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Abstract: This study introduces a new two-parameter univariate distribution, a
modified version of the Weibull distribution, for a non-negative realm.
Originating from a framework introduced by Azzalini and Capitanio, the
distribution exhibits a monotonically increasing hazard rate. It offers closed-form
expressions for key statistical properties, including reliability functions,
moments, moment-generating functions, and order statistics. An expression for
random number generation is formulated. The maximum likelihood is employed
for parameter inference. A simulation study shows the reliability of these
estimators under various conditions. To assess the model's practical applicability,
it is fitted to two real-world datasets: waiting times and tensile strength of carbon
fiber. Results from quantile-quantile plots and validity tools tests show that the
proposed model outperforms compared to selected alternatives, which shows its
superior flexibility and accuracy to fit real-world problems.

Keywords: Carbon Fiber, Hazard Function, Maximum Likelihood, Skew,
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Introduction
Over the past few years, researchers have observed a

notable increase in the development of univariate
probability distributions through generalization,
modification, or extension of existing models. These
efforts primarily aim to introduce additional parameters
to improve the flexibility of probability distributions,
particularly in accurately modeling real-world data
characterized by skewness, varying hazard rates, and
other complex behaviors. Among such distributions, the
Weibull model has enjoyed widespread application in
fields like reliability engineering, survival analysis, and
environmental studies because of its adaptability to
increasing or decreasing hazard rates.

However, traditional Weibull distributions and their
many modifications—such as the generalized Weibull
and extended Weibull families—often face limitations.
These include issues like over-parameterization,
mathematical intractability, or limited ability to model
diverse data structures with precision. Existing Weibull
extensions frequently cannot capture the full spectrum of
real-world hazard behaviors or lack the flexibility needed
for datasets exhibiting strong skewness or tail behavior.
This creates a clear gap for a simpler, more robust
alternative.

The present study introduces a novel two-parameter
distribution termed the Modified Version of Weibull

(MVW) distribution, derived from a general
transformation approach proposed by Azzalini and
Capitanio (2013). The MVW distribution is constructed
to preserve the mathematical simplicity of the original
Weibull model while enhancing its modeling capacity.
This paper systematically explores the statistical and
mathematical properties of the MVW distribution,
including moments and order statistics. Additionally, an
expression for random number generation and employing
maximum likelihood for parameter inference. To validate
the model's performance and practical utility, a
simulation study is performed and applied to fit the two
real-world datasets: Customer waiting times in a bank,
and tensile strength measurements of carbon fiber. The
results, supported by quantile-quantile (Q-Q) plots and
fitted density curves, highlighted that the MVW model
provides a better capture than a selective alternative. This
underscores the model's potential for broader application
to model the non-negative real-life data.

Motivating Examples

The distributional patterns of data in real-world
problems often deviate from the normal distribution.
Researchers continually seek modified probability
models capable of fitting such data accurately. Our
proposed model is one such modification, designed to
capture real-world data in the positive realm and to
accommodate deviations from normality. To illustrate

Journal of Mathematics and Statistics



Arjun Kumar Gaire et al. / Journal of Mathematics and Statistics 2025, Volume 21: 17.27
DOI: 10.3844/jmssp.2025.17.27

18

(1)

(2)

(3)

this, we selected two real-world datasets. One dataset
comprises 100 observations of waiting time (in minutes)
for customers at a bank before receiving service (Ghitany
et al., 2008). Another data set comprises ʺ69 data points
on the tensile strength of carbon fibers tested under
tension at gauge lengths of 20 mm, measured in GPa
units" (Bader and Priest, 1982). Both sets exhibit
significant deviations from the normal distribution, as
evidenced by their descriptive summaries and plots.
Further, the histograms and box plots of both data sets
are presented in Figures 1 and 2. The descriptive
statistics presented in Table 1 and the graphical
representations demonstrate deviations from normality,
thereby supporting the selection of the MVW distribution
for analysis.

Fig. 1: Histogram and box plot of tensile strength of carbon
fiber data

Fig. 2: Histogram and box plot of waiting time for customer
data

Table 1: Fundamental statistical measures of both data sets

Data N Max. Min. Mean SD Sk Ku
Waiting Time 100 .080 38.50 9.877 7.237 1.495 2.735
Tensile Strength 69 1.31 3.59 2.4513 0.4951 -0.029 0.028

Materials and Methods
In this part, we have incorporated the information

about materials and methods used in this study. The
general skewing method is used to formulate the new
probability distribution. The R programming software is
used to prepare the graphical illustration of the unique
characteristics. For assessing the goodness of fit, we
employed likelihood-based criteria, including ʺNegative
Log-Likelihood” (NLL), ʺAkaike Information Criterion"
(AIC), and ʺBayesian Information Criterion” (BIC). In
addition, goodness of fit was evaluated using the tests
based on the empirical distribution functions, such as the
ʺKolmogorov-Smirnov” (K-S) test, ʺAnderson-Darling"
(A-D) test, and ʺCramer-Von Mises” (C-M) criterion. For
Parameter estimation is conducted using the ʺstandard

likelihood method” available tool nlmixed procedure in
SAS softwar.

Preliminaries

In this section, background information on the two-
parameter Weibull, skew-normal, and the general
formula of skew distributions has been presented.

Weibull Distribution

Two-parameter Weibull distribution for a random
variable X is defined through its probability density
function (PDF) and cumulative distribution function
(CDF) in Equations (1) and (2), respectively.

, for x > 0

Here,  represents the shape of the distribution,
while  denotes the scale. This distribution was used
by researchers across disciplines (Johnson et al., 1994;
Murthy et al., 2004; Lai et al., 2006). Recently, the
Weibull distribution was also used to analyze the data of
age at menopause of Nepalese women (Gaire et al.,
2023b).

Numerous generalizations of distributions have
emerged within the realm of univariate probability
distributions. Researchers have extended, modified, and
generalized the Weibull distribution by incorporating
scale, location, or threshold parameters. Some notable
examples of modified distributions including, but not
restricted to, the complementary Weibull
(Drapella,1993); generalized Weibull (Mudholkar and
Kollia, 1994); extended Weibull (Xie et al., 2002);
Marshall–Olkin Weibull (Ghitany et al., 2005); Beta
exponential Weibull (Nadarajah and Kotz, 2006);
extended flexible Weibull (Bebbington et al., 2007); Beta
Weibull (Lee et al., 2007); generalized modified Weibull
(Carrasco et al., 2008); modified Weibull (Sarhan and
Zaindin, 2009); Beta modified Weibull (Silva et al.,
2010; Nadarajah et al., 2011); Kumaraswamy Weibull
(Cordeiro et al., 2010); Transmuted Weibull (Aryal and
Tsokos, 2011); Gamma-exponentiated Weibull (Pinho et
al., 2012); transmuted modified Weibull (Khan et al.,
2018); Weibull-G family (Bourguignon et al., 2021), and
three-parameter modification of Weibull (Tashkandy and
Emam, 2023). In alignment with these advancements, the
MVW distribution has been introduced.

The General Skew Distribution

Azzalini (1985, 2005) initially introduced the method
of skewing the normal distribution, where an additional
asymmetry parameter  was incorporated to extend
the ʺstandard normal distribution". The PDF of the
resulting ʺskew-normal" distribution was defined as:

, for 
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where φ(z) and Φ(λz) in Equation (3) represent the
ʺStandard normal” PDF and CDF, respectively.

After identifying the utility of this approach, Azzalini
and Capitanio (2013) generalized the formulation by
replacing the standard normal components with an
arbitrary base distribution. This led to a more flexible
family of distributions, where the PDF is expressed as:

, ,

In Equation (4),  and  are the functions to
be chosen as the baseline distribution. Such formulation
retains the skewing mechanism of Equation (3) while
broadening its applicability to non-normal settings.
Gupta et al. (2002) introduced skew-uniform, skew-t,
skew-Cauchy, skew-Laplace, and skew-logistic models
utilizing this concept. Generalized skew-Cauchy model
induced by Huang and Chen (2007). Subsequently,
Nadarajah (2009) conducted a detailed study on the
skew-logistic distribution. In all aforementioned cases,
symmetrical base distributions were selected. The skew
log-logistic (SLLog) distribution, introduced by Gaire et
al. (2019) and further investigated by Gaire and Gurung
(2024b), considered the log-logistic distribution as a base
distribution. This choice diverges from symmetrical
distributions, as advocated by (Shaw and Buckley, 2009).
Recently, the SLLog distribution was applied to model
data of age at first marriage of women (Gaire et al.,
2024a), age-specific fertility rate, and age at menarche
(Gaire et al., 2024b). These applications underscored the
significance of such modifications. In our context, we
opt for a Weibull distribution as the base to formulate the
MVW distribution.

A Modified Version of the Weibull Distribution

In this section, we introduced the MVW distribution
and presented different probability functions along with
basic properties of this distribution.

Fig. 3: Graphical illustration of the PDF of the MVW
distribution

Probability Functions of the MVW Distribution

Substituting the value of g(x) and G(x) of the Weibull
distribution, in Equation (4) yields the PDF of the MVW
distribution expressed in Equation (5) as:

; x > 0

Figure 3 illustrates different curves of the PDF of the
MVW distribution for selected values of parameters. The
cumulative distribution function of the MVW
distribution is defined and given in Equation (6) as:

Figure 4 illustrates the CDF of the MVW distribution
for various parameter values, demonstrating a
monotonically increasing with the random variable .

Fig. 4: Graph of the CDF of the MVW distribution

Moments

For the MVW distribution, the kth moment is defined
in Equation (7) as:

 , for 

In particular, the first two moments of the MVW
distributions are expressed as:

 and 

The values of the moment about the origin for
different values of parameters can easily be obtained and
used to compute the value of skewness of the
distribution. Similarly, the kth incomplete moment of the
MVW distribution is given in Equation (8) as follows:

Where  is an ʺupper
incomplete gamma function".

Moment Generating and Characteristics Function

Using the power series of the exponential function
, the ʺmoment generating function"  is obtained

in the form:

where  is the  moment expressed in Equation
(7).
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The function , known as the ʺcharacteristic
function of a random variable X", is defined as the
expected value of . It can be expressed as:

Where  is the imaginary unit. Using the power series
expansion of the cosine and sine functions as:

 and

The characteristic function , corresponding to
the MVW distribution, can be expressed through a series
expansion. Utilizing the previous simplification, it takes
the following form:

Where  and are the moments obtained from
Equation (7).

Quantile Function and Random Number Generation

Assume that the random variable  follows the
MVW distribution whose CDF is in Equation (6) and

, where  is a uniformly distributed variable.
Inversion of the CDF yields the quantile function for the
MVW distribution, which is expressed as follows:

This derivation assumes that (0 < p < 1) to ensure that
all terms are well-defined and that the inverse exists. It
also assumes that the MVW distribution parameters 
and  are strictly positive, which is necessary for the
monotonicity of the CDF and valid interpretation of the
logarithm and square root operations involved. Hence,
Equation (9) provides a valid method for generating
pseudo-random variables from the MVW distribution,
provided these regularity conditions are met. The
generated sets of random numbers can describe the
future scenario of a continuous random variable of any
social event with given  and . Such data sets generated
by the method of inversion can help to anticipate future
situations. From Equation (9), quartiles corresponding to
one-quarter, one-half, and three-quarters of the MVW
distribution are also obtained by putting 
and , respectively.

Reliability Analysis of the MVW Distribution

The probability that an item continues to function
beyond time x is captured by the reliability function
R(x), which is formulated in Equation (10), and visual
illustrations are presented in Figure 5.

Fig. 5: Graphical illustration of the reliability function of the
MVW distribution

Similarly, the hazard rate function represents the
conditional likelihood of failure, assuming the system
has functioned without failure until time x.

This function for the MVW distribution is formulated
in Equation (11).

Now, the MVW distribution’s cumulative hazard rate
is formulated and presented in Equation (12) as:

Fig. 6: Graphical illustration of the hazard rate function of the
MVW distribution

Fig. 7: Graph of the cumulative hazard rate function

Figures 6 and 7 illustrate a visual illustration of both
the hazard and cumulative function of the proposed
MVW distribution, choosing suitable parameter values.
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(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

It is found that the hazard rate function increases with
time.

Order Statistics

A sample X1, X2, ... , Xn, consisting of n random
variables, is taken from a two-parameter MVW
distribution defined by CDF F(x) and the PDF f(x) in
Equations (6) and (5). The corresponding order statistics
of these samples are X1:n ≤ X2:n ≤ ...Xn:n. Then, the PDF
of rth order statistics for MVW distribution is formulated
in Equation (13) as:

The expression of the PDF of the sample minimum
X1 of order statistics is defined as follows in Equation
(14). 

Similarly, the expression of the density of sample
maximum Xn is defined as follows in Equation (15).

Finally, the PDF of the joint density of the sample
maximum and sample minimum is defined as follows in
Equation (16).

This holds for  and both variables are in the
support of the MVW distribution.

Mean Deviation

Consider a random variable X follows the MVW
distribution with average (µ) and median (M). The
expression of mean deviation taken from the mean and
median is formulated as:

Therefore, the equation of mean deviation for MVW
distribution taken respectively from mean and median
are:

Where 

. And the value of m1 (.) can
be obtained from Equation (8).

Estimation and Inferences

The maximum likelihood technique is applied to
formulate the expression for estimating the associated
constants of the MVW distribution. Suppose X1, X2, ...,
Xn consists of n samples following MVW distribution.
To formulate the parameter, the ʺlikelihood function" 
is defined in Equation (17) as:

The log-likelihood function (lnL) of the MVW
distribution is derived in Equation (18) as:

The following equations are formulated to estimate
the parameters of the MVW distribution in Equations
(19) and (20) respectively as :

By solving these nonlinear systems of equations and
setting the score vector to zero, we obtain the maximum
likelihood estimators (MLEs) for the unknown values of
parameters  of the MVW distribution. Since
the maximum likelihood equations derived for the MVW
distribution are nonlinear and do not admit closed-form
solutions, we can use numerical optimization techniques
to estimate the parameters. Specifically, the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm can be
implemented using the optim function available in
different software (R language, Python, or SAS). Initial
values for the parameters can be selected based on the
method of moments, and convergence was assessed
using a relative tolerance of limits. The log-likelihood
function can be maximized iteratively, ensuring that the
parameter estimates remain within the valid parameter
space throughout the optimization process. For statistical
inference and interval estimation, we require the
observed information matrix as follows:

Every components are the ʺsecond-order derivative of
the log-likelihood function" concerning parameters in the
subscripts of the ʺInformation Matrix" Jn(θ). By using
this information matrix Jn(θ), we can obtain the Fisher
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Information matrix, which can be used for the inference
of parameters.

Numerical Application

This section incorporates the simulation study of the
MVW and compares the result with Weibull and Gamma
distributions. Further, the MVW model is applied to real
data sets to test the performance analysis of the proposed
model.

A Simulation Study

To compare the performance of the Maximum
likelihood estimate method presented previously, a
simulation study was performed. We generate four sets
of samples of size n= fifty, hundred, two hundred and
five hundred each random sample for three sets of
parameters as  and ;  and 

 and  and  by using the random
number generator of the MVW distribution. The
simulation study is repeated  times for each
pair of parameter sets.
Table 2: ML Estimates of parameters with MSEs, and SDs for MVW

Sample Size (n) Actual Values Estimated MSEs SDs

50 1 3 1.0322 3.0263 0.0137 0.1282 0.1099 0.3548
2 2 2.0483 1.9976 0.0538 0.0147 0.2232 0.1196
3 1 3.0838 1.0002 0.1229 0.0016 0.3447 0.0405

100 1 3 1.0117 3.0114 0.0061 0.0666 0.0792 0.2638
2 2 2.0221 1.9989 0.0240 0.0073 0.1596 0.0861
3 1 3.0500 1.0019 0.0599 0.0007 0.2294 0.0288

200 1 3 1.0079 3.0089 0.0028 0.0305 0.0553 0.1820
2 2 2.0152 2.0012 0.0122 0.0036 0.1069 0.0620
3 1 3.0133 1.0014 0.0228 0.0004 0.1631 0.0210

500 1 3 1.0036 3.0064 0.0012 0.0137 0.0341 0.1168
2 2 2 2.0096 2.0012 0.0046 0.0015 0.0676 0.0384

3 1 3.0151 1.0004 0.0100 0.0002 0.1006 0.0129

Table 3: ML Estimates, MSEs, SDs for two-parameter Gamma Distribution

Sample Size (n) Actual Values Estimated MSEs SDs

50 1 3 1.0591 2.9431 0.0434 0.4697 0.2052 0.6667
2 2 2 2.1123 1.9601 0.1749 0.1570 0.4306 0.4387
3 3 1 3.1746 0.9843 0.4532 0.0455 0.6372 0.2135
100 1 3 1.0244 2.9895 0.0179 0.2571 0.1292 0.4786
2 2 2 2.0595 1.9783 0.0837 0.0882 0.2907 0.3029
3 3 1 3.0832 0.9902 0.1847 0.0314 0.4382 0.1458
200 1 3 1.0120 2.9910 0.0088 0.1190 0.0900 0.3282
2 2 2 2.0240 1.9922 0.0373 0.0443 0.1922 0.2127
3 3 1 3.0730 0.9857 0.0997 0.0111 0.3004 0.1018
500 1 3 1.0097 3.0185 0.0026 0.0470 0.0556 0.2141
2 2 2 2.0120 1.9917 0.0145 0.0174 0.1159 0.1295
3 3 1 3.0184 0.9977 0.0351 0.0044 0.1887 0.0663

The sets of parameters assigned, the estimated value,
Mean Square of Errors (MSEs), and Standard Deviations
(SDs) have been presented in Table 2. As the sample size
grows, a consistent decrease in the MSEs and SDs for
the estimates is observed across all cases. For

comparison of performing the MVW distribution, a
similar simulation analysis is performed for the Gamma
and Weibull distributions. The simulation results of the
Gamma distribution are presented in Table 3. The results
for the Weibull distribution are presented in Table 4. The
simulation study highlighted the superior performance of
the MVW distribution compared to both the Gamma and
Weibull distributions.
Table 4: ML Estimates, MSEs, SDs for two-parameter Weibull Distribution

Sample Size (n) Actual Values Estimated MSEs SDs

50 1 3 1.0330 2.9991 0.0158 0.1867 0.1194 0.4327
2 2 2.0514 1.9999 0.0581 0.0209 0.2342 0.1429
3 1 3.0961 0.9967 0.1331 0.0024 0.3463 0.0502

100 1 3 1.0198 3.0254 0.0067 0.1041 0.0836 0.3156
2 2 2.0197 1.9988 0.0275 0.0117 0.1636 0.1044
3 1 3.0357 0.9992 0.0619 0.0013 0.2331 0.0347

200 1 3 1.0055 3.0036 0.0032 0.0496 0.0554 0.2159
2 2 2.0095 1.9945 0.0155 0.0051 0.1139 0.0763
3 1 3.0167 0.9990 0.0273 0.0006 0.1646 0.0245

500 1 3 1.0015 2.9962 0.0019 0.0200 0.0350 0.1414
2 2 2.004 1.999 0.0047 0.0024 0.0717 0.0465
3 1 3.0125 0.9995 0.0118 0.0002 0.1031 0.0159

Steps of Random Number Generation, Parameter
Estimation, and Simulation Process for MVW
Distribution

In this section, the step-by-step summary of the
simulation study procedure for estimating parameters of
the MVW distribution using the Maximum Likelihood
Estimation (MLE) method, random number generation,
and the simulation process is discussed. The simulation
aims to assess how well the MLE procedure recovers
true parameter values under repeated sampling. The
fundamental steps are presented as follows.

a. For Random Number Generation

Phase 1: Understand the Inverse Transform
Method
Phase 2: Derive the Inversion formula
Phase 3: Generate and validate random
numbers

b. For Maximum Likelihood Estimation

Phase 1: Initialization and Model Setup
Phase 2: Differentiation and Equation
Formation
Phase 3: Numerical Optimization and Output

c. For the Simulation Study

Phase 1: Preparation and Setup
Phase 2: Data Generation and Parameter
Estimation
Phase 3: Analyze Simulation Results

The algorithms for random number generation, MLE,
the simulation study, and the pseudo code (R code) for
each process are presented in the Appendix.

I : α = 1 β = 3 II : α = 2 β =
2, III : α = 3 β = 1

N = 1000

α β α̂ ​
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β̂ α̂ ​
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Numerical Application to Waiting Time and Tensile
Strength Data

The adequacy and validity of the proposed model
were assessed by using two real datasets that have been
employed for fitting the distributional pattern. The initial
data sets consist of 100 customers' queue time (minutes)
at the bank for the service (Ghitany et al., 2008). This
data set was also utilized by Gaire (2023) and Gaire and
Gurung (2024). The second data set has 69 data points on
the ʺtensile strength of carbon fibers tested under tension
at gauge lengths of 20 mm, measured in GPa units"
(Bader and Priest, 1982).

For assessing the goodness of fit, we employed
likelihood-based criteria, including Negative Log-
Likelihood (NLL), , and 

. In addition, goodness of fit was
evaluated using the tests based on the empirical
distribution functions, such as the K-S test, A-D test, and
C-M criterion. Here,  represents the total number of
model parameters, n is the sample size, and , signifies
the maximum likelihood values corresponding to the
distribution. Parameter estimation was conducted using
the ʺstandard likelihood method" available tools

 procedure in SAS software.

Values of  and  were selected using MLE, guided
by empirical characteristics of the data. Initial values
were derived from exploratory analysis to ensure
convergence. Hyper-parameter tuning involved the use
of the BFGS optimization tools adaptive step sizes and
convergence tolerance set at 10−6, ensuring stable and
accurate parameter estimation. Simulated data were used
to assess the sensitivity and robustness of the parameter
estimates under different initialization scenarios.

Results and Discussion
The fitted results of both data sets for the MVW

distribution were compared with two-parameters
Weibull, two-parameter Gamma, new exponential
Weibull (EWD) (Tashkandy and Emam, 2023), new
cosine Weibull (NC-Weibull) (Wu et al., 2003), new
flexible Weibull (NF-Weibull) (Bebbington et al., 2007),
SLLog (Gaire et al., 2019; Gaire and Gurung, 2024). All
the distributions chosen for comparison are in the
positive realm. The distribution fitting results for both
datasets and the associated test statistics are presented in
Tables 5 and 6. The best comparative results of the
proposed model MVW are presented in boldfaces
appeared in both tables.

Table 5: Parameter estimation and different test statistics of waiting time data

PDF Parameter Estimates (standard error) NLL AIC BIC K-S (p- value) A-D (p-value) C-M (p-value)
MVW α = 1.0345(0.0766)

β = 6.7227(0.5614)
317.155 638.3 643.5 0.038

(0.998)
0.151
(0.999)

0.022
(0.995)

Gamma α = 2.0088(0.2639)
θ = 4.9168(0.7332)

317.300 638.6 643.8 0.043
(0.994)

0.186
(0.994)

0.029
(0.980)

Weibull α = 1.4585(0.1098)
β = 10.955(0.7942)

318.731 641.5 646.7 0.058
(0.892)

0.406
(0.843)

0.061
(0.809)

EWD λ = 0.0032(0.0018)
θ = 1.6221(0.1625)
ψ = 7.3945(4.4730)

317.903 641.8 649.6 0.045
(0.988)

0.221
(0.984)

0.034
(0.963)

NC-Weibull θ = 13.924(0.9601)
τ = 1.2103(0.0963)

319.649 643.3 648.5 0.060
(0.869)

0.503
(0.743)

0.069
(0.756)

NF-Weibull α = 0.0535(0.0047)
β = 5.9415(0.6622)

321.268 646.5 651.7 0.085
(0.472)

0.771
(0.502)

0.112
(0.532)

SLLog α = 1.7878(0.1432)
β = 4.5755(0.3855)

322.805 649.6 654.8 0.063
(0.825)

0.733
(0.531)

0.073
(0.734)

Table 6: Parameter estimation and different test statistics for tensile strength data

PDF Parameter Estimates (standard error) NLL AIC BIC K-S (p- value) A-D (p-value) C-M (p-value)
MVW α = 3.8880(0.3488)

β = 2.3286(0.0623)
48.860 101.7 106.2 0.040

(1.000)
0.144
(0.999)

0.015
(1.000)

NF-Weibull α = 1.0197(0.0884)
β = 7.1683(0.7204)

49.382 102.8 107.2 0.059
(0.972)

0.273
(0.957)

0.035
(0.957)

Weibull α = 5.5049(0.5005)
β = 2.6509(0.0612)

49.596 103.2 107.7 0.056
(0.981)

0.274
(0.956)

0.034
(0.960)

NC-Weibull θ = 2.8246(0.0617)
τ = 4.5845(0.4394)

50.009 104.0 108.5 0.054
(0.988)

0.308
(0.932)

0.036
(0.953)

Gamma α = 23.382(3.9618)
θ = 0.1048(0.0180)

50.037 104.1 108.5 0.059
(0.970)

0.338
(0.907)

0.046
(0.901)

EWD λ = 0.0004(0.0004)
θ = 6.1026(0.7721)
ψ =7.6247(6.6542)

49.102 104.2 110.9 0.039
(1.000)

0.142
(0.999)

0.016
(0.999)

SLLog α = 6.5694(0.6364)
β = 2.1017(0.0583)

54.048 112.1 116.6 0.074
(0.844)

0.765
(0.507)

0.082
(0.680)

AIC = 2k − 2ln (L̂) BIC =

ln n k −( ) 2ln (L̂)

k

(L̂)

nlmixed

α β
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For both datasets, among the comparative models, the
MVW has the lowest NLL, which indicates it captures
the given data sets better than the others in terms of log
likelihood. The MVW model also exhibits the lowest
AIC and lowest BIC for both data sets. These criteria
penalize model complexity, so a lower value means a
better balance of fit and simplicity. This suggests that
MVW is both accurate and parsimonious in describing
the datasets. Figure 8 depicts the histogram of observed
frequencies and curves of fitted frequency distribution by
different models to the waiting times of customers across
various models, while Figure 9 illustrates the histogram
of observed frequencies and curves of fitted frequency
distributions by different models to the tensile strength
data. These graphs present the visualizations that
underscore the superior fit and enhanced flexibility of the
proposed MVW model compared to alternative models.

Fig. 8: Observed and fitted values of the waiting time data

Fig. 9: Empirical and fitted values of the tensile strength data

Similarly, the MVW model shows a strong goodness
of fit performance. The K-S, A-D, as well as the C-M
values with p values, are the highest for this model for
both datasets, showing superior performance to
comparable models. The MVW has only two parameters
(  and ), like many competing models (e.g., Weibull,
NF-Weibull), but still performs better. Further, Standard
errors are relatively small, indicating stable parameter
estimates. This model shows robustness across all

measures and consistently ranks at or near the top across
all evaluation metrics. The proposed MVW distribution
balances model simplicity with excellent fit, indicating
that the model effectively represents the underlying data
pattern. The low AIC/BIC confirms MVW's efficiency
and generalizability, while acceptable goodness-of-fit
values show it's not just tailored to this specific dataset.

Fig. 10: Q-Q plot of waiting time data

Fig. 11: Q-Q plot of tensile strength data

After utilizing the parameters result obtained by
maximizing the NLL value for MVW distribution and
other comparative models, we generated Q-Q plot for
both datasets: waiting time (Figure 10) and strength data
(Figure 11), the Q-Q plots, revealing the alignment
between observed and fitted values for waiting time
value and tensile strength data, respectively. The
graphical illustration demonstrates the closest alignment
with the 45-degree reference line and remains well
within the confidence bands, indicating a superior fit to
both datasets compared to alternative distributions. All

α, β

http://192.168.1.15/data/13218/fig8.jpg
http://192.168.1.15/data/13218/fig8.jpg
http://192.168.1.15/data/13218/fig9.jpg
http://192.168.1.15/data/13218/fig9.jpg
http://192.168.1.15/data/13218/fig10.png
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the test statistics, both sets of figures, along with
corresponding analysis results, affirm the MVW
distributions' superior fit to the datasets.

Conclusion
Formulation of a newly proposed two-parameter

probability model termed as a modified version of
Weibull has been presented. The statistical features of the
distribution have been examined in detail, and the rule of
estimation utilizing MLE has been formulated.

A simulation was performed for the flexibility test of
the MVW distribution, and various goodness-of-fit
criteria were employed to evaluate its suitability. These
criteria included NLL, AIC and BIC criterions. Empirical
distribution criteria, K-S, A-D and C-M criteria. The
model's validity was tested using real datasets on
customer waiting time and the tensile strength of carbon
fibers. Results from test statistics, Q-Q plots, and fitted
data graphs affirm the flexibility of the proposed
distribution than the Weibull distribution and other two-
parameter models. The CDF of the models used for
comparison are expressed in Table 7.
Table 7: Distribution models and their CDF used of comparison

Distributions CDF
MVW

Gamma

Weibull

EWD

NC-Weibull

NF-Weibull

SLLog

Further, suggests the applicability of the MVW
distribution to fit distributional patterns in diverse world
problems. Future research avenues include applying this
model to other data sets and formulating regression
models based on the MVW distribution as well as
different methods such as the Bayesian technique were
suggested to test the performance on real-world
problems.
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Appendix

Algorithm of Random Number Generation

Input: Parameters 

Generate 

Compute 

Return:

R Code of Random Number Generation

rmvw <− function (n , alpha , beta ) {
p <− runif ( n )
# Generate n uniform (0, 1) random numbers
x <− \beta * (− log (1 − \sqrt {p }))ˆ{1 / \ alpha }
return ( x )

}

Algorithm of ML Estimation for MVW Distribution

Input: Sample data x = (x1,x2,...,xn)
Define log-likelihood function l(α,β) for MVW
Use numerical optimizer (e.g., BFGS) to maximize l(α,β)

Return: Estimated parameters 

R Code for ML Estimation

loglik_mvw <− function (params , data ) {
alpha <− params [1]
beta <− params [2]
if (alpha <= 0 | | beta <= 0) return (− Inf )
# Constraints
x <− data
n <− length ( x )
loglik <− n * log (2 * alpha \ beta ) + ( alpha − 1) *
sum( log ( x / beta ) ) + sum( exp(−x / beta ) − exp(−2x
/ beta ) )
return (− loglik )
# Negative log−Likelihood for minimization

}
# Exaple Usage:
# Optim (par = c(1, 1), fn =Loglik_mvw, data = your_data)

Algorithm of Simulation Study for MLE

Input: True parameters (α0,β0), sample size n, number of
simulations M
for i = 1 to M do

Generate sample of size n from MVW(α0, β0)

Estimated parameters ,  using MLE

Store Estimates
end for

Compute average, bias, and MSE for 

Return: Simulation results

R Code for Simulation Study

Simulate_mvw <- function (nsim = 1000, n = 100, alpha =
1.5, beta = 2.0) {

results <- matrix (NA, nrow = nsim, ncol = 2)
for (I in 1:nsim) {

data <- rmvw(n, alpha, beta)
est <- tryCatch (

optim(par = c(1, 1), fn = loglik_mvw, data =
data),
error = function(e) list(par = c(NA, NA))

)
results[i, ] <- est$par

}
colnames(results) <- c("alpha_hat", "beta_hat")
return(results)

}
# Simulate and analyze:
# res <- simulate_mvw()
# summary(res)

α > 0,β > 0

p ∼ Uniform 0, 1( )
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î)

,
​(α̂ β̂)

https://doi.org/10.1016/s0951-8320(02)00022-4

