
 

 

© 2025 Uchechukwu Michael Opara, Festus Irimisose Arunaye, Henrietta Ify Ojarikre and Philip Olugbenga Mate. This 

open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 

Journal of Mathematics and Statistics 

 

 

 

Original Research Paper 

On the Variational Symmetries of P.D.E's Incorporating 

Boundary Value Constraints 
 

1,2Uchechukwu Michael Opara, 2Festus Irimisose Arunaye, 2Henrietta Ify Ojarikre and  
3Philip Olugbenga Mate 

 
1Department of Pure and Applied Physics, Veritas University, Abuja, Nigeria 
2Department of Mathematics, Delta State University (DELSU), Abraka, Delta State, Nigeria 
3Department of Mathematics, Veritas University, Abuja, Nigeria 

 

Article history 
Received: 02-06-2024 

Revised: 02-08-2024 
Accepted: 05-08-2024 
 
Corresponding Author: 
Uchechukwu Michael Opara 
Department of Pure and 
Applied Physics, Veritas 
University, Abuja, Nigeria 
Email: ucmiop@yahoo.com 

Abstract: A crucial interface between Optimization theory, Trace theory, 

and Lie Symmetry theory is brought to the fore in this paper, as an 

enhancement of standard known results established in Partial Differential 

Equation (P.D.E) analysis. In particular, the incorporation of compatible 

Boundary Value constraints in the re-assessment of admitted variational 
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relevant crucial details addressed appreciably. 

 

Keywords: Boundary Value Problems, Calculus of Variations, Classical 

Lagrangians, Symmetry Invariant Solutions, Laplace's Equation, Poisson 

Equation 

 

Introduction 

The utility of admitted variational symmetries in the 
simplification of Differential Equations should be 

reckoned with promptly: they are instrumental in 

reducing the order of such equations by two (Springer 

Nature, 1990). Reckoning also that a wide variety of 

P.D.E’s with applications to industry and the physical 

world are formulated from the calculus of variations, the 

importance of considerations stemming from this 

vantage point becomes more evident and compelling. 

For a sufficiently regular functional 𝐸 =

∫ 𝐹(𝑥, 𝑣, ∇𝑣)𝑑𝜇
Ω

 where by Ω is a pseudo-Riemannian 

submanifold of ℝ𝑛 , 𝑥 = (𝑥𝑖)𝑖=1
𝑛  represents the 

coordinates on Ω and 𝑣(𝑥) is a varying functional acting 

on Ω . Perturbation of 𝑥  and 𝑣  via the calculus of 

variations enables us to formulate the multivariate Euler-

Lagrange equations: A P.D.E or system of P.D.E's that 

permits us to compute those functions �̅� which fit in with 

optimality conditions of 𝐸  (Opara, 2020). These 

equations are given by: 

 

𝐹𝑣(𝑥, �̅�, ∇�̅�) =∑
𝜕

𝜕𝑥𝑖

𝑛

𝑖=1

𝐹𝑣𝑥𝑖  (𝑥, �̅�, ∇�̅�) 

An alternative equivalent expression for the Euler-

Lagrange equations is provided by Jost and Li-Jost 

(1998). There are also optimization theorems that 

guarantee the existence and/or uniqueness of the 

optimizing function �̅�, but a closer look into cases where 

Ω  has a non-trivial topological boundary is hereby 

demanded. This is because, starting with the Euler-

Lagrange equations for the converse and formulating the 

functional 𝐸  via the Lax-Milgram theorem and Green's 

theorems, we typically do not obtain the identical 

functional 𝐸 in the former case: there is usually a trace 

boundary term realized in addition after inputting the 

Euler-Lagrange equations in the Lax-Milgram 

formulation procedure. We shall address this observation 

in considerable detail with the aid of some classical tools 

from Lie Group theory and Sobolev Space theory.  

Analysis of Variational Symmetries Compatible with 

Boundary Value Constraints in Well-Posed P.D.E 

A pair of simple and common elliptic Boundary 

Value Problems (B.V.P) shall be used for this study, 

exploiting hindsight of knowledge of classical 

fundamental solutions in building current key results and 

propositions. For the first B.V.P, we take Laplace's 

equation on ℝ2 with the following specified constraints:  
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(𝑃1)

{
 
 

 
 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0  𝑖𝑛 𝐵(0, 2)

𝑢(𝑥, 𝑦)|𝜕𝐵(0,2) = 𝑙𝑛8

∇𝑢(𝑥, 𝑦)|𝜕𝐵(0,2) =
3(𝑥, 𝑦)

4
 

 

 
The solution to (𝑃1) is 𝑢(𝑥, 𝑦) = 3

2
𝑙𝑛(𝑥2 + 𝑦2), which 

is compatible with the infinitesimal symmetry 𝑦
𝜕

𝜕𝑥
−

𝑥
𝜕

𝜕𝑦
: a generator of the rotation group on the Riemannian 

manifold 𝐵(0,2) ⊂ ℝ2 . This infinitesimal generator is 
also a variational symmetry of Laplace's equation in the 

usual sense, without the imposition of boundary 

constraints.  

For the second B.V.P, we take Poisson's equation, as 

given below: 
 

(𝑃2){

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 𝑓  𝑖𝑛 Ω

𝑢(𝑥, 𝑦)|𝜕Ω = 0 

 

 
The set Ω above is a bounded open subset of ℝ2 with 

a 𝐶1 topological boundary, and 𝑓 is a fixed function in the 

Hilbert Space 𝐿2(Ω) . The solution to (𝑃2)  may be 

compatible with some infinitesimal symmetry of 

Laplace's equation: ξ
𝜕

𝜕𝑥
 + 

𝜕

𝜕𝑦
+ 𝜂

𝜕

𝜕𝑢
, given that 𝑓 satisfies 

the first-order linear P.D.E : 
 

ξ
𝜕𝑓

𝜕𝑥
 +  𝜏

𝜕𝑓

𝜕𝑦
= (

𝜕𝜂

𝜕𝑢
−
𝜕ξ

𝜕𝑥
− 
𝜕𝜏

𝜕𝑦
) . 𝑓       (𝑃3)  

 
The said infinitesimal generator is a (pseudo-) 

variational symmetry of Poisson's equation (𝑃2)  given 

that 𝜂 is a constant multiplied by 𝑢.  

The P.D.E's (without boundary constraints) in (𝑃1) 
and (𝑃2) are obtained as Euler-Lagrange equations in the 

process of optimizing specific `Energy Functionals' 

expressed as integrals of Lagrangians. When these Euler-
Lagrange equations are implemented in formulations 

from the Lax-Milgram theorem and Green's theorems, 

then additional (trace) terms emerge to modify the 

original Energy functions. We shall refer to these 

modified functionals as the ‘Total Energy Functionals’. It 

is a worthwhile venture to identify how the boundary trace 

terms in these modified functionals are extensions from 

interiors of the manifolds of the definition of the B.V.P's 

in such a way as to maintain the admittance of variational 

symmetries by the modified functionals.  

Materials and Methods 

Computational Procedures for Confirmation of 

Variational Symmetries  

For Laplace's equation (𝑃1), the infinitesimal rotation 

group generator 𝑦
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑦
 is admitted by the equation 

[
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0] , that is, (𝑃1)  without boundary 

constraints. Computing a group invariant solution with 

this observation, we obtain 𝑢(𝑥, 𝑦) = 𝑘. 𝑙𝑛(𝑥2 + 𝑦2) . 

The manifold chosen in this setting is the ball 𝐵(0, 𝑟) due 

to the convenience of evaluating the group invariant 

solution, as confined to its boundary. For 𝑘 =
3

2
 and 𝑟 =

2, the B.V.P (𝑃1) is realized (although generalization to 

arbitrary positive constants 𝑘  and 𝑟  would equally 

corroborate findings). We shall show computationally 

that the same rotational symmetry known to be admitted 

without boundary constraints is admitted as a variational 

symmetry by the B.V.P (𝑃1) , by implementing the 

standard vector prolongation technique and Stokes' 
Theorem.  Before commencing computations, we reckon 

that the weak formulation of this equation is carried out in 

the Hilbert space 𝐻1(𝐵(0, 2)) . We need to make 

reference to the classical Lax-Milgram theorem stated 

below to formulate the optimized functional required, as 

the integral of a Lagrangian.  

Lax-Milgram theorem: (Brezis, 2011.) Assume that 

𝑎(𝑢, 𝑣) is a continuous and coercive bilinear form on a 

Hilbert Space 𝐻. Then given any 𝜑 ∈ 𝐻∗, there exists a 

unique 𝑢 ∈ 𝐻 such that: 
 

𝑎(𝑢, 𝑣) =  〈𝜑, 𝑣〉  ∀𝑣 ∈ 𝐻. 

 

Moreover, if 𝑎 is symmetric, then 𝑢 is characterized by: 

 
1

2
𝑎(𝑢, 𝑢) − 〈𝜑, 𝑢〉 = 𝑚𝑖𝑛

𝑣∈𝐻
{
1

2
𝑎(𝑣, 𝑣) − 〈𝜑, 𝑣〉}  

 

Now, ∀𝑣 ∈ 𝐻1(𝐵(0, 2)), we have the following: 

 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0 ⟹ ∫ (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) .𝑣

𝐵(0,2)

= 0

⟹

{
 
 

 
 ∫

 

(
𝜕𝑢

𝜕𝑥
.
𝜕𝑣

𝜕𝑥
 + 

𝜕𝑢

𝜕𝑦
.
𝜕𝑣

𝜕𝑦
)

𝐵(0,2)

−∫
𝜕ℎ

𝜕𝑁
. 𝑣𝑑𝜎

𝜕𝐵(0,2)

= 0

 

 

The final line above is determined from Green's 

formula for multivariate integration. The function ℎ is the 

restriction of 𝑢  to 𝜕𝐵(0, 2) , 𝑁  is the Gauss map on 

𝜕𝐵(0, 2), and 
𝜕ℎ

𝜕𝑁
= 〈∇ℎ,𝑁〉. The surface element 𝑑𝜎  is 

obtained as: 

 
𝑑𝜎 = 𝑛1𝑑𝑦− 𝑛2𝑑𝑥,      𝑤ℎ𝑒𝑟𝑒  𝑁 = (𝑛1, 𝑛2) 

 
Applying the Lax-Milgram theorem with the 

symmetric, continuous, and coercive bilinear form 

𝑎(𝑢, 𝑣) = ∫ ∇𝑢. ∇𝑣
𝐵(0,2)

   on 𝐻1(𝐵(0, 2)) ; and the 

functional 𝜑 in the dual of 𝐻1(𝐵(0, 2)) given by: 
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𝜑(𝑣) = ∫
𝜕ℎ

𝜕𝑁
.𝑣𝑑𝜎 ,

𝜕𝐵(0,2)

 

 

we establish the unique existence of a solution 𝑢 to 

(𝑃1) in 𝐻1(𝐵(0, 2)). We also importantly establish that: 

 

𝑢 = min
𝑣∈𝐻

{
1

2
∫ ‖𝑣‖2 −∫

𝜕ℎ

𝜕𝑁
. 𝑣𝑑𝜎

𝜕𝐵(0,2)𝐵(0,2)

} . 

 

We now have to express the total energy functional 

within curly brackets in the above optimization problem 

under one common integral over the Riemannian 

manifold 𝐵(0, 2)  with the aid of Stokes' theorem. For 

(𝑃1), 𝑑 𝜎 is easily computed, as the Gauss map (outward 

unit normal) here is simply 𝑁 = (
𝑥

2
,
𝑦

2
) . Hence, the 

differential one-form  𝜔 =
𝜕ℎ

𝜕𝑁
. 𝑣𝑑𝜎  is computed:  

 

𝜔 = 〈∇ℎ,𝑁〉 𝑣𝑑𝜎 = 
3

8
(𝑥2 + 𝑦2).𝑣. (

𝑥

2
𝑑𝑦 −

𝑦

2
𝑑𝑥) . 

 

Its exterior derivative 𝑑𝜔 is thereby computed as: 

 

𝑑𝜔 =
3

16
[4𝑣(𝑥2 + 𝑦2)𝑑𝑥 ∧ 𝑑𝑦 + (𝑥2 + 𝑦2)(𝑥𝑣𝑥 + 𝑦𝑣𝑦)𝑑𝑥

∧ 𝑑𝑦] . 

 

From Stokes' theorem, we have ∫ 𝜔
𝜕𝐵(0,2)

=

 ∫ 𝑑𝜔
𝐵(0,2)

 , giving us a total energy functional here to be: 

 

∫ (
1

2
‖𝑣‖2 −

3

16
[4𝑣(𝑥2 + 𝑦2)

𝐵(0,2)

+ (𝑥2 + 𝑦2)(𝑥𝑣𝑥 + 𝑦𝑣𝑦)])𝑑𝑥 ∧ 𝑑𝑦  

⟶(𝐸1). 
 

Assume that (𝐸1) admits a variational symmetry 𝐯 =

[ξ
𝜕

𝜕𝑥
 +  𝜏

𝜕

𝜕𝑦
+ 𝜂

𝜕

𝜕𝑢
]. 

The infinitesimal variational symmetry criterion is 

hereby given as: 

 

𝑝𝑟(1)𝐯[𝐿] + 𝐿. 𝑑𝑖𝑣(𝜓) = 0 ⟺ 

(ξ
𝜕

𝜕𝑥
 +  𝜏

𝜕

𝜕𝑦
+ 𝜂

𝜕

𝜕𝑢
+ 𝜂𝑥

𝜕

𝜕𝑢𝑥
+ 𝜂𝑦

𝜕

𝜕𝑢𝑦
)[𝐿]

+ 𝐿. (𝐷𝑥ξ + 𝐷𝑦𝜏) = 0 , 

 

where 𝐿 is the Lagrangian of (𝐸1) with 𝑣 replaced by 𝑢, 

𝜓 = (ξ , 𝜏)  and, 𝜂𝑥 = 𝐷𝑥𝜂 − 𝑢𝑥𝐷𝑥ξ − 𝑢𝑦𝐷𝑥𝜏 ,       𝜂
𝑦 =

𝐷𝑦𝜂 − 𝑢𝑥𝐷𝑦ξ − 𝑢𝑦𝐷𝑦𝜏 .  

For details on how the infinitesimal symmetry 

criterion is obtained, we refer the reader to (Springer 

Nature, 1990). Developing the formulation of the 
infinitesimal symmetry criterion for this case, we have: 

(ξ
𝜕

𝜕𝑥
 +  𝜏

𝜕

𝜕𝑦
+ 𝜂

𝜕

𝜕𝑢
+ 𝜂𝑥

𝜕

𝜕𝑢𝑥
+ 𝜂𝑦

𝜕

𝜕𝑢𝑦
)[𝐿]

+ 𝐿. (𝐷𝑥ξ + 𝐷𝑦𝜏) = 0  ⟺ 

ξ (−
3

2
𝑢. 𝑥 −

3

16
𝑢𝑥(𝑥

2 + 𝑦2) −
3

8
𝑥(𝑥. 𝑢𝑥 + 𝑦. 𝑢𝑦))

+ 𝜏 (−
3

2
𝑢. 𝑦 −

3

16
𝑢𝑦(𝑥

2 + 𝑦2)

−
3

8
𝑦(𝑥. 𝑢𝑥 + 𝑦. 𝑢𝑦)) + 𝜂 (−

3

4
(𝑥2 + 𝑦2))

+ (𝐷𝑥𝜂 − 𝑢𝑥𝐷𝑥ξ − 𝑢𝑦𝐷𝑥𝜏)(𝑢𝑥

−
3

16
𝑥(𝑥2 + 𝑦2))

+ (𝐷𝑦𝜂 − 𝑢𝑥𝐷𝑦ξ − 𝑢𝑦𝐷𝑦𝜏)(𝑢𝑦

−
3

16
𝑦(𝑥2 + 𝑦2))

+ (
1

2
𝑢𝑥

2+
1

2
𝑢𝑦

2

−
3

16
[4𝑢(𝑥2 + 𝑦2)

+ (𝑥2 + 𝑦2)(𝑥𝑢𝑥 + 𝑦𝑢𝑦)]) (𝐷𝑥ξ + 𝐷𝑦𝜏)

= 0  
 

For the infinitesimal symmetry criterion to be met as 

expanded above, we must have the coefficients of 

{𝑢𝑥 , 𝑢𝑦 , their powers, and products of}  to be zero. 

Moreover, the sum of all terms free of 𝑢𝑥  and 𝑢𝑦  must 

also equal zero. We thereby determine the following table 

to evaluate the coefficients of these identified monomials. 

(Note that  𝐷𝑥ξ = ξ𝑥 + ξ𝑢𝑢𝑥  ,   𝐷𝑦ξ = ξ𝑦 + ξ𝑢𝑢𝑦  and so 

on.) 
 

Monomials Coefficients 
Free 

−
3

2
𝑢𝑥𝜉 −

3

2
𝑢𝑦𝜏 −

3

4
𝑥2𝜂 −

3

4
𝑦2𝜂

−
3

16
𝑥3𝜂𝑥

−
3

16
𝑥𝑦2𝜂𝑥

−
3

16
𝑦𝑥2𝜂𝑦

−
3

16
𝑦3𝜂𝑦 −

3

4
𝑢𝑥2𝜉𝑥

−
3

4
𝑢𝑦2𝜉𝑥 −

3

4
𝑢𝑥2𝜏𝑦

−
3

4
𝑢𝑦2𝜏𝑦 

𝑢𝑥
2 

𝜂𝑢 −
1

2
ξ𝑥+

1

2
𝜏𝑦  

𝑢𝑥
3 

−
1

2
ξ𝑢 

𝑢𝑥 .  𝑢𝑦 −𝜏𝑥−ξ𝑦 

𝑢𝑥 .𝑢𝑦
2 

−
1

2
ξ𝑢 

𝑢𝑥
2. 𝑢𝑦 

−
1

2
𝜏𝑢 

𝑢𝑦
2 

𝜂𝑢 +
1

2
ξ𝑥−

1

2
𝜏𝑦  

𝑢𝑦
3 

−
1

2
𝜏𝑢 
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𝑢𝑥 
−
9

16
𝑥2ξ −

3

16
𝑦2ξ −

3

8
𝑥𝑦𝜏 + 𝜂𝑥

−
3

16
𝜂𝑢(𝑥

3 + 𝑥𝑦2)

+
3

16
ξ𝑦(𝑦

3 + 𝑦𝑥2)

−
3

16
𝜏𝑦(𝑥

3 + 𝑥𝑦2) 

𝑢𝑦 
−
9

16
𝑦2τ−

3

16
𝑥2τ −

3

8
𝑥𝑦𝜉 + 𝜂𝑦

−
3

16
𝜂𝑢(𝑦

3 + 𝑦𝑥2)

+
3

16
𝜏𝑥(𝑥

3+ 𝑥𝑦2)

−
3

16
ξ𝑥(𝑦

3+ 𝑦𝑥2) 

 

Results 

Upon equating the coefficients from the above table to 

zero, we can conclude with relative ease that the 

infinitesimal variational symmetry criterion for (𝑃1)  is 

met if and only if 𝜉 = y,  𝜏 = -x,  𝜂 = 0. This is precisely 

the rotational symmetry that was identified as being 

compatible with the solution to (𝑃1). This is an exemplary 

computation with a result that may be suitably generalized 

to a similar B.V.P of Laplace's equation, as pointed out 

earlier. As a noteworthy remark, (𝑃1) without boundary 

value constraints is famously the Euler-Lagrange equation 

for optimizing the Dirichlet Energy functional, that is:  

 

1

2
∫ ‖𝑣‖2

Ω

=
1

2
∫ (𝑣𝑥

2 + 𝑣𝑦
2)

Ω

 ∶ 𝑣 ∈ 𝐻1(Ω)  

 

On the other hand, beginning with the Euler-Lagrange 

equation to formulate the functional which it optimizes 

brings up an additional boundary term via Green's 

theorem (analogous to a constant of integration in single 

variable integration) which can be processed further via 

Stokes' theorem for the purpose of performing the 

requisite vector field prolongation. It is this modification 

of the Dirichlet Energy we hereby refer to as the Total 

Energy Functional. One may desire to view the outcome 

of obtaining the Euler-Lagrange equations from this 

functional in (𝐸1), as done below:  

 

𝐿𝑣(𝑥, �̅�, ∇�̅�) =∑
𝜕

𝜕𝑥𝑖

2

𝑖=1

𝐿𝑣𝑥𝑖 (𝑥, �̅�, ∇�̅�)

⇒ −
3

4
(𝑥2 + 𝑦2) =

𝜕

𝜕𝑥
[𝑣𝑥 −

3

16
𝑥(𝑥2 + 𝑦2)] +

𝜕

𝜕𝑦
[𝑣𝑦 −

3

16
𝑦(𝑥2 + 𝑦2)]

⇒ −
3

4
(𝑥2 + 𝑦2) = 𝑣𝑥𝑥 −

9𝑥2

16
−

3𝑦2

16
+ 𝑣𝑦𝑦 −

9𝑦2

16
−

3𝑥2

16

⇒ −
3

4
(𝑥2 + 𝑦2) = 𝑣𝑥𝑥 + 𝑣𝑦𝑦 −

12

16
(𝑥2 + 𝑦2)

⇒ 𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0  

 

 

Clearly, accurate incorporation of the trace boundary 

portion in the Total Energy Functional for this case does 

not alter the original Euler-Lagrange equation, in view of 

the strict variational symmetry present in this instance. A 

more elaborate description of the concept of alteration of 
Euler-Lagrange equations obtained from total energy 

functionals in cases of strict and pseudo-variational 

symmetries would enhance this practical theory quite 

richly. In what ensues, analysis of the second referenced 

B.V.P (𝑃2)  introduces a proposed prospect for further 

development of this concept.  

For Poisson's equation (𝑃2), let 𝜓(𝑥, 𝑦) be a harmonic 

function, that is, a solution to (𝑃1) without its boundary 

constraints. The generic infinitesimal group generator:  
 

v = 𝑘𝑗 [𝛼𝑗(𝑥, 𝑦)
𝜕

𝜕𝑥
 +  𝛽𝑗(𝑥, 𝑦)

𝜕

𝜕𝑦
] + (𝑘𝑢 +𝜓(𝑥, 𝑦))

𝜕

𝜕𝑢
  

≔   ξ
𝜕

𝜕𝑥
 +  𝜏

𝜕

𝜕𝑦
+ 𝜂

𝜕

𝜕𝑢
 

 

is admitted by the equation  [
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓]  in (𝑃2) , 

where {𝑘𝑗} 's and 𝑘  are arbitrary real constants and 

{𝛼𝑗(𝑥, 𝑦) + 𝑖. 𝛽𝑗(𝑥, 𝑦)}  constitute the collection of 

analytic complex-valued functions (𝑖 = √−1 ), given that 

𝑓 satisfies the first order linear P.D.E (𝑃3): 
 

ξ
𝜕𝑓

𝜕𝑥
 +  𝜏

𝜕𝑓

𝜕𝑦
= (

𝜕𝜂

𝜕𝑢
−
𝜕ξ

𝜕𝑥
− 
𝜕𝜏

𝜕𝑦
) . 𝑓 

 
This observation is made by direct application of the 

infinitesimal symmetry criterion (Springer Nature, 1990):  
 

𝑝𝑟(1)v[𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑓] = 0     whenever    

  𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑓 = 0   
 

for any admissible infinitesimal generator  v = ξ
𝜕

𝜕𝑥
 +

 𝜏
𝜕

𝜕𝑦
+ 𝜂

𝜕

𝜕𝑢
 . The Lie Algebras spanned by 𝜓(𝑥, 𝑦)

𝜕

𝜕𝑢
  

and [𝛼𝑗(𝑥, 𝑦)
𝜕

𝜕𝑥
 + 𝛽𝑗(𝑥, 𝑦)

𝜕

𝜕𝑦
]  are identified as infinite-

dimensional sub-algebras of the overall admitted 

infinitesimal symmetry. 

Poisson's equation is determined as the Euler-

Lagrange equation for optimizing the functional: 
 

∫ (
1

2
‖𝑣‖2 − 𝑣. 𝑓)𝑑𝑥 ∧ 𝑑𝑦 ∶= ∫ 𝐿 𝑑𝑥𝑑𝑦  ⟶

ΩΩ

(𝐸2) 

 
If in addition 𝜓(𝑥, 𝑦) = 0  above, then the 

aforementioned symmetry admitted by Poisson's equation 

is a pseudo-variational symmetry of the Lagrangian in 
(𝐸2), in the sense that: 
 

𝑝𝑟(1)𝑣[𝐿] + 𝐿. 𝑑𝑖𝑣(ξ, 𝜏) = 2𝑘. 𝐿 
 
for this sub-case.  In other words, those one-parameter 

infinitesimal generators combining just the vectors 
𝜕

𝜕𝑥
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and 
𝜕

𝜕𝑦
 are the strict variational symmetries of 

variational problem (𝐸2). 
𝜕

𝜕𝑥
 and  

𝜕

𝜕𝑦
 are identified with 

the unit canonical basis vectors in the axial directions 

of 𝑥 and 𝑦 respectively.  

For a well-posed system with (𝑃2) , we introduce a 

second boundary value constraint for the gradient of the 

dependent variable 𝑢. We hereby fix the function 𝑓 here 

to be 𝑓(𝑥, 𝑦) = 𝑙𝑛(𝑥2 + 𝑦2) , to fit in with the 

admissibility of symmetries identified above, while we 

maintain the manifold of definition to be Ω = 𝐵(0, 2) as 

in (𝑃1) for convenience of computations. Hence, we set: 

 
∇𝑢(𝑥, 𝑦)|𝜕Ω = (𝑙𝑛2− 1)(𝑥, 𝑦) 

 

and with these additional specifications, (𝑃2) has a solution: 

 

𝑢(𝑥, 𝑦) =
1

4
(𝑥2 + 𝑦2 − 4)(𝑙𝑛(𝑥2 + 𝑦2) − 2), 

 

which is compatible with the same infinitesimal rotation 

group generator:  𝑦
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑦
 as seen in (𝑃1). 

Now, beginning with the Euler-Lagrange equation 

for (𝐸2)  to weakly formulate the total energy 

functional which it optimizes, for all 𝑣 ∈ 𝐻0
1(𝐵(0, 2)), 

we have the following: 

 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 𝑓 ⟹ ∫ (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
− 𝑓) . 𝑣

𝐵(0,2)

= 0

⟹

{
 
 

 
 −∫ (

𝜕𝑢

𝜕𝑥
.
𝜕𝑣

𝜕𝑥
 +  

𝜕𝑢

𝜕𝑦
.
𝜕𝑣

𝜕𝑦
)

𝐵(0,2)

−∫ 𝑓. 𝑣
𝐵(0,2)

+∫
𝜕ℎ

𝜕𝑁
. 𝑣𝑑𝜎

𝜕𝐵(0,2)

  = 0

 

 

 

In the final line above due to Green's theorem, ℎ is the 

restriction of 𝑢 to 𝜕𝐵(0, 2). Via engagement of the Lax-

Milgram theorem, we deduce that 𝑢 is characterized by: 

 

𝑢 = 𝑚𝑖𝑛
𝑣∈𝐻0

1(Ω)
{
1

2
∫ ‖𝑣‖2 −∫

𝜕ℎ

𝜕𝑁
. 𝑣𝑑𝜎

𝜕ΩΩ

+∫ 𝑓. 𝑣
Ω

}  

 

Recalling the identity: 
𝜕ℎ

𝜕𝑁
= 〈∇ℎ, 𝑁〉  with the Gauss 

map 𝑁 = (
𝑥

2
,
𝑦

2
)  on 𝜕Ω  and implementing Stokes' 

theorem as in (𝑃1), we arrive at the total energy functional 

for this case:  

 

∫ (
1

2
‖𝑣‖2 −

1

4
(𝑙𝑛2− 1)(𝑥2+ 𝑦2)(4𝑣 + 𝑥𝑣𝑥 + 𝑦𝑣𝑦)

𝐵(0,2)

+  𝑣. 𝑙𝑛(𝑥2 + 𝑦2))𝑑𝑥 ∧ 𝑑𝑦 

 

We may engage the infinitesimal symmetry criterion 

for variational symmetries as done previously for (𝑃1) to 

detect that 𝑦
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑦
 is again a (strict) variational 

symmetry for this total energy functional. Setting [𝑘 =
𝑙𝑛2 − 1]  here, the Euler-Lagrange equation from this 
total energy functional yields the following: 

 

𝐿𝑣(𝑥, �̅�, ∇�̅�) = ∑
𝜕

𝜕𝑥𝑖

2

𝑖=1

𝐿𝑣𝑥𝑖  (𝑥, �̅�, ∇�̅�)

⇒ −𝑘(𝑥2 + 𝑦2) + 𝑙𝑛(𝑥2 + 𝑦2) =
𝜕

𝜕𝑥
[𝑣𝑥 −

𝑘

4
(𝑥2+ 𝑦2). 𝑥] +

𝜕

𝜕𝑦
[𝑣𝑦 −

𝑘

4
(𝑥2+ 𝑦2). 𝑦]

⇒ −𝑘(𝑥2 + 𝑦2) + 𝑙𝑛(𝑥2 + 𝑦2) = 𝑣𝑥𝑥 −
𝑘𝑥2

2
−
𝑘

4
(𝑥2 + 𝑦2) + 𝑣𝑦𝑦 −

𝑘𝑦2

2
−
𝑘

4
(𝑥2+ 𝑦2)

⇒ 𝑣𝑥𝑥 + 𝑣𝑦𝑦 =   𝑙𝑛(𝑥2 + 𝑦2)

 

 

Accurate incorporation of the trace boundary portion 

in the Total Energy Functional for this case does not alter 

the original Euler-Lagrange equation, in view of the strict 

variational symmetry present. The Euler-Lagrange 

equations for both (𝑃1)  and (𝑃2)  are of the self-adjoint 

type, which greatly simplifies the concept of 

determination of all associated Lagrangians hereby 

considered. Non-self-adjoint differential equations 

introduce further intricacies in the development of 
concepts of this sort.  Discussions to ensue in the 

subsequent section present a summarization of 

motivations and technicalities stemming from the above, 

including computational illustrations, galvanizing their 

theoretical and practical utility. 

Discussion 

Classically, there are three types of P.D.E, namely: 

elliptic, parabolic, and hyperbolic; of which the 

prototypical equations are respectively-Laplace's 

equation, the heat equation, and the wave equation 

(Braun, 1993). Despite the limitless solutions to these 

equations prior to the appropriate imposition of boundary 

value constraints, more emphasis is laid on the `natural' 

fundamental solutions, which are usually supple to 

symmetry invariance techniques. Pertaining to Laplace's 

equation in two independent variables, this P.D.E is of 

peculiar interest because of the well-known link between 

its solutions and analytic complex-valued functions. 

Moreover, as pointed out in an included computational 

result above, there is a bijective correspondence between 

admissible symmetries that are in terms of the canonical 

basis vectors in the axial directions of the two independent 

variables of Laplace's equation, and the collection of 

analytic complex-valued functions. Another noteworthy 

property of Laplace's equation is its admittance of two 

separate infinite-dimensional Lie sub-algebras as 

symmetries, with the sub-algebra addressed just above 

being key in generating invariants for the equation's 

simplification. Among other prospective concepts, this 

suggests a viable platform for the study of the special 

embeddings of 𝐶∞(ℂ, ℂ)  in larger complex Sobolev 
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spaces; as a vantage point for analysis of analytic 

complex-valued functions, made accessible via standard 

point symmetries of Laplace's equation. We should note 

that these symmetries are identical to what is admissible 

by Poisson's equation, given fulfillment of the earlier 

identified compatibility first-order P.D.E (𝑃3); observing 

that Poisson's equation is the non-homogeneous 

counterpart of Laplace's equation. 

The perhaps redundant consistency of all included 

computational results above with formally established 

literature on classical elliptic P.D.E is a necessary 

precursor to similar brewing concepts stemming into 

parabolic P.D.E analysis. As a first hint towards this 

shift, the reliance of symmetry techniques on 𝐶∞ 

functional formulation is somewhat at odds with the 

Hilbert spaces of formulation that are demanded in the 

foundational cited theorems of existence and uniqueness 

of solution. It is admittedly a thin line to toe in 

transitioning correctly from tools engaged in the Hilbert 

Sobolev spaces to those demanded in their dense 𝐶∞ 

functional subspaces, where the symmetry techniques 

are implemented. For instance, it is relevant to pay 

attention to the detail that only almost everywhere 

correspondence to analytic functional specifications is 

required for the validity of statements of P.D.E’s. With 

this degree of freedom in mind, the Total Energy 

functional required to be optimized to generate each 

Boundary Value Problem may strictly differ from what 

we find following the implementation of Green's 

theorem of integration, but only by a Radon measure in 

any case. This particular difference between the energy 

functionals is identified as a trivial affine separation, and 

the broader treatment of other affine separations is a 

noteworthy detail that could be exploited to expand the 

scope of computations with pseudo-variational 

symmetries.  Pseudo-variational symmetries include 

divergence symmetries (Springer Nature, 1990), 

variational 𝐶∞ symmetries (Muriel et al., 2006), and 

𝜇 −symmetries (Cicogna et al., 2004); which are equally 

as potent in reducing differential equations by the same 

degree/order known for strict variational symmetries.  

It is palpable that a reliable theory linking pseudo-

variational symmetries and affine separations between 

associated Lagrangians can be developed. If so, then in 

some cases, variational symmetries from alternative 

Lagrangians of (Total) Energy functionals would be 

useful for solving a number of B.V.Ps of interest for their 

profound scientific and didactic applications. This 

would be of great interest since in the case of dissipative 

systems (often governed by parabolic PDEs), it would 

mostly be impossible to derive them from strict 

variational problems, lest they be linked to classical 

conservation laws, which is contradictory. Moreover, 

the involvement of boundary contributions to the 

Lagrangians being optimized, although not a novel 

development, is acknowledged as a downplayed aspect 

of the total package of Noether's theorem (Halder et al., 

2018); but one which could prove an invaluable piece in 

validation of extensions to similar techniques for 

pseudo-variational symmetries.  

Conclusion 

As another related vital prospective pursuit, the 

similarities and peculiarities involved in transitioning 

the weak formulation techniques from elliptic B.V.P to 

parabolic ones are worth investigating. For instance, 

there are numerous heat-type equations describing a 

range of key physical phenomena, and these are all 

parabolic or weakly parabolic equations. Symmetry 

invariant solutions tend to characterize equilibrium 

states of many such physical systems, via possible 

pseudo-variational formulation techniques tweaked 

from the classical expositions of this paper. Making 

this transition from elliptic to parabolic B.V.P's also 

requires adjusting from the classical Lax-Milgram to 

accommodate the peculiarities of its parabolic 

counterpart: J.L. Lion's theorem (Brezis, 2011).  

A common ingredient required in the development of 

all hereby established and suggested principles is a robust 

grasp of the Trace theory of multivariate integration in 

Sobolev spaces. It is well-known that the Trace Operator 

(𝛾) is linear and continuous in the following map:  

 

𝛾:𝑊𝑘,𝑝(Ω)⟶ 𝐿𝑝(𝜕Ω)  

 

for all Sobolev spaces 𝑊𝑘,𝑝(Ω): 𝑘 ∈ ℕ ∪ {0}, 𝑝 ≥ 1 . 
Consider a sufficiently regular first-order Lagrangian 

functional on 𝑊𝑘,𝑝(Ω) is given by: 

 

𝐸(𝑢) = ∫ 𝐹(𝑥, 𝑢, ∇𝑢)𝑑𝑉
Ω

 

 

for some open and bounded Lipschitz domain Ω ⊂ ℝ𝑛 . 

Elements �̅� in the kernel of the Frechet differential of 𝐸 

comprise a linear subspace of 𝑊𝑘,𝑝(Ω), such that for any 

�̅� ∈ 𝐾𝑒𝑟[𝐸′], we have: 

 

〈𝐸′(�̅�), 𝑣〉 = 0  ∀𝑣 ∈ 𝑊𝑘,𝑝(Ω) . 

 

For all 𝑢 ∈ 𝑊𝑘,𝑝(Ω), 𝐸′(𝑢) can be described as a 
bounded linear functional from the dual space 

(𝑊𝑘,𝑝(Ω))∗  of 𝑊𝑘,𝑝(Ω). Invariably, the collection of 

variational-symmetry invariant solutions to the Euler-

Lagrange equation(s) associated with some Lagrangian 
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comprises a specific subspace of 𝐾𝑒𝑟[𝐸′]. As a final 

noteworthy remark, we find that implementation of the 

infinitesimal vector prolongation technique on just 

𝐿𝑝(𝜕Ω) (facilitated by pull-backs into the interior of 

Ω), for the illustrations considered in this paper, is 

sufficient to solve for any admitted symmetries. This 

suggests how systematic engagement of Trace theory 

could be relevant in symmetry analysis of P.D.E's. 
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