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Abstract: Scavenger receptor class B type I (SR-B1) has caught
considerable interest among the scientific community due to its pivotal role
in several biological and pathological processes. It is a multifunctional
integral membrane protein and multiligand receptor encoded by the
SCARB1 gene. SR-B1 has a wide distribution, primarily in the liver as well
as steroidogenic organs including the gonads and adrenal glands, and a
reduced expression is noted in macrophages, adipocytes, lung tissue and
endothelial cells. Its expression across different tissues reflects its diversity
in various physiological processes. Alongside, defects can alter the normal
rhythm of the body's functioning, leading to the pathogenesis of various
diseases. In cholesterol-demanding cells, SR-B1 highlights its significant
role in cholesterol homeostasis. This paper explores the multifaced role of
SR-B1 in regulating cholesterol handling, its involvement in inflammatory
signaling pathways, and its interactions with various transcription factors,
inflammatory mediators, and as a therapeutic target across various disease
contexts.
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Introduction
Scavenger receptor class B type I (SR-B1) is a

multifunctional integral membrane receptor encoded by
the SCARB1 gene, capable of binding multiple ligands
was first discovered by Acton et al. (1994) from Chinese
hamster ovary. It has caught significant attention in the
scientific community due to its pivotal role in cholesterol
metabolism, particularly in mediating the selective
uptake of High-Density Lipoprotein (HDL) cholesterol
in the liver and steroidogenic tissues. While SR-B1's
function in lipid transport and metabolism has been
extensively studied, its role in other physiological and
pathological contexts remains underexplored. Emerging
evidence suggests that SR-B1 is not merely a lipid
transporter but also a key player in immune regulation,
inflammation, and cancer progression. This study aims to
reframe SR-B1 in a new context, comparing its roles in

health and disease in the currently available knowledge
and identifying gaps in our knowledge.

Structure of SR-B1 Receptor

SR-B1 is classified as a family member of
structurally similar proteins called the cluster
determinant 36 (CD36) superfamily. SR-B1 was first
identified as a homolog of CD36. A subsequent
phylogenetic study revealed that these genes diverged
early in evolution from a common ancestor gene (Acton
et al., 1994; Rigotti et al., 2003; Calvo et al., 1995). SR-
B1 is characterized to be an ∼82 kDa cell surface
glycoprotein, built of 509 Amino Acids (AA), attached to
the plasma membrane with both N and C terminals
extended towards the cytoplasm (Figure 1). It consists of
a large extracellular domain, including several sites for
N-linked glycosylation and a cysteine-rich region of 408
amino acids, two transmembrane spanning domains
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containing 22 and 23 amino acids, a first and short N-
terminal intracellular domain consisting of 9 amino acids
and finally a second intracellular C- terminal domain of
44 amino acids (Rigotti et al., 2003; Viñals et al., 2003;
Shen et al., 2018).

Fig. 1: General structure of SR-B1

The SCARB1 gene coding for SR-B1 is positioned
on chromosome 12, yielding five different forms of
proteins called isoforms through alternate splicing. SR-
B1 with 508 AA residues was first identified as isoform 1
(Q8WTV0-2). Isoform 2(Q8WTV0-3) and Isoform 4
(Q8WTV0-4/ SR-BIII) have the identical C-terminal as
isoform 1 and 409 residues, but they differ at 43–142
AAs and 474 residues with a distinct N-terminal at 1-42
AAs respectively. Isoform 3(Q8WTV0-1) with 552
residues is the longest and it is different from isoform
one at the C-terminal from AAs 468-552. Isoform 5
(Q8WTV0-5/ SR-BII/ SR-B1.1) has 506 residues, with a
distinct C-terminal at AA sequence from 468–552 (Shen
et al., 2018; Webb et al., 1997).

Initially, OxLDL was considered the primary ligand
for SR-B1 (Acton et al., 1996). However, subsequent
studies confirmed that SR-B1 has a higher affinity for
native High-Density Lipoprotein (HDL) (Hoekstra,
2017). Some variations of SR-B1 transfer lipids in a
selective manner between HDL and cells, albeit at lesser
efficiency (Webb et al., 1998).

SR-B1: A Multiligand Receptor

Other than OxLDL, Acetylated LDL (AcLDL) (Out
et al., 2004; Racanelli and Rehermann, 2006) and native
HDL (Ganesan et al., 2016; Pandey et al., 2020)
Advanced Glycation End products -Bovine Serum
Albumin (AGE-BSA) and methylated BSA can bind
with SR-B1 receptors (Acton et al., 1994; Gillotte-Taylor
et al., 2001)and AGE-modified proteins (Cai et al., 2005;
Tsugita et al., 2017). Oxidative stress and accumulation
of oxidized phospholipids can reduce reverse cholesterol
transport by inhibiting SR-B1 (Acton et al., 1994;
Ohgami et al., 2001). It can also be bound with
reconstituted phospholipid/ unesterified cholesterol
containing HDL apolipoproteins: ApoA-I, apoA-II,
apoC-III and apoE (Marsche et al., 2002; 2003; Ashraf et
al., 2008), anionic phospholipids (Gao et al., 2015),
negatively charged liposomes (Xu et al., 1997), serum

Amyloid A (SAA) (Li et al., 2002), silica (de Beer et al.,
2001) and apoptotic cells (Xu et al., 1997; Rigotti et al.,
1995; Fukasawa et al., 1996) Native LDL and VLDL
have a high affinity toward SR-B1 receptors (Svensson
et al., 1999; Imachi et al., 2000). The binding properties
of hypochlorite-modified HDL (HOCl-HDL) to SR-B1
are well-studied in Chinese hamster ovary cells. The in-
vitro studies concluded that HOCL-modified HDL
significantly changed the inherent properties of the
native HDL. HOCl- HDL blocks SR-BI-mediated
contact with native HDL (Acton et al., 1996). In contrast,
HOCl- LDL is not recognized by SR-B1 receptors
(Krieger, 1999). Various ligands for SR-B1 and their
functional roles are summarized in Table (1).
Table 1: Multiligand for SR-B1

Ligand Year of
discovery

Functional role

OxLDL and AcLDL 1994, 2001 SR-B1-mediated uptake
contributes to foam cell
formation in
macrophages, a key event
in atherosclerosis

AGE- BSA, methylated-
BSA, and AGE-modified
proteins

1994, 2001,
2003

They clear glycated
proteins which are
associated with diabetic
complications and
inflammatory responses

LDL 1994, 1997 Relevant to
atherosclerosis and lipid
homeostasis

VLDL 1997 SR-B1 serves a crutial
role in VLDL metabolism
and lipid transport

HDL 1996,1999 Maintaining lipid
homeostasis and
preventing
atherosclerosis

Negatively charged
liposomes

1996 Mimics the charge
properties of HDL

Apoptotic cells 1996,1999,2000 Clearance of apoptotic
cells

Pathogenic
microorganisms

2003 SR-B1 facilitates viral
entry into macrophages
and its removal

HDL apolipoproteins
(apoA-I, apoA-II, apoC-
III, and apoE)
reconstituted into
phospholipid/ unesterified
cholesterol complexes.

1997,2001,2002 They mimic HDL and
facilitate cholesterol
efflux and transport

Hypochlorite-modified
HDL (HOCl-HDL)

2002 Associated with oxidative
stress and inflammation
in cardiovascular diseases

Serum amyloid A (SAA) 2005 Interacts with HDL
metabolism and promotes
inflammation

Oxidized phospholipids 2008,2014 Implicated in the
pathogenesis of
atherosclerosis

Silica 2017 Relevant in the context of
environmental exposure,
potentially modulating its
function in lipid
metabolism and immune
responses

http://192.168.1.15/data/13135/fig1.png
http://192.168.1.15/data/13135/fig1.png
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SR-B1 in Health

SR-B1 has a wide distribution, primarily in the liver
and other steroidogenic organs, including adrenal glands
and gonads, with decreased expression noted in
macrophages, adipocytes, endothelial cells, and lung
tissue. The widespread expression of SR-B1 across
different tissues highlights its diverse physiological
functions. Alongside, defects can alter the normal rhythm
of the body's functioning, leading to various diseases. In
cholesterol-demanding cells, SR-B1 highlights its
significant role in cholesterol homeostasis.

Fig. 2: Selective CE uptake by SR-B1 multimers

SR-B1 and Hepatocytes

Hepatocytes, the principal Parenchymal Cells (PC),
comprise 70-80% of the liver volume and 60% of the
liver cell population and play a pivotal role in
metabolism, detoxification, endocrine and exocrine
functions (Viñals et al., 2003). As regards metabolism,
the liver plays a vital role in lipid metabolism, leading to
energy homeostasis. Triacylglycerol (TG) and
Cholesterol Ester (CE) are the storage forms of lipids.
Other than the de-novo synthesis and degradation of
surplus cholesterol into bile acids, the in and outflow of
cholesterol via lipoproteins plays a pivotal role in the
overall handling of lipids by the liver. The spare
cholesterol is transported from peripheral tissues by
High-Density Lipoprotein (HDL), which is then
delivered to the liver for further disposal. As the chief
HDL receptor, SR-B1 enables the bi-directional flow of
cholesterol among the cells and HDL (Shen et al., 2018).
Various in-vitro and in-vivo studies have revealed that
the SR-B1 regulates both selective docking of HDL and -
intake of the HDL-associated Cholesterol Esters (CE) by
the hepatocytes (Acton et al., 1996; Hoekstra, 2017).
Mechanisms controlling SR-B1 dynamics in terms of
multimerization and its retention at the cell surface seek
the C- C-C-terminal leucine zipper of SR-B1 and an
actin cytoskeleton integrity (Figure 2), where it performs

its selective lipid uptake as studied by Marques et al.
(2019). Oligomerization of SR-B1 increases its
efficiency (Shen et al., 2018). Whilst SR-B1 also
effluxes cholesterol to lipoproteins, it depends on the
ligand binding to this receptor (Acton et al., 1996). The
SR-B1mediated influx and efflux of HDL-CE by
hepatocytes make it a vital target for therapeutic benefits
in managing cholesterol levels with Reverse Cholesterol
Transport (RCT) (Brundert et al., 2005). RCT is the
process of the overall transfer of cholesterol via HDL
and LDL/ VLDL from peripheral tissues to the liver,
where it is further metabolized into bile acids/ steroid
hormones for its excretion. In the liver, after delivering
CE from the mature HDL, lipid-depleted HDL re-enters
the circulation to participate in RCT (Figure 3).

Fig. 3: Reverse cholesterol transport
LDL-R: low density lipoprotein receptor; SR-B1: scavenger
receptor class B type 1; HDL: high density lipoprotein; VLDL:
very low-density lipoprotein; CETP: cholesterol ester transfer
protein; LCAT: lecithin- cholesterol acyltransferase; ABCA1:
ATP- binding cassette transporter A1; ABCG1: ATP-binding
cassette subfamily G member 1

Since SR-B1 is a receptor for both HDL and LDL
(Krieger, 2001), it plays an essential role in the turnover
of both LDL and HDL, bringing the total lipid
homeostasis together. Many studies have been
undertaken to determine the sub-cellular liver
localization of SR-B1. Non-Parenchymal Cells (NPC),
such as stellate cells, Kupffer cells, and sinusoidal
endothelial cells, make up the remaining 20-40% of the
liver volume in addition to PC. There is also evidence
supporting the function and expression of SR-B1 in NPC
in preserving hepatic homeostasis (Marques et al., 2019;
Gu et al., 1998; 2000).

SR-B1 and Adrenal Gland

Landschulz et al. (1996) localized SR-B1 on the
resurfaces of steroidogenic cells in the zona fasciculata
and zona reticularis of the adrenal gland by the
immunofluorescence technique. Cholesterol, a precursor

http://192.168.1.15/data/13135/fig2.png
http://192.168.1.15/data/13135/fig2.png
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Sujina Simon Sailet et al. / OnLine Journal of Biological Sciences 2025, 25 (3): 590.600
DOI: 10.3844/ojbsci.2025.590.600

593

for steroid hormones production, is derived from
multiple sources: (1) de novo lipogenesis of cholesterol,
(2) mobilization of Cholesterol Esters (CEs) from lipid
droplets and (3) lipoproteins derived CE influx via SR-
B1 and Low-Density Lipoprotein Receptors (LDL-R).
Anterior pituitary releases, Adrenocorticotropic Hormone
(ACTH) in response to corticotropin-releasing hormone
from the hypothalamus and is found to modulate the
expression of SR-B1 in the adrenal gland during the
process of steroidogenesis (Figure 4). Various animal
models and in-vivo studies demonstrated that the
stimulation of ACTH significantly increases SR-BI
expression in adrenal cells, which enhances cholesterol
uptake and steroidogenesis, likely mediated by the
secondary messenger’s cAMP (Shen et al., 2016).
ACTH-treated mice exhibited a dual regulatory
mechanism for SR-B1 expression involving both
hormonal and depleted cellular cholesterol stores as
metabolic stimuli to increase its expression and,
therefore, to increase the cholesterol uptake and maintain
cholesterol repository for steroidogenesis (Sun et al.,
1999). Acute and chronic ACTH treatments monitor the
expression of SR-B1 through its phosphorylation,
oligomerization, and its interaction with other accessory
proteins such as cAMP-dependent protein kinase (PKA)
signaling cascade, Salt-Inducible Kinase 1 (SIK1), and a
serine/threonine kinase (Shen et al., 2016).

Fig. 4: Anterior- Pituitary- Adrenal (APA) and Anterior-
Pituitary- Gonadal (APG) axis in steroidogenesis.
CRH, corticotropic releasing hormone
ACTH: Adrenocorticotropic hormone; SR-B1: scavenger
receptor type B class 1; FC: free cholesterol; HDL: high-
density lipoprotein

SR-B1 and Gonads

In the ovary, SR-B1 is expressed in the corpus luteal
cells (Landschulz et al., 1996). It serves as a primary
receptor for HDL, aiding the uptake of cholesterol esters,
essential for synthesizing steroid hormones, such as
progesterone and estrogen, crucial for ovarian function
and follicular development. Studies in rats using
Immunohistochemistry (IHC) demonstrate that SR-B1 is
primarily localized in the oocytes, theca interna cells of
follicles, interstitial cells, and corpus luteum during the
estrous cycle, but not in granulosa cells (Svensson et al.,

1999; Landschulz et al., 1996). Weak staining was seen
in stromal cells and it was discovered that uterine SR-B1
was expressed in circular muscle cells, glandular
epithelial cells, and endometrial luminal epithelial cells.
During the estrous cycle, ovarian SR-B1 expression
varied with stage. It linearly raised from proestrous to
metestrous phase, while uterine SR-B1 dropped from
proestrous to diestrous (Wang et al., 2015). After
receiving estrogen therapy, the ovary's corpus luteal cells
showed significantly higher levels of SR-B1 mRNA and
protein. Wang et al. investigated the significance of sex
hormones in relation to ovarian and uterine SR-B1 By
administering 17 β-estradiol (E2), progesterone, or their
antagonists to immature rats. And they found that; E2
significantly up-regulates the expression of SRB-1 in
both the ovary and uterus, which indicates that SR-B1 is
involved in follicular maturation as well as uterine and
luteal function (Wang et al., 2015).

Expression and microvillar localization of SR-BI in
Leydig cells as well as Sertoli cells of testes indicate
steroidogenic properties (Landschulz et al., 1996;
Shiratsuchi et al., 1999) and play a decisive role in the
maintenance of male reproductive function. As the
primary receptor responsible for the selective influx of
HDL-derived CEs, SR-B1 is essential for providing the
necessary cholesterol substrates required for
steroidogenesis in the Leydig cells for the biosynthesis of
testosterone (Azhar et al., 2003), supporting
spermatogenesis. In-vitro studies have shown valuable
insights into the functions of SR-B1 in tests. Azhar et al.
(1998) highlighted that the expression of SR-B1
drastically increased by gonadotropin treatment, which
also increases the selective uptake and internalization of
lipoprotein-derived CE in Leydig cells- that is observed
by HDL-BODIPY-CEs. However, since the SR-B1
knockout mice seem to be fertile, some studies indicate
that the expression of SR-B1 is not necessary for male
mice fertility (Rigotti et al., 2003; 1997).

SR-B1 in Macrophages and other Tissues

Macrophages are the paramount components of the
innate immune system and play an important role in
initiating various adaptive immune responses.
Multiligand receptor SR-B1 recognizes a variety of
ligands, including modified lipoproteins, pathogenic
microorganisms, and apoptotic cells. The binding of
these diverse ligands to SR-B1 on macrophages leads to
internalization, contributing to the cell debris clearance
and initiation of immune response (Rigotti et al., 2003).
In addition, SR-B1 has been implicated in the
macrophages' preferential absorption of CE from HDL.
Various studies revealed that the expression is increased
by peroxisome proliferator-activated receptors (PPARs),
testosterone and AGEs (Chinetti et al., 2000; Iwashima
et al., 2000; Langer et al., 2002) and decreased by
Lipopolysaccharide (LPS), Tumor Necrosis Factor- α
(TNF-α) and interferon- γ in macrophages (Buechler et
al., 1999).

http://192.168.1.15/data/13135/fig4.png
http://192.168.1.15/data/13135/fig4.png
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SR-B1 is expressed in the intestine, which is involved
in the utilization of dietary cholesterol. In the mouse
model, Voshol et al. (2001) found that intestinal SR-B1
expression was transcriptionally regulated by bile
components. Expression of SR-B1 in the keratinocytes of
the skin is increased by simvastatin, an inhibitor of
cholesterol synthesis, and decreased by 25-
hydroxycholesterol, which suggests expression of SR-B1
in keratinocytes is regulated by cellular cholesterol levels
(Tsuruoka et al., 2002).

SR-B1 in the Disease States

Owing to its various functions, SR-B1 has been
implicated in a range of diseases, including
cardiovascular diseases, metabolic disorders, cancer, and
infertility.

SR-BI and Cardiovascular Disease

The intrinsic purpose of SR-B1 in cholesterol
homeostasis makes it a tangible target in cardiovascular
health. Studies in mouse models have shown that partial
or total loss of SR-B1 expression leads to early
atherosclerosis (Shen et al., 2018; Braun et al., 2002;
Covey et al., 2003). Similarly, overexpression of hepatic
SR-B1 has been implicated in decreased atherosclerosis
(Komori et al., 2008). SR-B1 regulates endothelial
function, promoting HDL signaling for RCT and nitric
oxide synthesis, indicating its anti-atherogenic actions
(Yu et al., 2021). HDL stimulates endothelial nitric oxide
synthase via SR-B1 and its adaptors. PDZ domain-
containing protein-1 promotes endothelial repair and
anti-inflammatory processes (Li et al., 2002).
Conversely, recent studies have identified various non-
hepatic mechanisms through which SR-B1 acts as a pro-
atherogenic factor. In-vitro and animal models have
shown that SR-B1 can deliver LDL and modified
lipoproteins into arteries by transcytosis via binding to
the 8 amino acid C-terminal domain of SR-B1, leading to
their internalization (Yu et al., 2021). The subsequent
recruitment of guanine nucleotide exchange factor-
dedicator of cytokinesis 4 activates Ras-related C3
botulinum toxin substrate 1 (Rac 1) and forms
macrophage foam cells, which can promote
atherosclerosis (Rohrer et al., 2009; Huang et al., 2019).
SR-B1 expression on macrophages has been associated
with the release of inflammatory cytokines, further
exacerbating the inflammatory environment within the
arterial wall (Tsukui et al., 2023; Gracia-Rubio et al.,
2021). Contrarily, the macrophage SR-B1 initially
encourages cholesterol efflux and reverse cholesterol
transport, lowering macrophage foam cell formation.
Crucially, SR-B1 may inhibit plaque formation by
mediating macrophage apoptosis as an outcome of
cholesterol load. Apoptosis of macrophages is thought to
be atheroprotective in early lesions, but it encourages the
development of atherosclerosis in later stages (Van et al.,
2004). Galle-Treger et al. (2020) revealed accelerated

aortic atherosclerosis characterized by decreased
macrophage apoptosis activity induced by Apoptosis
Inhibitor of Macrophage (AIM) in a mouse model.
Indeed, phagocytosis of apoptotic cells, including
macrophages (efferocytosis), significantly limits the
development of plaque necrotic cores in the late
atherosclerotic lesions (McCarthy et al., 2009),
suggesting macrophage SR-B1 as a new target in CVD.

SR-B1 and Metabolic Disorders

The SR-B1 has also been implicated in the
development of metabolic disorders, including Type 2
Diabetes Mellitus (T2DM) and Metabolic Dysfunction
Associated Steatotic Liver Disease (MASLD).
Polymorphisms in the SR-B1 receptors are associated
with the emergence of insulin resistance and T2DM
(Tetik Vardarlı et al., 2017; Wamique et al., 2022).
Murao et al. (2008) reported that activation of p38
Mitogen-Activated Protein Kinase (MAPK)- Specificity
Protein-1 (Sp1) pathway regulatory genes mediate the
inhibitory effect of hyperglycemia on SR-B1 promoter
activity paving the way for accelerated atherosclerosis in
diabetic patients (Wamique et al., 2020).

SR-B1 has been linked to the pathogenesis of
MASLD, previously termed Metabolic-Associated Fatty
Liver Disease (MAFLD). MASLD is defined as the
buildup of excess triglycerides in the liver combined
with at least one cardiometabolic risk factor, such as type
2 diabetes or being overweight (European Association
for the Study of the Liver (EASL) et al., 2024; Higarza
et al., 2025). The dysregulation of SR-B1 has been
associated with impaired cholesterol trafficking, which
can promote the development of fatty liver (steatosis)
and the progression to more severe liver diseases, such as
Metabolic Dysfunction-Associated Steatohepatitis
(MASH) to Hepatocellular Carcinoma (HCC). Several
animal models have been studied, which demonstrate the
expression of SR-B1 influencing the high-fat diet
associated with dyslipidemia, CVD risks, and hepatic
steatosis (Rivera et al., 2020; Malhotra et al., 2020). SR-
B1 has been linked to controlling inflammatory
processes in the liver and its function in lipid
metabolism. Recent studies have linked the important
role that inflammation and lipid metabolism play in the
pathophysiology of MASLD and SR-B1 may be a major
mediator of this relationship (Wang et al., 2021).
Adipocyte inflammation, a hallmark feature of central
obesity, reduces the expression of SR-B1 and ABCA1
which further reduces the cholesterol efflux and,
therefore HDL-C (Stadler et al., 2020). Animal models
have shown accelerated inflammation of adipose tissue
in the high-fat diet-fed SR-B1 knockout mice; however,
loss of SR-B1 expression also protected them against the
development of hepatic steatosis (Rivera et al., 2021;
Hoekstra et al., 2015). Whether the same is reproducible
in human subjects needs confirmation. Taken together,
by regulating the uptake and metabolism of lipids in the
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liver and influencing the inflammatory response, SR-B1
appears to be a promising target for treating this
prevalent liver disease.

SR-B1 and Cancer

Emerging evidence suggests that SR-B1 may also
play a crucial role in the development and progression of
certain types of cancers. Expression of SR-B1 is often
upregulated in various cancer cells, including those of
prostate, breast, and ovarian origin. This increased
expression of SR-B1 has been linked to enhanced
cholesterol uptake from circulating lipoproteins, which
can promote tumor growth and proliferation (Mooberry
et al., 2016). Pandey et al. (2021) studied prostate cancer
disruption of cholesterol availability via cholesterol
regulation through either synthesis or silencing SR-B1
impacts signaling pathways, motility, and proliferation.
In-vitro studies have shown similar findings in cellular
proliferation, migration, and tumor growth in breast
cancer (Danilo et al., 2013). Overexpression of SR-B1,
along with the decreased plasma HDL levels in cancer
patients compared with healthy controls, indicates that it
could be the main source of cholesterol to the cancer
cells (Cruz et al., 2013). The potential of SR-B1 to
attenuate tumorigenesis has prompted researchers to
create reconstituted HDL (rHDL) molecules capable of a
selective drug delivery mechanism and suppression of
tumor growth (Danilo et al., 2013; Sabnis and Lacko,
2012).

SR-B1 and Infertility

SR-B1-mediated cholesterol uptake from HDL serves
as a primary substrate for steroid hormone production in
steroidogenic cells, essential at various stages of
reproduction and fetal growth, and development. The
expression and regulation of SR-B1 have been
comprehensively studied in the context of the ovary and
uterus for the synthesis of luteal steroid hormones by
Jiménez et al. (2010). Animal models show that the
upregulation of SR-B1 in rat ovary and uterus across
the estrous cycle is involved in uterine, luteal function
and follicular maturation (Wang et al., 2015).
Throughout the oestrous cycle, uterine SR-B1 is
abundantly expressed in the stromal cells, glandular
epithelial cells, endometrial luminal epithelial cells, and
circular muscle cells. This differential expression pattern
suggests that SR-B1 may be entailed in various uterine
functions, including the provision of cholesterol for the
synthesis and maintenance of endometrium, preparation
for embryo implantation and its development (Wang et
al., 2015). Velasco et al. (2006) found a direct
association of granulosa SR-B1 expression and estradiols
in humans, suggesting its potential impact on female
fertility. Supporting evidence from mouse models has
shown that; downregulation of SR-B1 receptors along
with increased circulating HDL hampers the
developmental capacity of the eggs (Arias et al., 2022).

While the role of SR-B1 in ovarian physiology is well-
established, its significance in testicular function and in
male fertility is less clear. Estrogen receptors and
androgen receptors are known to regulate critical
processes during spermatogenesis and the regulation of
their expression by sex steroid hormones is an
unexplored area. Table (2) is a comparative table
summarizing previous research on SR-B1in various
disease aspects.
Table 2: Comparative table summarizing previous research on SR-

B1’s role in various diseases

Disease states Key findings Experimental
models

Critical insights

SR-B1 in
Cardiovascular
disease

SR-B1 facilitates
reverse
cholesterol
transport (RCT),
reducing
atherosclerosis

SR-B1
knockout
mice, human
hepatocytes
(in-vitro
models)

While SR-B1 is
protective in
RCT, its
overexpression in
macrophages
may promote
foam cell
formation

SR-B1 in
Metabolic
Disorders

SR-B1 deficiency
exacerbates
insulin resistance
and dyslipidemia

High-fat diet-
induced
mouse models

SR-B1’s role in
metabolic health
extends beyond
lipid transport

SR-B1in
Cancer

SR-B1 is
overexpressed in
breast, prostate,
and ovarian
cancers,
promoting tumor
growth and
metastasis

Cancer cell
lines

SR-B1’s role in
cholesterol
uptake may fuel
cancer cell
proliferation, but
its immune-
modulatory role
is underexplored

SR-B1 in
Infertility

Downregulation
of SR-B1
receptors
hampers the
developmental
capacity of the
eggs.

Mice models While the
function of SR-
B1 in ovarian
physiology is
well-established,
its significance in
testicular
function and in
male fertility is
less clear.

Conclusion
Emerging findings highlight the diverse and complex

roles of SR-B1 in tissues beyond the traditional areas of
lipid metabolism and transport. It has a multifaceted role
in the modulation of cholesterol homeostasis, active
participation in inflammatory signaling pathways, and its
interactions with various transcription factors and
inflammatory mediators, making it a subject of intense
research. Although current strategies, including small-
molecule inhibitors, HDL mimetics, and gene therapy,
offer potential, significant challenges persist in terms of
specificity, delivery, and safety. Further evidence-based
research and clinical trials are needed to explore its
potential as a therapeutic target in various disease
contexts and its potential as a biomarker for disease risk
assessment. The dual role of SR-B-1 in the non-hepatic



Sujina Simon Sailet et al. / OnLine Journal of Biological Sciences 2025, 25 (3): 590.600
DOI: 10.3844/ojbsci.2025.590.600

596

mechanisms needs further attention to elicit its role in the
pathogenesis of disparate disease states.
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