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Abstract: Mammalian Sirtuins have been shown to perform distinct 

cellular functions and deregulated expression of these genes was reported to 

be involved in the development of various malignancies including breast 

cancer. An increasing number of evidence indicates that Sirtuins have both 

tumor promoter and tumor suppressor functions. However, the roles of 

Sirtuins have not been well-studied in breast cancer. In the present study, 

quantitative expression levels of Sirtuins (SIRT1-3) together with a set of 

cancer related genes (cMYC, P53, SOD and HIF-1α genes) were assessed 

in malignant breast cancer and non-malignant control samples by using a 

high-throughput real-time PCR method. As a result, Sirtuins were found to 

be differentially expressed in breast cancer tissues and control samples, 

respectively. Particularly, expressions of SIRT1 (p = 0.035) and SIRT3 (p = 

0.033) were found to be significantly up regulated, whereas SIRT2 (p = 

0.032) gene was shown to be downregulated in breast cancer tissues 

compared to control samples in our study. Additionally, the expression 

levels of SIRT1-3 genes were correlated to both the selected cancer related 

genes and to clinicopathological parameters of breast cancer patients. In 

conclusion, SIRT1 and SIRT3 genes may act as oncogenes, whereas SIRT2 

gene may operate as a tumor suppressor gene in human breast cancer. 
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Introduction 

Breast cancer, as other cancers, has an unstable 

genome which generates the genetic diversity through 

deregulation of gene expression profiles and disruption 

of molecular networks (Hanahan and Weinberg, 2011). 

Intriguing evidence has recently emerged that genetic 

and epigenetic mechanisms are not separate events in 

cancer; they intertwine and take advantage of each other 

during tumorigenesis (Jones and Martienssen, 2005). 

Histones acetylation is one of epigenetic marks that 

regulate gene expression, occurs on the ε-amino groups of 

lysine residues in the N-terminus of the histone proteins 

by the opposing action of Histone Acetyltransferases 

(HATs) and Histone Deacetylases (HDACs) (Dong and 

Cui, 2016). The deacetylation of histone tails may underlie 

suppression of target genes expression and 

heterochromatin formation (Guarente, 2000). Sirtuins, 

Class III Histone Deacetylases (HDACs), are a family of 

proteins composed of 7 members, including SIRT1-7 

which are evolutionary conserved enzymes homologous 

with the yeast Sir2 family of proteins (Landry et al., 

2000). They are Nicotinamide Adenine Dinucleotide 

(NAD+) dependent deacetylases and/or mono-Adenosine 

Diphosphate (ADP)-ribosyl transferases that have 

attracted tremendous attention as stress adaptors and post-

translational modifiers and they have been linked to many 

diseases including cancer (Bosch-Presegué and Vaquero; 

2011). SIRT1-3 are important members of Sirtuins 

family. They possess efficient deacetylase activity in vitro 



Hamdy Swelim et al. / OnLine Journal of Biological Sciences 2018, 18 (2): 147.157 

DOI: 10.3844/ojbsci.2018.147.157 

 

148 

and under certain extreme conditions such as chronic stress, 

SIRT1-3 can protect the organism by inducing cell 

senescence or apoptosis, they can also deacetylate a number 

of non-histone target proteins (Bosch-Presegué and 

Vaquero; 2011; He et al., 2014). SIRT1 can, in one hand, 

regulate multiple target proteins involved in cell cycle 

progression, DNA repair machinery, cell-signaling and cell 

metabolism (Palacios et al., 2010; Houtkooper et al., 2012). 

On the other hand, SIRT2 can deacetylate the α-tubulin 

subunit of microtubules and it has been proposed that 

SIRT2 might function as a mitotic checkpoint protein in 

G2-M to prevent chromosomal instability, particularly in 

mitotic stress (North et al., 2003; Vaquero et al., 2006). 

While SIRT3 works as a major protein deacetylase within 

the mitochondrial matrix and is critical for maintaining 

mitochondrial integrity and function through regulation of 

proteins involved in metabolism, energy homeostasis, cell 

survival and death (Lombard et al., 2007; Hallows et al., 

2011; Alhazzazi et al., 2013). Moreover, SIRT1-3 are 

implicated in a variety of pathological conditions including 

cancer but their role in cancer as oncogenes or tumor 

suppressor genes is still controversial and more studies are 

needed to further delineate their precise functions 

(Alhazzazi et al., 2011; Dan et al., 2012; Chen et al., 2014; 

Kulić et al., 2014).  

Over 30 000 genetic aberrations have been detected 
in tumor cells when compared with normal cells and 
according to the Cancer Gene Data Curation Project, 
about 4 700 genes have been identified as being related 
to cancer (Kumar et al., 2009; Pleasance et al., 2010). 

The latter include tumor suppressor genes mainly P53 
gene, oncogenes like Myelocytomatosis (cMYC) gene or 
stress adaptation genes as Superoxide Dismutase (SOD) 
and Hypoxia Inducible Factor-1 (HIF-1α) genes 
(Feinberg et al., 2006). 

The c-Myc oncogene is the most frequent amplified 

gene in human cancers and is associated with tumor 

aggression and poor clinical outcome. In normal cells, 

it promotes cell replication in response to extracellular 

signals, by driving quiescent cells into the cell cycle 

(Lin et al., 2012). In tumor cells that express high levels 

of c-Myc, cellular proliferation is no longer dependent 

on growth-factor stimulation and this uncoupling from 

growth factor regulation leads to the uncontrolled 

proliferation characteristic of cancer cells, protection 

against programmed cell death, loss of respect for 

normal tissue boundaries and metastases (Dunning et al., 

1999; Lin et al., 2012). The effect of high levels of c-

Myc on global gene regulation is poorly understood but 

is widely thought to involve newly activated or repressed 

‘‘Myc target genes’’ (Lin et al., 2012).  
The P53 gene is the most frequently mutated tumor 

suppressor gene in cancer and P53 loss may be required 
for maintenance of aggressive carcinoma (Xue et al., 
2007). It exists in non-stressed cells at a very low 
concentration due to its rapid ubiquitin-mediated 

degradation in proteosomes. Under stress conditions, P53 
induces the transcription of various genes that are 
involved in cell-cycle control, apoptosis, DNA repair, 
differentiation and senescence (Slee et al., 2004). In 
cancer, its activities are inactivated and result in the loss of 
normal functions, especially in accurate DNA replication 
that leads to the proliferation of cells that are under stress 
conditions and tumor development (Dunning et al., 1999). 
An increasing number of studies indicate that a subset of 
mutated P53 are oncogenic and actively participate in 
neoplastic transformation (Weisz et al., 2007). 

SOD is essential enzyme which acts as antioxidant 

scavenger that catalyzes the dismutation of highly reactive 

O2 -• and H2O2 to O2 and less reactive H2O2 respectively 

(Halliwell, 1994) and protect cells from oxidative damage 

which can cause lipid peroxidation, mutagenesis and 

carcinogenesis. Huang et al. (2000) showed that malignant 

cells are highly dependent on SOD for survival that 

inhibition of SOD causes accumulation of cellular O2 - 

that cause free-radical-mediated damage to mitochondrial 

membranes, the release of cytochrome c from 

mitochondria and apoptosis of the cancer cells.  

HIF-1is an essential transcription factor induced by 

reduced O2 availability in the cellular environment 

(hypoxia) and can activate over 60 direct genes, that 

have roles in many critical aspects of cancer biology 

including glycolytic metabolism, immune avoidance, 

angiogenesis, metastasis and therapeutic resistance 

(Papadakis et al., 2010; Semenza, 2010; Zhang et al., 

2010). Increased HIF-1α levels in diagnostic tumor 

biopsies are associated with increased risk of mortality in 

many types of tumors including breast cancer (Semenza, 

2010). Recent studies have provided evidence indicating 

that HIF-1 mediates resistance to chemotherapy and 

radiation (Aebersold et al., 2001). 

Cancer cell transformation has a multitude of 
different intertumoral genetic and epigenetic alterations 
(Hutchinson, 2010). The objective of the current study 

was therefore to elucidate in human breast cancer the 
role of SIRT1, SIRT2 and SIRT3 in association with the 
selected cancer related genes: cMYC, P53, SOD and 
HIF-1α genes. Herein, we aimed to correlate the 
expression of these genes with the clinicopathological 
parameters of breast cancer patients.  

Materials and Methods 

Patients and Specimens 

In total, 30 breast cancer patients have been enrolled 
from those admitted to the Medical Research Institute, 
Alexandria University, Egypt. All subjects were 
recruited according to the ethical rules approved by the 

ethical committee of the Medical Research Institute 
based on Belmont report. The clinicopathological 
prognostic characters of breast cancer patients were 
obtained and reviewed and reported in Table 1. 
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Specimens included 30 malignant breast cancer as well 
as 20 adjacent non-malignant control samples freshly 
collected from breast cancer patient's mastectomy after 
surgical removal and clinical examination at the Clinical 

Pathology Department, Medical Research Institute, 
Alexandria University, Egypt. Samples were stored in 
RNA-later (Ambion, UK) at -80°C until they were used.  

RNA Isolation 

Total RNA was isolated from 30 mg of frozen tumor 

and control tissues using ISOLATE II RNA Mini Column 

Kit (Bioline, UK) according to the manufacturer's 

instructions. The purity and concentration of RNA samples 

were determined using NanoDrop spectrophotometer. Only 

the RNA samples that have A260/A280 ratio range from 

1.8 to 2.00 were used, otherwise the RNA samples were 

considered contaminated. RNA samples were then stored at 

-80°C until be used. 

Quantitative Real-Time Reverse-Transcription 

Polymerase Chain Reaction (qRT-PCR) 

The reaction and data analysis were performed 

according to the instructions of the thermo PikoReal™ 

Real-Time PCR system, using SensiFAST™ SYBR® No-

ROX One-Step Kit (Bioline, UK) and specific primers. 

Forward and reverse primers (Qiagen, Germany) were 

used to target gene expressions of the following: SIRT1: 

Forward 5'-AAA TGC TGG CCT AAT AGA GTG G-3', 

reverse 5'-TGG TGG CAA AAA CAG ATA CTG A-3'; 

SIRT2: Forward 5'-GAA CGC TGT CGC AGA GTC 

ATC-3', reverse 5'-GGT TGG CTT GAA CTG CCC AG-

3'; SIRT3: Forward 5'-GCA TTC CAG ACT TCA GAT 

CGC-3', reverse 5'-GTG GCA GAG GCA AAG GTT CC-

3'; P53: Forward 5'-GTT CCG AGA GCT GAA TGA GG-

3', reverse 5'-TCT GAG TCA GGC CCT TCT GT-3'; 

cMYC: Forward 5'-CTT CTC TCC GTC CTC GGA TTC 

T-3', reverse 5'-GAA GGT GAT CCA GAC TCT GAC 

CTT-3'; HIF-1α: forward 5'-TGG CCT TGT GAA AAA 

GGG T-3', reverse 5'-TTG ATG GGT GAG GAA TGG 

GT-3'; SOD: Forward 5'-TGT GGG GAA GCA TTA AAG 

G-3', reverse 5'-CCG TGT TTT CTG GAT AGA GG-3'; B-

Actin: Forward 5'-AGA AAA TCT GGC ACC ACA CC-

3', reverse 5'-AGA GGC GTA CAG GGA TAG CA-3'. 

QRT-PCR program was applied as one cycle of cDNA 

synthesis at 50°C for 15 min, one qRT-PCR was performed 

in a .reaction mixture of 20 µL using 10 µL SensiFAST™ 

SYBR® No-ROX One-Step Mix(1X), 0.2 µL Reverse 

transcriptase, 0.4 µL RiboSafe RNase Inhibitor, 1.6 µL 

forward and reverse primers (10 pm), 4 µL RNA template 

(10 ng) and up to 16 µL sterile water. The thermal cycling 

program included reverse transcription at 45°C for 10 min, 

then polymerase activation at 95°C for 2 min followed by 

40 cycles of denaturation at 95°C for 5 s, annealing at 60°C 

for 10 s and extension at 72°C for 5 s. Duplicate samples 

were used for data accuracy. The data for relative gene 

expression were analyzed by the comparative Ct method 

(2^ (-∆∆CT)) using β-actin as an endogenous control and 

gene expression in non-malignant samples as calibrator. 

Statistical Analysis 

All statistical analyses were done using IBM SPSS 

software package version 20.0 (Armonk, NY: IBM 

Corp). Experiments were carried out in triplicate. The 

Kolmogorov-Smirnov test was used to verify the 

normality of distribution. The comparisons between 

groups were determined by Mann-Whitney test. The 

correlations between groups were determined by 

Spearman’s rank correlation coefficient test. Values of 

p<0.05 were considered significant. 

Results 

Clinicopathological Characteristics of Breast 

Cancer Patients 

The clinicopathological features of our series of 

Egyptian breast cancer patients are described in Table 1. 

All individuals underwent curative surgery at the 

Medical Research Institute, Alexandria University of 

Egypt. The mean age at diagnosis was 53.5 years, 

ranging from 30 to 76 years. Among these, nearly 

quarter of cases (26.7%) were premenopausal while the 

remaining 22 cases (73.3%) were postmenopausal. The 

majority of patients (28 cases out of 30, 93.3%) were 

suffering from Invasive Ductal Carcinoma (IDC) 

whereas only 2 cases (6.7%) showed Invasive Lobular 

Carcinoma (ILC). Tumor size (the largest diameter) 

ranged from 1 to 9 cm, patients showing tumor size <2 

cm are only 3 cases (10%); while those having tumor 

size included between 2-4 cm are 19 cases (63.3%) and 

those with tumor size >4 cm are 8 cases (26.7%). Most 

patients had tumor grade II (20 out of 30, 66.7%) where 

only 10 patients (33.3%) had tumor grade III. The 

frequency of positive lymph node metastases was 63.3% 

(19 patients out of 30). The profile of ERα and HER2 as 

determined by immunohistochemistry was positive in 24 

and 18 patients (80% and 60%) respectively based on the 

10% cut off level for expression analysis. 

The Relative Expression Level of SIRT1, SIRT2 and 

SIRT3 and Selected Cancer Related Genes: cMYC, 

P53, SOD and HIF-1α, in Human Breast Cancer 

Samples 

The qRT-PCRT technique was used to quantify the 

relative transcription expression level of SIRT1, SIRT2, 

SIRT3, cMYC, P53, SOD and HIF-1α genes in malignant 

and non-malignant samples of human breast cancer (Fig. 1). 
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Fig. 1: Real-time PCR experiments showing differential gene expression associated with human breast samples, as 

compared to their corresponding controls (*p<0.05) 
 
Table 1: Clinicopathological prognostic data of breast 

cancer patients 

Parameters                                                     Number (%) 

Age (years) 
Min-Max  30-76 
Mean ± SD  53.5±11.5 
Median age 52 
Menopausal status 
Pre  8 (26.7) 
Post 22 (73.3) 
Histological type 
Invasive lobular carcinoma (ILC)  2 (6.7) 
Invasive ductal carcinoma (IDC) 28 (93.3) 
Tumor size (T) (cm) 
Min – Max  1-9 
<2  3 (10) 
2-4  19 (63.3) 
>4 8 (26.7) 
Tumor grade 
II  20 (66.7) 
III 10 (33.3) 
Lymph node metastasis 
Negative  11 (36.7) 
Positive 
1(1-3)  7 (23.3) 
2(4-9)  5 (16.7) 
3(≥10) 7 (23.3) 
ERα 
Negative  6 (20) 
Positive 
+1  2 (6.7) 
+2 12 (40) 
+3 10 (33.3) 
HER2 
Negative  12 (40) 
Positive 
+1  10 (33.3) 
+2 6 (20) 
+3 2 (6.7) 

In our experiment, SIRT1 and SIRT3 genes were 
found to be upregulated in 76.7 and 63.6% of malignant 
samples, respectively; whereas, SIRT2 gene was found 
to be downregulated in 62.1% of malignant tissues. The 
upregulation of both SIRT1 (5.1±1.5, mean ± SEM, p = 
0.035) and SIRT3 genes (4.5±1, p = 0.033) as well as 
the downregulation of SIRT2 gene (1.9±0.48, mean ± 
SEM, p = 0.032) were found to be significant in 
malignant samples compared to non-malignant samples 
of human breast cancer. 

On the other hand, 33.3, 55.6, 66.6 and 42.3% of 
malignant samples had over-expression of cMYC, P53, 
SOD and HIF-1α genes, respectively. Malignant tissues 
had non-significant high level of mRNA expression of 
cMYC (3.2±1.3, mean ± SEM, p = 0.228), P53(3.7±1.1, 
p = 0.690) and HIF-1α (1.7±0.57, p = 0.428) genes than 
those in non-malignant samples (2.4±0.64, 2.5±0.8, 
2.0±0.68 respectively). However, there was significant 
high level of SOD gene expression in malignant tissues 
(7.97±3.9, p = 0.046), compared to non-malignant 
samples (1.6±0.4) of human breast cancer. 

The correlation between SIRT1, SIRT2 and SIRT3 
and a set of selected cancer related genes: cMYC, P53, 
SOD and HIF-1α, in human breast cancer samples 

In regard to the correlations between the relative 
transcription expression levels of genes included in this 
study (Fig. 2), Spearman's rank correlation showed a 
significant positive correlation between SIRT1 and P53 
(P = 0.012), SIRT3 and cMYC (P= 0.010), cMYC and 
P53(p = 0.000) and SOD and HIF-1α (P= 0.012) genes. 

On the other side, there were no significant correlations 
between the expression levels of each of the following 
pairs: SIRT1 and SIRT2 (p = 0.732), SIRT1 and SIRT3 (p 
= 0.331) and SIRT2 and SIRT3 (p = 0.691), cMYC and 
SOD (p = 0.823), cMYC and HIF-1α (p = 0.491),P53 and 

SOD (p = 0.301) and P53 and HIF-1α (p = 0.195) genes. 
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Fig. 2: Scatter plots showing the significant correlations between the relative expression levels of a pair of particular 

genes included in our study (*p<0.05; **p<0.01) 

 

Table 2: The correlation between the relative transcription expression levels of cMYC, P53, SOD and HIF-1α; SIRT1, 

SIRT2 and SIRT3 and the clinicopathological parameters of breast cancer patients 

  Relative gene expression 
  --------------------------------------------------------------------------------------------------- 
Pathological parameters  SIRT1 SIRT2 SIRT3 cMYC P53 SOD HIF-1α 

Age rs 0.259 0.262 0.262 0.352 0.470* 0.062 0.279 
 p 0.284 0.279 0.388 0.152 0.049* 0.820 0.296 
Menopausal status rs 0.175 -0.065 0.089 0.155 0.299 0.226 0.156 
 p 0.475 0.790 0.772 0.538 0.228 0.400 0.563 
Histological type rs 0.071 0.081 -0.050 -0.054 -0.018 0.120 -0.233 
 p 0.711 0.675 0.826 0.787 0.928 0.558 0.253 
Tumor size rs -0.304 -0.068 0.453* -0.324 -0.279 0.106 0.048 
 p 0.103 0.726 0.034* 0.100 0.159 0.607 0.815 
Tumor grade rs 0.148 0.079 -0.391 0.058 0.474* 0.427* 0.501* 
 p 0.453 0.696 0.088 0.784 0.017* 0.037* 0.013* 
Vascular invasion rs -0.193 0.060 0.136 -0.067 -0.268 -0.142 -0.270 
 p 0.308 0.758 0.547 0.740 0.177 0.489 0.182 
Lymph node metastasis rs -0.168 -0.097 0.117 -0.292 -0.370 -0.313 -0.344 
 p 0.374 0.618 0.605 0.139 0.058 0.120 0.085 
ER rs -0.450 0.443 0.099 0.191 -0.035 0.526 -0.366 
 p 0.080 0.098 0.747 0.513 0.905 0.079 0.241 
HER2 rs 0.026 0.106 0.729** 0.135 -0.115 -0.251 0.381 
 p 0.926 0.719 0.007** 0.660 0.709 0.456 0.247 

rs: Spearman coefficient; *: Statistically significant at p<0.05; **: Statistically significant at p<0.01 
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The correlations between the relative transcription 

expression levels ofSIRT1, SIRT2 and SIRT3 and the 

selected cancer related genes: cMYC, P53, SOD and 

HIF-1α, together with the clinicopathological parameters 

of breast cancer patients 

In regard to the correlation between genes expression 

and the clinicopathological features of breast cancer 

patients (Table 2), Spearman's rank correlation showed 

that there were positive correlations between the relative 

transcription expression level of SIRT3 gene and both 

tumor size (p = 0.034) and HER2 status (p = 0.007), P53 

gene and both patient's ages (p = 0.049) and tumor grade 

(p = 0.017) and both SOD and HIF-1α genes and tumor 

grade (p= 0.037 and p = 0.013, respectively). 

On the other hand, there was no significant 

correlation between the relative transcription expression 

of SIRT1, SIRT2 and cMYC and any of the 

clinicopathological parameters of breast cancer patients. 

Discussion 

Breast cancer, like other cancer types, has thousands 

of genetic aberrations that enable tumor formation and 

progression (Kumar et al., 2009; Pleasance et al., 2010). 

The genetic path to cancer is not related only to mutation 

of oncogenes or tumor suppressor genes, but also to 

intracellular stress adaptation and/or abnormal 

expression due to epigenetics alterations (Sharma et al., 

2010). SIRT1-3, members of Class III histone 

deacetylases of sirtuin family, are related to epigenetic 

regulatory proteins that are capable of deacetylation not 

only chromatin proteins, which are key elements in the 

regulation of gene expression, but also of non-histone 

proteins leading to inappropriate activation or inhibition 

of various cellular signaling pathways (Minucci and 

Pelicci, 2006; Sandoval and Esteller, 2012). However, 

the efficiency and physiological relevance of their 

activity are not known and their role in cancer still 

controversial (Kulić et al., 2014; Teng et al., 2014). In 

our study, we aimed to investigate the mRNA 

expressions of SIRT1-3 genes and a set of cancer related 

genes like cMYC, P53, SOD and HIF-1α in human 

breast cancer. To the best of our knowledge, this is the 

first report that investigates the expression of this set of 

genes together in human breast cancer. 

Genes Expression in Human Breast Cancer Samples 

SIRT1 is detected in many types of cancers, but its 

possible role in cancer has posed a dilemma (Kulić et al., 

2014). Yuan et al. (2013) suggested that SIRT1 has a 

dual role in the development of tumors as a tumor 

suppressor or promoter depending on the type of tumor 

and the spatial distribution of SIRT1 upstream and 

downstream factors. In breast cancer, Wang et al. (2008) 

showed that SIRT1gene expression is reduced and it acts 

as a tumor suppressor gene, while Ashraf et al. (2006) 

showed that there was no association between SIRT1 

gene expression and breast cancer. In our study, we 

found a significant increase in SIRT1 gene expression 

(p = 0.035) in malignant samples and this finding 

supports other reports that SIRT1may act as an 

oncogene and contribute to tumor development in 

breast cancer (Cao et al., 2014; Santolla et al., 2015). 

SIRT2 upregulation or downregulation is detected in 

many cancer types (Hiratsuka et al., 2003; Dan et al., 

2012; Chen et al., 2013; Liu et al., 2013; Ming et al., 

2014). Ashraf et al. (2006) showed that there was no 

significant difference in SIRT2 gene expression 

between breast cancer biopsies and normal breast 

tissue. In our study, there was a significantly low 

SIRT2 gene expression in malignant samples of breast 

cancer patients (p = 0.032) and this support the claim 

that SIRT2 may function as a tumor suppressor by 

maintaining cellular mitotic integrity and its 

dysfunction leads to genetic instability and 

tumorigenesis (Hiratsuka et al., 2003; Kim et al., 2011). 

Additionally, the deregulation of SIRT3 expression 

has been observed in different cancers (Huang et al., 

2014; Liu et al., 2014; Yan et al., 2014). Chen et al. 

(2014) mentioned that SIRT3 can function either as a 

tumor promoter or suppressor depending on tumor type, 

cellular stresses or cell death stimuli. In breast cancer, 

Ashraf et al. (2006) found no significant differences in 

SIRT3 gene expression between malignant and normal 

breast biopsies. However, our finding support other 

results reporting (He et al., 2014) that there was a 

significant high level of SIRT3 gene expression in breast 

cancer patients (p = 0.033). Thus, SIRT3 could function 

as a tumor promoter and plays a prosurvival role in 

cancer (Alhazzazi et al., 2011). 

Our data reported that 33.3% of the tumor samples 

had overexpression of cMYC gene, however, there was 

no significant difference in cMYC gene expression 

between the malignant and non-malignant samples in 

breast cancer (p = 0.235). This is in agreement with 

studies reporting that cMYC overexpression at the 

mRNA level is in 22 to 35% of breast tumors     

(Bieche et al., 1999; Scorilas et al., 1999).  

Moreover, an increasing number of studies indicate 

that a subset of mutated P53 are oncogenic and actively 

participate in neoplastic transformation (Weisz et al., 

2007). Our results have shown that 55.6% of the 

tumor samples had P53 overexpressioneven though 

there was no significant differences in P53expression 

between malignant and non-malignant samples in 

breast cancer (p = 0.690). 

In the meantime, a defect in SOD is experimentally 

proved to be associated with several types of cancer such 

as hepatocellular carcinoma and brain tumor (Elchuri et al., 

2005; Aggarwal et al., 2006). Previous investigators 
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have measured the enzymatic activities of the SODs in 

breast cancers. Huang et al. (2007) suggested that SOD 

can act as a tumor suppressor by decreasing growth and 

survival of breast cancer cells. On the other hand, some 

studies have reported a correlation between high SOD 

level and invasiveness of breast cancer (Tsanou et al., 

2004; Kattan et al., 2008). Er et al. (2004) speculated 

that upregulation of SOD expression induced by oxidative 

stress or local inflammation may contribute a selective 

growth advantage to tumor cells compared to their normal 

counterparts (Khan et al., 2010). In agreement to other 

studies (Tas et al., 2005; Rajneesh et al., 2008), our 

findings have shown that 66.6% of the tumor samples had 

overexpression of SOD gene and that there was a 

significant difference in the expression levels of this gene 

in malignant versus non-malignant samples (p = 0.046).  

Interestingly, all experimental data indicate that HIF-

1 is over-expressed in many human cancers, mainly in 

the earliest detected neoplastic lesions (Talks et al., 

2000; Mandriota et al., 2002). Our data described 

42.3% of the tumor samples with HIF-1α 

overexpression but no significant difference between 

malignant and non-malignant breast cancer samples (p 

= 0.428) have been reported.  

Correlations between Different Genes in Human 

Breast Cancer Samples 

The correlation between the expression levels of 

SIRT1-3 and cancer related genes have been shown to be 

significantly positive between SIRT1 and P53 genes (p = 

0.012). This is in accordance with Wilking and Ahmad 

(2015) who reported that P53 positively regulates the 

transcription of SIRT1 and promotes its activity. In a 

feedback loop, overexpression of SIRT1 would lead to 

its own repression via P53 acetylation and inactivation. 

Kozako et al. (2014) showed that in response to DNA 

damage and oxidative stress, SIRT1 deacetylate and 

inactivate P53 and blocks its nuclear translocation, 

leading to the accumulation of P53 in both the cytosol 

and mitochondria. Thus, we suggest that inhibition of the 

function of P53 protein by SIRT1 may induce the cell to 

produce more P53 to compensate its function and this 

supports the oncogenic consequences of SIRT1 

overexpression. Interestingly, SIRT3 gene expression 

was significantly correlated with the expression of 

cMYC oncogene (P = 0.010) in this study. This finding 

supports the idea that SIRT3 can act as a tumor promoter 

and can have oncogenic consequences in breast cancer. 

Moreover, there was in this study a significant positive 

correlation between the expression levels of cMYC and 

P53 genes (p = 0.000) as previously observed in 

lymphoma, leukemia, non-small cell lung carcinoma 

and hepatocellular carcinoma (Gaidano et al., 1991; 

Morkve et al., 1992; Kawate et al., 1999). c-Myccan 

transactivate the P53 promoter and thus may induce 

expression of P53 (Reisman et al., 1993), mutant P53 

protein is capable of transactivating c-mycpromoter, or loss 

of wild-type P53 alleles is coupled closely with induction of 

gene amplification in some cells (Kawate et al., 1999). 

Thus, inactivation of P53 in tumors with deregulated Myc 

expression may be one mechanism by which cells have 

evaded control of tumorigenesis by cell death. We also 

found a significant positive correlation between the 

expression of SOD and HIF-1α genes (P = 0.012). There 

are multiple sources of reactive oxygen in tumors and 

SOD can act as antioxidant scavenger thus these can 

clearly influence HIF1 activity in a hypoxia-independent 

way (López-Lázaro, 2007; Dewhirst et al., 2008). 

Correlations between Genes Expression and 

Clinicopathological Parameters of Breast Cancer 

Patients 

Concerning the correlation between SIRT1-3, cancer 

related genes and the clinicopathological data of the 

patients, we observed significant positive correlations 

between the relative transcription levels of SIRT3 and 

both tumor size (p = 0.034) and HER2 status (p = 0.007); 

between the relative transcription levels of P53 gene and 

both patient's ages (p = 0.049) and tumor grade (p = 

0.017); and between tumor grade and the relative 

transcription levels of both SOD (p = 0.037) and HIF-1α 

(p = 0.013). Together, these results might mean that 

SIRT3 abnormalities are early events in breast 

tumorigenesis (Desouki et al., 2014) and have a role in 

tumor progression, that P53 deregulation by mutation or 

inhibition is frequently associated with tumor progression 

(Fearon and Vogelstein 1990; Sidransky et al., 1992; 

Kemp et al., 1993) and finally that overexpression of SOD 

and HIF-1α genes can support cancer cell progression 

against oxidative stress and hypoxic conditions. 

Conclusion 

Briefly, SIRT1 gene overexpression can have an 

oncogenic function in human breast cancer and can 

promote P53 gene expression through inactivation of 

P53 protein. Thus, P53 overexpression is stimulating to 

compensate its function and this may be one mechanism 

by which tumor cells evade control of cell death. 

Additionally, SIRT3 gene overexpression can act as an 

oncogene and its role is not only limited to tumor 

promotion but extends to play a role in tumor 

progression as well. On the other hand, SIRT2 gene 

expression is downregulated and can act as a tumor 

suppressor gene in human breast cancer. Our data 

reported that cMyc gene expression stimulates both 

SIRT3 and P53 overexpression and that SOD 

overexpression supports tumor formation and has a role 

in human breast cancer. In the meantime, SOD 

overexpression can stimulate HIF-1α expression through 
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H2O2 production and this can influence HIF-1 activity in 

a hypoxia independent way. To summarize, SIRT1-3 can 

act not only as epigenetic markers but can have a direct 

important role in human breast cancer through their 

interaction with other genes.  
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