t. 
Taking a range of values for q (Miah, 1991b; Miah et 
al., 1992), we can study the variation of Jn. with time 
or epoch. Jn is representative of a particle population 
and the comparison of Jn for different epochs is 
basically a comparison of particle population for 
different epochs. Multidimensional plots can be 
produced to study the variation of Jn upon other 
factors in their applicable ranges.  
 
Application to measured data: 
Pitch angle distribution function. As to the area of 
applicability, the method is applicable at any latitude 
and longitude. To show it qualitatively, we can pick up 
only the equatorial region for the equatorially mirroring 
particles for which we know the pitch angle (αe) 
distribution function. It has the form sinn

αe where n 
runs from 5-21 from different observations (Moritz, 
1972; Mizera and Blake, 1973; Daiem, 2010a; 2010b; 
Sing et al., 2010; Yusif et al., 2010) with the most 
likely value in the middle of the range (Miah et al., 
1992). Sampling function at the equator can be 
approximated by the same sine function with exponent 
13. So the detector can respond to all the equatorially 
mirroring particles. For off-equatorially mirroring 
particles at the equator, it cannot detect any particles 
beyond the equatorial pitch angle 90°± 37°.  

 If we know the pitch angle distribution function of 
particles mirroring at other latitudes, we can check with 
the applicability of the method with the instrument 
response function calculated at that latitude. 
 
Application to old satellite data: Regarding an 
application example to a specific instrument and 
observation data, the method developed was used to 
calculate the response functions of the monitor 
telescope in the ONR-602 Experiment and the German 
Research Satellite Azur. Figure 4 shows the sampling 
efficiency as a function of the pitch angles at the dipole 
equator. Azur telescope axis was within 90 ± 5o with 
the magnetic field at the equator. Its low opening angle 
accounts for its low values of response function.  
 In Eq. 6, Jn depends on the exponent q of the pitch 
angle distribution function and the epoch or time t 
(Miah et al., 1992). Considering a range of values for q, 
we can study the variation of Jn with time t. Since Jn is 
representative of the particle population, comparison of 
Jn s for different epochs is basically a comparison of the 
particle population at different epochs. In Fig. 5, the 
open circles represent the Jn (h, t) values for the monitor 
detector flux in ONR-602 Experiment on board S81-1 
mission observed at 277 km and the squares represent 
the same values for Azur for measurements at 450 km. 
For clarity, squares and circles have been offset along 
the horizontal scale. Within the uncertainties, the fluxes 
measured by Moritz (1972) at 450 km and by the 
monitor detector at 277 km are indistinguishable. 
Altitude difference and altitude-dependent source 
depletion model can explain why the fluxes from the 
two measurements are indistinguishable (Miah, 1988). 
 

 
 
Fig. 4: Illustrates the response functions of the Azur 

telescope on board the German Research 
Satellite and the monitor telescope on board US 
Air Force S81-1 mission 
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Fig. 5: Illustrates the comparison of absolute fluxes 

measured by the Azur telescope on board the 
German Research Satellite and the monitor 
telescope on board US Air Force S81-1 mission 
for different values of q, the pitch angle 
distribution function experiment. The circles 
represent the Jn (h, t) for the monitor telescope 
and the squares for the Azur telescope 

 
Applications to new mission data: The method can be 
used with current as well as future instruments. The 
only requirement is an acceptance cone and a sensitive 
base. As to the application with new instruments on 
board satellites, Oersted may be selected. It has a 
charged particle detector (Cabera et al., 2005). The 
details of the calculation of the response function taking 
consideration of the satellite orbital characteristics and 
the detector orientation and geometry will be reported 
in a future study. Regarding the comparison of absolute 
flux, an uncertainty in the altitude dependence of 
particle flux will remain unsolved since this 
dependence is not known for the altitude range of 450 
km, the Azur’s observation altitude, to 640 km, 
Oersted’s observation altitude. However, the same 
uncertainty has remained in Fig. 5 in the comparison of 
absolute fluxes between Azur’s and monitor’s 
observations because of the lack of observed flux data 
in the altitude range interval of 277-450 km. It is of 
future interest to explore the application of this 
geometrical method to calculate the instrumental 
response function to non-charged particle radiation.  
 

CONCLUSION 
 
 The instrument response function to particles of 
different pitch angles naturally plays the part in the 
instrumental counting rate. The simple flux calculation 
from the counting rate, geometric factor and the energy 
interval does not incorporate this factor. The writing of 
the counting rate over a certain time interval shows 
explicitly the pitch angle-related response function. The 
concept of the product function of the effective detector 
sensitive area perpendicular to the incoming particle 
beam, the effective solid angle and the pitch angle 

distributions is very useful in the definition of the 
relative detector efficiency, for a given pitch angle α, as 
the fraction of the associated space angle intercepted by 
the telescope cone, duly weighted by the fraction of the 
total area which is perpendicular to the incoming 
particle beam and normalized by the efficiency of a 
half-omni-directional detector. The semi-analytical 
method developed in this study can be applied to any 
particle telescope having some acceptance angle and 
some sensitive base. The efficiency function can be 
calculated to any degree of accuracy. The normalization 
constant becomes independent of detector geometry and 
its comparison for different epochs is basically the 
comparison of absolute flux for those times. It is 
planned to explore the use of the geometric treatment 
presented here to non-charged particle radiation.  
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