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Abstract: Highway traffic congestion, characterized by its inherent 

instability, has been extensively studied using deterministic models, 

providing valuable insights. However, these models often overlook the 

stochastic nature of driver behavior, a key factor that significantly impacts 

traffic flow. Recognizing this, a car-following model with discretionary lane 

changes to analyze their effect on traffic dynamics was introduced. While the 

mathematical results were sound, the use of the Optimal Velocity Model 

(OVM) led to unrealistic outcomes in certain situations, such as heavy traffic 

jams, due to its oversimplification. To address these limitations, a car-

following model incorporating human behavior through the Cox-Ingersoll-

Ross (CIR) process, demonstrating that traffic instability arises from the 

stochastic characteristics of traffic flow was proposed. However, traffic 

instability can be triggered by various factors, including high lane-change 

rates, incivility, queue properties, and accidents. In this study, we propose an 

enhanced model that integrates stochastic elements into traffic flow 

dynamics, while retaining the key stimulus-response mechanisms. Using the 

Intelligent Driver Model (IDM) and incorporating the Langevin equation 

with stochastic behavior modeled through the Ornstein-Uhlenbeck process, 

we aim to provide a more realistic representation of traffic flow. The model 

is calibrated using the NGSIM dataset and compared with existing 

approaches, to evaluate its effectiveness in capturing real-world traffic 

phenomena. Our results highlight the significant impact of perturbations, such 

as moving bottlenecks, on traffic oscillations. 

 
Keywords: Stochastic Intelligent Driver Model, Lane Changes, Queue 

Dynamics 

 

Introduction 

Traffic oscillations, commonly referred to as ”stop-

and-go” traffic, disrupt highway flows and arise due to 

various factors Oh and Yeo (2015). These oscillations 

are closely linked to wide-moving jams, characterized 

by synchronized flows followed by stop-and-go waves. 

Numerous studies have explored the underlying causes 

of these phenomena, often attributing them to driver 

behavior dynamics and upstream lane-changing 

activities that exacerbate traffic disruptions 

Chamberlayne et al. (2012). For example, Yang et al. 

(2022) investigates the effects of a platoon cooperation 

strategy, based on a “catch-up” oscillation, and traffic 

safety in mixed traffic conditions. 

Traffic Jam Emergencies 

Beyond flow disruptions, stop-and-go waves lead to 
queuing behaviors such as Pinned Localized Clusters and 
Homogeneous Congested Traffic, especially near ramp 
areas Jiang et al. (2013). While some research suggests 
that oscillations have a limited impact on overall traffic, 
other studies, such as Yuan et al. (2017), highlight that 

mitigating these oscillations can significantly improve 
bottleneck throughput. Additionally, Treiber et al. (2000) 
demonstrated that traffic dynamics near bottlenecks can 
be better understood by formulating a theoretical phase 
diagram, providing a more general perspective. 

Most prior research has relied on deterministic 
approaches to model traffic dynamics. While these methods 
have offered valuable insights, they often fail to capture the 
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inherent randomness of traffic flow. Recent advancements 
have focused on stochastic modeling, with the Langevin 
equation providing a framework that accounts for human 
error in traffic instabilities. However, existing models, 
including the Optimal Velocity Model (OVM), primarily 
address single-lane traffic and lack practical applications 
for real-world scenarios, highlighting the need for more 
comprehensive frameworks. 

Stability analyses of earlier models Tang et al. (2008) 

have shown that the effects of perturbations on traffic flow 

stability are strongly influenced by initial traffic density. 

Mathematical Foundations of Traffic Modeling 

Traffic flow is predominantly governed by driver 
decisions. For instance, Chen et al. (2012) presents a 

behavioral car-following model based on empirical 
trajectory data, successfully reproducing the spontaneous 

formation and propagation of stop-and-go waves in 
congested traffic. Similarly, Kontorinaki et al. (2017) 

proposed an enhanced modeling approach that improves 
the realism of the basic discretized Lighthill-Whitham-

Richards (LWR) model. 
Traffic flow modeling can be broadly classified into 

three categories: Macroscopic, microscopic, and 
mesoscopic models Noorsumar et al. (2022). Microscopic 

models, in particular, capture phenomena not represented 
in macroscopic models. For example, Laval and Leclercq 

(2008) developed a framework that integrates 
macroscopic lane-changing theory within microscopic 

models. Furthermore, Seunghyeon et al. (2018) 
introduced a stochastic procedure to define car-following 

behaviors on multi-lane motorways, including lane-
changing maneuvers. 

Each modeling approach offers a unique perspective 
on traffic behavior, with varying levels of granularity. 

Our Contribution 

This study advances traffic flow modeling by 
enhancing the representation of driver decision-making 

processes, with a particular focus on lane changes and 

traffic oscillations. By incorporating stochastic elements 

into the stimulus-response framework, this study aims to 

improve the accuracy of traffic dynamics representation 

and provide insights to inform safety policies. 

Model Formulation 

General Formulation of the SIDM 

In traffic flow modeling, driver behavior is inherently 

stochastic and this randomness significantly influences 

traffic dynamics. To capture this, we propose a Stochastic 
Intelligent Driver Model (SIDM), where the vehicle’s 

acceleration is governed by a Stochastic Differential 

Equation (SDE): 
 

( ( ), ) ( ( ), ) ( )dv v t t dt v t t dw t    (1) 

where: 
 

 v(t) is the velocity of the vehicle at time t 

 µ(v(t), t) is the deterministic drift term, 

representing the expected rate of change in 
velocity, which depends on current velocity v(t) 

and time t 

 σ(v(t), t) is the diffusion term, modeling random 

fluctuations in velocity caused by external 

factors such as lane changes, queuing, and 

driver behavior 

 dW(t) is a wiener process, representing the 

randomness in the system, capturing traffic 

variations 
 

The rationale for introducing this stochastic 

component into the Intelligent Driver Model (IDM) is to 

capture the randomness observed in real-world traffic, 

such as driver reaction time variations and unexpected 

traffic events. The deterministic IDM alone cannot fully 
represent these stochastic elements, so we extend the 

model to a stochastic framework by incorporating random 

fluctuations in traffic flow. 

Mean-Reverting Process for Velocity 

To model the natural tendency of drivers to adjust their 

speed toward a desired velocity (e.g., speed limit or safe 

following distance), we use a mean-reverting process. 

This ensures that vehicles do not accelerate or decelerate 

indefinitely but instead tend to return to a target speed. 
The vehicle’s dynamics are then described by the 

following system of stochastic differential equations: 
 

0

0 0

( ) ( )( ( )) ( , ) ( )

( ) ( )( ( )) ( ) ( )

c t t

t t

dv t v t u v t dt u dw t

d t t t dt u dw t

  

     

   

   
 (2) 

 
where: 
 

 v(t) is the current velocity of the vehicle 

 uc is the target or maximum allowed velocity 

(e.g., speed limit) 

 β is a sensitivity parameter, dictating how 
quickly the vehicle adjusts towards the target 

speed uc 

 γ0 and θ0 are parameters determining the 

intensity of random fluctuations 

 σ(t) represents the uncertainty in driver behavior 

and external traffic conditions (e.g., lane 

changes, queuing) 

 λ controls the rate of mean reversion for uncertainty 

 β0 represents the baseline level of uncertainty 

 ∆ (ut,σt) is a function representing the interaction 

between the traffic state and stochastic 
components, which can be defined as ∆(ut,σt) = 

v(t)σ(t), capturing how uncertainty scales with 

vehicle speed and traffic density 
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 dW(t) is a wiener process (Brownian motion), 

representing random fluctuations 

 
This system captures both the deterministic behavior 

of vehicles trying to maintain a certain speed and the 

stochastic elements caused by external conditions. The 

second equation for σ(t) represents the evolution of 

uncertainty in the system, which can increase or decrease 

depending on traffic conditions. 

Lane Changing and Queuing Dynamics 

Lane changes are a critical aspect of traffic flow, 

especially under congested conditions. In this section, we 
integrate lane-changing behavior and queuing dynamics 

into the model. 

Lane Changing Process 

Lane changes can be modeled as a stochastic process 

where the decision to change lanes depends on traffic 

density, available space, and driver behavior. The key 

assumption here is that drivers initiate lane changes when 

the gap between the desired space (s∗) and the actual space 
(sα) becomes too small. The braking term in IDM, which 

dictates how drivers slow down due to insufficient space, 

is modeled as: 

 

*a

a

s
b a

s

 
   

   (3) 

 

where: 

 

 b is the deceleration rate 

 aα is the driver’s acceleration capability 

 s∗ is the desired headway space between the 

vehicle and the one in front 

 sα is the actual headway space 

 

The lane-changing decision occurs when this gap 

between the desired and actual space becomes critically 

small. This is extended into a stochastic framework, 

where the lane-changing process is triggered by a 

renewal function H(t), which captures the rate of lane-

change attempts: 

 

*
( )a

a

s
b a H t

s

 
   

   (4) 

 

where: 

 

 H(t) is a renewal function that captures the 

frequency of lane-change attempts. It accounts for 

variability in driver behavior and external 

conditions that affect the decision to change lanes 

Queuing Dynamics 

When lane changes increase in frequency, especially 

in high-density traffic, queuing effects become more 

prominent. To model this, we introduce a time-dependent 

renewal rate for lane changes, representing the stochastic 

nature of queuing: 
 

*
( )a

a

s
db a h t dt

s

 
   

   (5) 
 
where: 
 

 h(t) represents the renewal rate of lane-change 

attempts, accounting for the queuing effect and it 

is modeled as a stochastic process influenced by 

traffic density 

 dW(t) incorporates random fluctuations due to 

lane-changing behavior, representing the 
stochastic variability 

 
As traffic density increases, drivers are more likely to 

queue behind other vehicles rather than make successful 
lane changes. This queuing effect can lead to stop-and-go 
traffic, which is captured by the renewal process. 

Stochastic Renewal Process for Lane Changes 

The lane-changing process follows a stochastic 
renewal framework. Drivers make successive attempts to 
change lanes until they succeed, reflecting real-world 
behavior in congested traffic conditions. This process is 
modeled as: 
 

1 2 ... , 1n nS T T T n      (6) 
 
where: 
 
 Sn is the cumulative time spent attempting lane 

changes, 

 Ti is the time spent on each individual attempt 

 n represents the number of lane-change attempts 
 

The time between lane-change attempts follows an 

exponential distribution with rate λ, meaning the process 

is memoryless and the time to the next attempt does not 

depend on previous attempts. The number of lane changes 

up to time t, denoted N(t), is modeled as a Poisson process 

with the renewal function: 
 

( )H t t  (7) 
 

Indicating that the expected number of lane changes 

increases linearly over time. 

Incorporating Lane Changing and Queuing into the 

SIDM 

By incorporating lane-changing and queuing dynamics 

into the SIDM, we obtain a more realistic traffic model 
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that captures both deterministic and stochastic elements. 

The modified system of equations becomes: 
 

11 0

( ) ( ( )) ( ) ( ) ( ), (0) 0

( ) ( ) ( ) ( ), (0) 0

m m m mdv t v t dt t v t dB t v

d t t dt H t d B t

  

    

   

    
 (8) 

 
where: 

 

 λ represents the frequency of lane changes 

 σ(t) models the queuing effect through an Ornstein-

Uhlenbeck process, where queuing increases the 

variance of traffic flow 

 dB(t) and d B (t) are independent wiener processes 

capturing the randomness in lane changes and queuing 

 

Model Assumptions and Rationale 

The rationale for using this stochastic approach lies in 

the need to accurately model the unpredictable elements 

of traffic flow, such as lane changes and queuing. These 

processes are inherently random and cannot be captured 

by purely deterministic models. The use of a renewal 

process for lane changes, in particular, aligns with real-

world behavior, where drivers make multiple attempts to 

change lanes and the queuing effect represents the buildup 

of traffic as density increases. 

The inclusion of stochastic terms enables the model to 

represent complex traffic patterns, such as stop-and-go 

waves and sudden changes in traffic flow, which are 
common in high-density environments. This combination 

of deterministic and stochastic modeling provides a 

comprehensive framework for understanding traffic 

dynamics under varying conditions. 

Numerical Analysis 

Solution of the Model 

We begin by solving the velocity equation (a) from 

(29). Let yt = vm(t)e λt, where vm(t) is the velocity of the 

vehicle. Using Ito’s Lemma, we obtain the following 

differential equation for yt: 

 

21
( ) ( ) (0)( )

2

t t

t m m mdy e v t dt e dv t dv   
 (9) 

 

Substituting the expression for dvm(t) from equation 

(29) into the above equation, we get: 

 

( ) ( ) ( ) ( )t t t t

t m m m tdy e v t dt e dt e v t dt e t v t dw           (10) 

 

Which simplifies to: 

 

( ) ( ) ( )t t

t mdy e dt e t v t dw t     (11) 

 

Integrating this equation over [0, t] gives: 

0
0

t

t sy y dy    (12) 

 
Or equivalently: 

 

0
( ) (0) ( 1) ( ) ( ) ( )

t
t t s

m m mv t e v e e s v s dw s  



      (13) 

 
Thus, the solution for vm(t) is: 

 

( )

0
0

( ) (1 ) ( ) ( ) ( )t s
t

t t

m mv t v e e e s v s dw s 



        (14) 

 
Taking the expectation of both sides yields: 

where, 
 

  0( ) (1 )t t

mE v t v e e 



     (15) 

 
Since: 

 

0
( ) ( ) 0

t

E f s dw s  
    (16) 

 
where, f(s) = e −λ(t−s) σ(s)vm(s). 

As t → +∞, the expected velocity converges to: 
 

 lim ( )m
t

E v t



  (17) 

 
Next, consider equation (b) from (29). Let z(t) = σ(t)e 

βt, where σ(t) is the uncertainty in the traffic flow. Using 

Ito’s Lemma, we have: 
 

21
( ) ( ) ( ) (0)( )

2

t t td e t e dt e d t d         (18) 

 

Substituting the expression for dσ(t) from equation 

(29) into the above equation, we get: 
 

1 1 2 1( ) ( ( ) ( ) ( ) ( ))t td e e H t dB t Q t dB t      (19) 

 
Integrating both sides yields: 

 

1 1 2 1
0 0

( ) (0) ( ) ( ) ( ) ( )
t t

t s st e H s e dB s Q s e dB s          (20) 

 
Which simplifies to: 

 
( )

0 1 1
0

( )

2 1
0

( ) ( ) ( )

( ) ( )

t
t t s

t
t s

t e H s e dB s

Q s e dB s

 



  



  

 

  

  (21) 
 

Taking expectations, we have: 
 

  0( ) tE t e   
 (22) 
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As t → +∞, the expected uncertainty tends to zero: 
 

 lim ( ) 0
t

E t



 (23) 

 
Discretization of the Model 

We now discretize the model to implement a 

numerical solution. Consider a time horizon T and a 

regular time grid with step size 
T

t
n

  where n is the 

number of time steps and the time grid is given by ti = i∆t 

for i = 0,1,2,...,n. The discretized form of the uncertainty 

equation is: 
 

1 1

1

1 1 1

2 2

( , , )

( , , )

i i i i i i

i i

t t t t t t

t t t i

t H B B t

Q B B t

   



 



     

  
 (24) 

 

where, B1,ti+1 − B1,ti and B2,ti+1−B2,ti are increments of 

independent Wiener processes. 

The discretized velocity equation becomes: 

 

1 1
( ) (

i i i i i i it t t t t t tV V V t V B B t  
 
        (25) 

 

where, Bti+1 −Bti ∼ N (0, ∆t) is the Brownian increment. 

1. **Initialization**: Set initial values for V0 and σ0. 2. 
2. **Iterate**: For each time step to: Update σti using the 

discretized uncertainty equation. Update Vti using the 

discretized velocity equation. Generate the Brownian 

increments Bti+1 − Bti and B1,ti+1 − B1,ti. 3. **Output**: 

Calculate the expected velocity E [Vti] and uncertainty 

E[σ(ti)] at each time step. 

This algorithm can be implemented using the Euler-

Maruyama method, a common numerical technique for 

solving SDEs. The choice of time step ∆t is critical to 

balance the accuracy and computational efficiency of 

the solution. 

Comparison with Real-world Data and Figures 

The performance of the model is illustrated using 

figures that compare simulated data with real-world 

traffic measurements. 

Figure (1) simulated vehicle velocity V(t) over time for 

different traffic conditions: Low, medium, and high traffic 

density. The simulation showed that the model performs 

better under low-traffic scenarios. 

Figure (2) shows the uncertainty simulation respecting 
real-world randomness in traffic conditions. This could 

represent unexpected events like sudden braking, lane 

changes, or variations in road conditions. 

Model Calibration 

Calibration Methodology 

The calibration of the Stochastic Intelligent Driver 

Model (SIDM) is crucial to ensure that the model 

accurately represents real-world traffic dynamics. For this 

study, we employed the Next Generation Simulation 

(NGSIM) dataset, which provides detailed vehicle 
trajectory data, including speeds, lane changes, headways, 

and interactions among vehicles on a freeway section. 

This dataset is ideal for calibrating the model parameters 

due to its high resolution and comprehensive coverage of 

vehicle behaviors. 

Parameter Identification 

Key parameters of the SIDM were identified for 

calibration: 

 

 µ: The deterministic drift term representing the 

expected rate of change in velocity 

 β: A sensitivity parameter dictating how quickly the 

vehicle adjusts toward the target speed 

 γ0 and θ0: Parameters determining the intensity of 

random fluctuations in velocity and uncertainty, 

respectively 

 λ: The rate of mean reversion for uncertainty 

 β0: The baseline level of uncertainty in the system 

 

 
 
Fig. 1: Vehicle velocity over time for different traffic conditions 

 

 
 
Fig. 2: Uncertainty over time with noise for different traffic 

conditions 
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Data Extraction and Preprocessing 

The NGSIM dataset was processed to extract relevant 

variables, including vehicle velocities, lane change 

events, and traffic densities. The calibration focused on 

matching the simulated vehicle velocities from the SIDM 

to those observed in the NGSIM dataset. Observed 

velocity data were smoothed to reduce noise and to better 

reflect the average driving behavior. 

Objective Function 

The calibration aimed to minimize the Mean Squared 

Error (MSE) between the observed velocities from the 

NGSIM dataset and the simulated velocities generated by 

the SIDM. The objective function is defined as: 

 

2

, ,

1

1
( )

N

obs i sim i

i

MSE v v
N 

   (26) 

 

where, vobs, i and vsim, i represent the observed and 

simulated velocities at time step i, respectively and N is 

the total number of observations. 

Optimization Technique 

We used the Nelder-Mead simplex algorithm, a robust 

optimization method, to adjust the parameters iteratively. 

The initial parameter values were chosen based on prior 

literature and refined through multiple runs to ensure 

convergence to optimal values. 

Calibration Results 

The calibration process yielded the following set of 

optimized parameters: 

 

 µ = 1.8: Indicating a moderate drift term reflecting 

typical acceleration behavior in the dataset 

 β = 0.6: Suggesting a rapid adjustment of velocity 

towards the desired speed limit 

 γ0 = 0.4 and θ0 = 0.3: Capturing the random 

variations due to lane changes and other stochastic 

traffic disturbances 

 λ = 0.5: A moderate rate of mean reversion, indicating 

that uncertainty stabilizes relatively quickly 

 β0 = 0.2: A low baseline uncertainty level, aligning 

with the low variability in stable traffic conditions 

observed in the data 

 

Figure (3) shows the comparison between the 

observed velocities from the NGSIM dataset and the 
velocities simulated using the calibrated SIDM. The 

figure demonstrates the model’s ability to capture the key 

dynamics of traffic flow, including acceleration, 

deceleration, and the impact of stochastic disturbance. 

 
 
Fig. 3: Comparison of observed velocities from the NGSIM 

dataset and simulated velocities from the SIDM using 
calibrated parameters 

 

Discussion of Calibration Results 

The calibration results indicate a strong fit between the 

SIDM simulations and the NGSIM observations, with a 

low MSE value indicating accurate parameter tuning. 

Notably: 
 

 The model successfully replicates the observed 

acceleration and deceleration patterns, confirming 

that the drift term µ and the sensitivity parameter β 

were appropriately calibrated 

 The stochastic components, driven by γ0 and θ0, 

captured the variability introduced by lane changes 

and queuing, aligning well with observed fluctuations 

in the NGSIM data 

 The calibrated mean reversion rate λ effectively 

models the decay of uncertainty over time, reflecting 

how traffic flow stabilizes after disturbances 
 

The model’s accuracy in reproducing the variability 

and mean behavior of vehicle velocities demonstrates its 

robustness and applicability to real-world traffic 

scenarios. However, further validation is recommended 

using different traffic conditions and datasets to ensure the 

model’s generalizability 

Materials and Methods 

The Next Generation Simulation (NGSIM) dataset, a 

publicly accessible source of high-resolution vehicle 

trajectory data, was used in this investigation. The 

collection is ideal for traffic flow modeling since it 

contains comprehensive data on vehicle locations, 

velocities, accelerations, and lane-changing behaviors. In 

particular, information from US Highway 101 and the I-
80 freeway was used. While the US Highway 101 dataset 

offers information on traffic situations like high-density 

stop-and-go waves and synchronized flows, the I-80 
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dataset records urban freeway dynamics, such as merging 

and lane-changing behaviors. Because these datasets 

depict a variety of traffic scenarios, including low-, 
medium and high-density circumstances, they were 

essential for the calibration and validation of the 

Stochastic Intelligent Driver Model (SIDM). 

Data 

The Next Generation Simulation (NGSIM) dataset, a 

publicly accessible collection of high-resolution vehicle 

trajectory data, was used in the study. This dataset offers 

comprehensive records of the positions, speeds, 

accelerations, and interactions of vehicles in various lanes 
of a segment of a freeway. Particularly, the NGSIM 

datasets listed below were utilized: 

The Interstate 80 (I-80) Freeway Dataset records the 

dynamics of metropolitan freeways, such as lane changes, 

merging, and queuing. High-density traffic situations with 

frequent stop-and-go oscillations are represented by the 

US Highway 101 Dataset. These datasets were selected 

because they are useful for calibrating and validating the 

Stochastic Intelligent Driver Model (SIDM) due to their 

granularity, coverage, and capacity to reflect a variety of 

traffic circumstances. 

Stochastic Intelligent Driver Model (SIDM) 

The SIDM extends the classical Intelligent Driver 

Model (IDM) by incorporating stochastic elements to 

capture variability in traffic dynamics. The model is 

described by a system of stochastic differential equations 

(SDEs), as follows: 

 

( ( ),  ) ( ( ),  ) ( )dv µ v t t dt v t t dW t   (27) 

 

where: 

 

 v(t) : Vehicle velocity at time t. 

 µ(v(t), t) : Deterministic drift term, representing the 
expected rate of velocity 

 σ (v(t), t) : Diffusion term, capturing random 

fluctuations, 

 dW (t) : Wiener process modelingtraffic randomness 

 

Mean-reverting process for velocity: To account for 

the natural tendency of vehicles to stabilize toward a 

desired velocity (uc), the following mean-reverting 

process was implemented: 

 

0( ) ( )( ( )) ( ,  ) ( )c t tdv t v t u v t dt u dW t       (28)  

 
where: 
 

 β :Sensitivity parameter 

 γ0 :Stochastic intensity 

 ∆(ut, σt) :Interaction term between traffic state and 

stochastic behavior 
 

Uncertainty dynamics: The uncertainty in traffic 

dynamics: 
 

0 0( ) ( ) ( )( ) ( ,  ) ( )t t tt d t t dt u dW t           (29)  

 
where: 
 

 λ : Mean reversion rate 

 β0 : Baseline uncertainty level 

 θ0 : Stochastic Intensity 
 

Lane-changing and queuing dynamics. The SIDM 

incorporates lane-changing and queuing dynamics using a 

renewal process to simulate driver decision-making under 

congested conditions: 
 

 Lane-changing probability is modeled as a stochastic 

renewal process based on headway space, traffic 
density, and desired velocity 

 Queuing effects are captured using time-dependent 

renewal rates influenced by vehicle interactions and 

traffic congestion 

Model Calibration 

Calibration dataset: The calibration process focused 

on vehicle trajectory data from the NGSIM dataset. 

Observed variables included: 
 
 Vehicle velocities 

 Headways (gaps between vehicles) 

 Lane-change events 

 Acceleration and deceleration patterns 
 

Calibration procedure: The model parameter (µ, β, γ0, 

θ0, andλ ). 
Objective function: Minimize the Mean Squared Error 

(MSE) between observed and simulated velocities.  

Optimization algorithm: The Nelder-Mead simplex 

algorithm was used to iteratively refine the model 

parameters for optimal fit. 

Validation: The calibrated model was validated against 

an independent subset of the NGSIM dataset, ensuring 

that the SIDM accurately captures traffic behaviors under 

diverse conditions. 

Numerical Implementation 

Simulation framework: He SIDM was implemented 

using the Euler-Maruyama method, a numerical scheme 

for solving SDEs. The simulation setup included: 
 

 Time Step ∆t = 0.1s 

 Simulation duration: T = 600s 

 Initial condition: Vehicle velocities, headways, and 

uncertainties were initialized based on NGSIM data 



Konate N’Golo et al. / Journal of Mathematics and Statistics 2024, Volume 20: 53.62 

DOI: 10.3844/jmssp.2024.53.62 

 

60 

Performance metrics: Key metrics for evaluating the 

model’s performance included: 
 
 Mean Absolute Error (MAE): Average magnitude of 

errors between observed and simulated velocities 
 Root Mean Squared Error (RMSE): Standard 

deviation of errors, highlighting larger deviations 
 Traffic flow characterisation: Validation against 

empirical traffic flow properties, such as flow-density 
relationships and oscillation patterns 

 

Results and Discussion 

This section presents the results of the SIDM 

calibration against the NGSIM dataset, providing insights 

into how well the model captures real-world traffic 

dynamics. The discussion focuses on the accuracy of the 

model, the effectiveness of the calibration, and the 
broader implications for traffic flow modeling. 

Calibration Results 

The calibration of the SIDM was performed using 
detailed vehicle trajectory data from the NGSIM dataset. 
Key parameters were tuned to minimize the Mean 
Squared Error (MSE) between observed and simulated 

velocities. The optimization process resulted in a set of 
parameters that closely align the model’s output with real-
world traffic behavior. Figure (3) shows the comparison 
between the observed velocities from the NGSIM dataset 
and the simulated velocities from the SIDM using the 
calibrated parameters. 

Interpretation of Calibration Results 

The calibration results indicate a strong alignment 

between the observed and simulated velocities, 
demonstrating the effectiveness of the SIDM in capturing 

the fundamental dynamics of traffic flow: 
 
 Accuracy of velocity replication: The SIDM 

accurately replicates the acceleration and deceleration 

patterns seen in the observed data. This suggests that 

the drift term µ and the sensitivity parameter β are 

effectively tuned, allowing the model to respond 

appropriately to changes in driving conditions 

 Stochastic variability: The simulated velocities 

exhibit stochastic variability that closely matches the 

fluctuations observed in the NGSIM dataset. This 

alignment indicates that the diffusion parameters γ0 

and θ0 are well-calibrated, effectively capturing 
random disturbances such as lane changes, sudden 

braking, and queuing effects 

 Uncertainty dynamics: The calibration successfully 

models the mean-reverting behavior of uncertainty, 

as captured by the parameter λ. The calibrated value 

of λ reflects how quickly uncertainty stabilizes after 

disturbances, aligning with the observed decay of 

variability in real traffic data 

Calibration Error Analysis 

To further evaluate the model’s performance, the 

calibration error analysis is presented in Fig. (4). This figure 

shows the time series of the errors between observed and 

simulated velocities, along with key error metrics. 

Error Metrics and Insights 

 Mean Squared Error (MSE): The MSE of 
approximately 1.00 demonstrates that the SIDM is 
highly accurate in predicting vehicle velocities, with 
minimal deviation from observed values. This metric 
confirms that the calibration process successfully 
minimized the discrepancies between the model and 
real-world data 

 Mean Absolute Error (MAE): The MAE of 

approximately 0.80 reflects the average magnitude of 
the errors, indicating that the typical deviation 
between simulated and observed velocities is small. 
This level of precision is critical for applications in 
traffic management and prediction 

 Error distribution and randomness: The error plot 
reveals that the errors are distributed randomly 
around zero, indicating the absence of systematic bias 
in the model predictions. This randomness suggests 
that the SIDM effectively captures the inherent 
stochastic nature of traffic flow without consistently 
overestimating or underestimating vehicle speeds 

 Transient error peaks: Peaks in the error signal 
correspond to sudden accelerations or decelerations in 
the observed data, which are challenging for any model 
to capture perfectly. These transient errors highlight 
areas where the SIDM could be further refined, 
particularly in representing extreme events such as 
abrupt lane changes or aggressive driving behavior 

 
Uncertainty Dynamics in Traffic Flow 

Figure (5) illustrates the evolution of uncertainty σ(t) 

over time, showing how uncertainty decays and how 

varying traffic conditions influence stability. 
 

 
 
Fig. 4: Calibration error analysis; (Top) Observed vs. 

simulated velocities showing close alignment 
between data sources; (Bottom) Error plot indicating 
the differences between observed and simulated 
velocities over time 
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Fig. 5: Uncertainty σ(t) over time under different traffic 

conditions: Low, medium, and high density. The plot 
illustrates the exponential decay of uncertainty and the 
effect of increased lane changes and queuing on traffic 

flow stability 
 

Discussion 

 Exponential decay of uncertainty: The observed 

exponential decay in σ(t) aligns with the model’s 

mean-reverting structure, demonstrating that 

uncertainty diminishes as the system returns to 

equilibrium after disturbances. This behavior is 
consistent with real-world traffic, where variability 

decreases once drivers adjust to prevailing conditions 

 Impact of traffic density: Under high traffic density, 

the decay rate of uncertainty is slower, indicating 

prolonged periods of instability due to frequent lane 

changes and queuing. This finding underscores the 

critical role of traffic density in influencing flow 

stability, as congestion amplifies random fluctuations 

 Response to stochastic disturbances: The inclusion of 

noise in the uncertainty dynamics reflects the model’s 

ability to account for real-world randomness, 
capturing unexpected events like sudden braking and 

variable driving behavior. This feature enhances the 

SIMD's utility in simulating complex traffic scenarios 

where traditional deterministic models may fall short 
 

Implications for Traffic Modeling and Management 

The SIDM, with its calibrated parameters, proves to be 

an effective tool for simulating traffic dynamics under a 

wide range of conditions. The model’s accuracy in 

reproducing observed traffic behaviors suggests its 

potential applications in: 
 
 Traffic prediction and control: The SIMD's ability to 

model both deterministic and stochastic elements of 

traffic flow makes it suitable for forecasting traffic 

states and informing control strategies, such as 

adaptive signal timing and dynamic speed limits 

 Policy evaluation: The model’s detailed 

representation of lane-changing and queuing 

dynamics enables it to assess the impact of policy 

measures, such as lane restrictions or ramp metering, 

on overall traffic stability and efficiency 

 Safety analysis: The stochastic components of the 

SIDM can simulate risky driving behaviors and 

potential conflict scenarios, aiding in the evaluation 

of safety interventions, including the design of 

automated driving aids or the implementation of 

warning systems 

 

Limitations and Future Directions 

While the SIDM demonstrates robust performance, 
certain limitations warrant further investigation: 

 

 Modeling of extreme events: The SIDM occasionally 

underrepresents extreme accelerations or 

decelerations, particularly during sudden lane 

changes or stops. Enhancing the model’s 

responsiveness to these events could improve its 

accuracy in high-density or turbulent traffic 

conditions 

 Real-time adaptation: Expanding the calibration 

framework to incorporate real-time data inputs 
could allow the SIDM to dynamically adjust 

parameters, enhancing its applicability in live traffic 

management systems 

 Broader validation: Additional validation across 

different traffic scenarios, such as urban intersections 

or rural roads, would help establish the model’s 

generalizability and ensure consistent performance in 

diverse environments 

 

Conclusion 

The calibration and validation results demonstrate that 

the SIDM when accurately tuned, is a powerful model for 

simulating the complexities of traffic flow. Its ability to 

integrate both deterministic and stochastic elements 

makes it particularly valuable for applications that require 

a realistic representation of traffic dynamics, supporting 

both operational and strategic decision-making in traffic 

management and control. 

Acknowledgment 

Traffic flow data for this study was download on US 

department of Transportation portal. The Next Generation 

Simulation data was used to calibrate and validate the 

model. The authors wish to express appreciation for the 

open data on this research project and look forward. 

Funding Information 

The authors declare that no specific funding was 

received for this study. 



Konate N’Golo et al. / Journal of Mathematics and Statistics 2024, Volume 20: 53.62 

DOI: 10.3844/jmssp.2024.53.62 

 

62 

Author’s Contributions 

Konate N’golo: Conception and design of the study, 

development of the mathematical model, data analysis 

and interpretation. 

Mark Kimathi: Assisting with the development of the 

mathematical model, writing and revising the manuscript. 

Emile Danho: Writing and revising the manuscript, 

providing critical feedback and suggestions. 

Ethics 

This study primarily relies on publicly available datasets 

(e.g., the NGSIM dataset) and does not involve human 

participants, sensitive data, or proprietary information, the 

following ethical aspects have been considered. 

References 

Chamberlayne, E., Rakha, H., & Bish, D. (2012). 

Modeling the Capacity Drop Phenomenon at 

Freeway Bottlenecks Using the Integration Software. 

Transportation Letters, 4(4), 227–242. 

https://doi.org/10.3328/tl.2012.04.04.227-242 

Chen, D., Laval, J., Zheng, Z., & Ahn, S. (2012). A 

Behavioral Car-Following Model that Captures 

Traffic Oscillations. Transportation Research Part 

B: Methodological, 46(6), 744–761. 
https://doi.org/10.1016/j.trb.2012.01.009 

Jiang, H., Li, Z., Jiang, R., Song, J., & Li, L. (2013). 

Three-Velocity Queueing Model for Congested 

Traffic Flow Simulation. Procedia-Social and 

Behavioral Sciences, 96, 1389–1401. 

https://doi.org/10.1016/j.sbspro.2013.08.158 

Kontorinaki, M., Spiliopoulou, A., Roncoli, C., & 

Papageorgiou, M. (2017). First-Order Traffic Flow 

Models Incorporating Capacity Drop: Overview and 

Real-Data Validation. Transportation Research Part 

B: Methodological, 106, 52–75. 
https://doi.org/10.1016/j.trb.2017.10.014 

Laval, J. A., & Leclercq, L. (2008). Microscopic 

Modeling of the Relaxation Phenomenon Using a 

Macroscopic Lane-Changing Model. Transportation 

Research Part B: Methodological, 42(6), 511–522. 

https://doi.org/10.1016/j.trb.2007.10.004 

 

 

 

 

 

 
 

 

 

 

Noorsumar, G., Rogovchenko, S., Robbersmyr, K. G., & 

Vysochinskiy, D. (2022). Mathematical Models for 

Assessment of Vehicle Crashworthiness: A Review. 

International Journal of Crashworthiness, 27(5), 

1545–1559. 

https://doi.org/10.1080/13588265.2021.1929760 

Oh, S., & Yeo, H. (2015). Impact of Stop-and-Go Waves 

and Lane changes on Discharge Rate in Recovery 

Flow. Transportation Research Part B: 

Methodological, 77, 88–102. 

https://doi.org/10.1016/j.trb.2015.03.017 

Seunghyeon, L., Ngoduy, D., & Keyvan-Ekbatani, M. 

(2018). Multi-lane Stochastic Continuous Car-

Following Model Considering Discretionary 

Lanechanging Manoeuvres. 

Tang, T. Q., Huang, H. J., Zhang, Y., & Xu, X. Y. (2008). 

Stability Analysis for Traffic Flow with 

Perturbations. International Journal of Modern 

Physics C, 19(09), 1367–1375. 

https://doi.org/10.1142/s0129183108012947 

Treiber, M., Hennecke, A., & Helbing, D. (2000). 

Congested Traffic States in Empirical Observations 

and Microscopic Simulations. Physical Review E, 

62(2), 1805–1824. 

https://doi.org/10.1103/physreve.62.1805 

Yang, X., Zou, Y., & Chen, L. (2022). Operation Analysis 

of Freeway Mixed Traffic Flow Based on Catch-up 

Coordination Platoon. Accident Analysis & 

Prevention, 175, 106780. 

https://doi.org/10.1016/j.aap.2022.106780 

Yuan, K., Knoop, V. L., Leclercq, L., & Hoogendoorn, S. 

P. (2017). Capacity drop: A comparison between 

stop-and-go wave and standing queue at lane-drop 

bottleneck. Transportmetrica B: Transport 

Dynamics, 5(2), 145–158. 

https://doi.org/10.1080/21680566.2016.1245163 

https://doi.org/10.3328/tl.2012.04.04.227-242
https://doi.org/10.1016/j.trb.2012.01.009
https://doi.org/10.1016/j.sbspro.2013.08.158
https://doi.org/10.1016/j.trb.2017.10.014
https://doi.org/10.1016/j.trb.2007.10.004
https://doi.org/10.1080/13588265.2021.1929760
https://doi.org/10.1016/j.trb.2015.03.017
https://doi.org/10.1142/s0129183108012947
https://doi.org/10.1103/physreve.62.1805
https://doi.org/10.1016/j.aap.2022.106780
https://doi.org/10.1080/21680566.2016.1245163

