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Introduction 

Hyperstructures have many applications in several 
sectors of both pure and applied parts of mathematics by Jun 
(1999; 2001). A good reference for the theory of hyper-
structures and its applications to Mathematics and Computer 
Science can be found in Torkzadeh and Zahedi (2006); Dejen 
(2020). Jun and Zahedi (2000) applied the hyperstructures to 

BCK-algebras and the concept of hyper BCK-algebras which 
is a generalization of BCK-algebras and investigated some 
related properties. 

Akefe Radfar, Akbar Rezaei, and Arsham Borumand Saeid 
(Radfar et al., 2014) discussed hyper BE algebra and some related 
concepts (Sh. Ghorbani and Eslami, 2008) applied the 
hyperstructures to KU-algebras. Neggers et al. (1999); Mostafa et al. 
(2017) discussed the notion of d-algebras as a generalization of 

BCK-algebra and investigated several relations between d-
algebras and BCK-algebras as well as several other relations 
between d-algebras and oriented digraphs. Gerima (2022) 
introduced the concepts of fuzzy dot d-sub algebras and fuzzy 
dot d-ideals of a d-algebra. The product of fuzzy dot d-ideals and 
strong fuzzy relation and the corresponding strong fuzzy dot d-
ideal was discussed. Neggers et al. (1999) discussed the 
concepts of a fuzzy dot hyper K-subalgebra, a fuzzy dot hyper 

K-ideal with some other properties. 
In this study, we introduce the concepts of Hyper d-Algebra 

and some related properties of Hyper d-Algebra. 

Materials and Methods 

In this section some basic definitions and basic examples 

that help to clarify the new concepts are included. We used the 
methods introduced in d-algebra and hyper BCK-algebras. 

Definition 2.1 (Neggers et al., 1999) A d-algebra is a non-

empty set X with a constant 0 and a binary operation ∗ satisfying 
the following axioms: 
 

0x x   (1) 
 
0 0x   (2) 

0 0 , ,x y and y x Implythat x y for x yin X      (3) 

 

Example 2.2. Let X= {0, 𝑎, 𝑏, 𝑐} be a set. Then the operation 
* on X is defined by Table 1. 

Clearly (X, ∗, 0) is a d-algebra. 

Definition 2.3 (Mostafa et al., 2017) Let (X, ∗, 0) be a d-

algebra ∅≠ 𝐼 ⊆ 𝑋 then: 
 

1. I is called a d-sub algebra of X if x⋆y ∈ 𝐼 whenever 

x ∈ 𝐼 and y ∈ 𝐼  

2. I is called a d-ideal of X satisfies 

 

0 0D . I  (1) 

 

1. 1 1 1D x y and y imply x     (2) 

 

2. 1 1D x and y X imply x y     (3) 

 
Definition 2.4 (Jun 1999) A hyper BCK-algebra with a 

binary operation ο and a constant 0 satisfying the following 
axioms: 

 

( x z ) ( y z ) ( x y )  (1) 

 

   xoy oz xoz oy   (2) 

 

yx  and xy   implies that: 

 
 x y for x,y H   (3) 
 
Table 1: Hyper d-Algebra 

* 0 a b c 

0 0 0 0 0 
a a 0 a c 
b b b 0 b 
c c a c 0 
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Results 

Hyper d-Algebras 

Definition 3.1.1. Let H be a non-empty set and 𝜊: H × 

H→P(H)\{𝜙} be a hyperoperation. Then (H, ο, 0) is called a 
Hyper d-Algebra if it satisfies the following axioms: 
 

x x  (1) 
 
0 x  (2)

 
 

If x y and y x  , then yx  for all: 

 
x, y H  (3) 
 

Remark 3.1.2. Let H be a Hyper d-Algebra. Then the 

following properties hold.  

yx   can be written as: 

 
x { y } ,{ x} { y },{ x} y  (1) 

 
If A,B H ,   then ( a,b ) A BA B ( a b )  , then

A B  means for all a A  there exists b B  such that: 
 
a b  (2) 
 

 P H denotetheset of all subsetsof H  (3) 

 
For x,y H x y   means 0 x y.  

Example 3.1.3. Let H =  {0, 𝑎, 𝑏} be a set. Then the 

hyperoperation "ο" on H is defined by Table 2.  

By simple manipulation (𝐻, 𝜊, 0) is a hyper d-Algebra. 

Proposition 3.1.4. Let H be a Hyper d-Algebra. Then for 

all x ∈ 𝐻 and A, 𝐵 ⊆ 𝐻. Then each of the following 
conditions holds: 
 

 0 0 0o   (1) 

 

0 0A { }implies A { }   (2) 

 
A Bimplies A B   (3) 

 

   0 xo x ox  (4) 

 
Proof 1. Let H be a Hyper d-Algebra. Then x x, for 

all x H.  

We want to show that  0 0 0o  Since: 

 
0x x x x    (1) 

 
If we put x = 0 in the form x x we get 0 0 0{ }

 ,0 0 0Thus o  . 

Suppose that H is a Hyper d-Algebra, for all 

,x y H and A H  . 

Table 2: Hyper d-Algebra 

o 0 a b 

0 {0} {0, a} {0, b} 
a {a} {0, a} {a, b} 
b {b} {0, b} {0, a, b} 
 

 0We need to show that A=  

 

Let for all xA there exist y = 0  B such that: 
 

0x y imply x y    we get 0x   

 
Implies x A . Hence 0A { } . 

Suppose that H is a hyper d-algebra, for all xH and 

A, B H and A B  : 

 
We need to show that A B  

 
For all x ∈ A. Then there exists x ∈ B such that x≪ x.  

Thus A B.  

But the converse is not true. 

Suppose that H is a hyper d- algebra, for all x ∈ H. We 

need to show that {0} ⊆ (𝑥𝜊𝑥)𝜊𝑥: 
 
0 xox  (1) 

 

   0 0ox xox ox  (2) 

 

   0 xox ox  (3) 

 

Thus,  0 xox ox . 

Sub-Algebra of Hyper d-Algebras  

Definition 4.1.1. Let (H, ο, 0) be a Hyper d-Algebra and 

S be a non-empty subset of H containing 0 with respect to 

the hyper operation “ο” which implies that xοy ≪S, for all 

x, y ∈ S. Then S is called a hyper sub-algebra of H. 

Example 4.1.2. Let H= {0,1,2,3} be a set. Then the 

hyperoperation on H is defined by Table 3. 

Clearly (H, ο, 0) is a Hyper d-Algebra. 

Let 𝑆 =  {0, 1, 2} be a subset of a Hyper d-Algebra (H, ο, 0).  

Since: 

 

1 2 1 2 1 2o { , } S, S and S     (1) 

 
2 2 0 2 0 1 2 0 2o { , } S { , , }, S and S      (2) 

 
1 1 1 0 1 2 1o { } S { , , }, S     (3) 

 
Thus, S is a sub-algebra of a Hyper d-Algebra. 

Proposition 4.1.3. Let S be a non-empty subset of a Hyper 

d-Algebra (𝐻, ο, 0) and 𝑥ο𝑥 ≪S, for all x ∈ S. Then 0 ∈ S. 

Proof. Let S be a non-empty subset of a Hyper d-Algebra 

(𝐻, ο, 0) and 𝑥𝜊𝑥 ≪S, for all x∈ S. Let x ∈ S be arbitrary. 

Then 𝑥𝜊𝑥 ≪ S ⇒ 0 ∈ xοx ⊆ S. Therefore, 0 ∈ S. 
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Table 3: Hyper d-subalgebra 

o 0 1 2 3 
0 {0} {0,1} {0,2} {0,3} 
1 {1} {0,1} {1,2} {1,3} 
2 {2} {0,2} {0,2} {0,2,3} 
3 {3} {1,3} {2,3} {0,1,2,3} 
 

Theorem 4.4. Let (𝐻, ο, 0) be a Hyper d-Algebra and S = 

{𝑥 ∈  𝐻 | 0 𝜊 𝑥 ≪ {0}}. Then S is a Hyper d-subalgebra of H. 

Proof. Let (𝐻, 𝜊, 0) be a hyper d-algebra and S = {𝑥 ∈
 𝐻 | 0 𝜊 𝑥 ≪ {0}} and let 𝑥, 𝑦 ∈ S. Then x= 0 𝜊 𝑥 ≪ {0} 

and y = 0 𝜊 𝑦 ≪ {0}. 
Now 𝑥𝜊𝑦 = (0𝜊𝑥)𝜊(0𝜊𝑦)  ≪ {0}𝜊{0} = {0}, Imply 

that 𝑥𝜊𝑦 ≪ {0} ⇒ 𝑥𝜊𝑦 ≪ 𝑆. Thus, S is a hyper d-

subalgebra of H.  

Hyper d-Ideals of Hyper d-Algebras 

Definition 5.1.1. Let I be a non-empty subset of a 

Hyper d-Algebra H. Then I is called a Hyper d-Ideals of 
H if it satisfies the following axioms: 
 

0 0I . I  (1) 
 

1I . x y I and x I imply y I    (2) 
 

2I . x I and y H imply x y I , forall x,y H     (3) 
 

Example 5.1.2. Let H = {0, 𝑎 , 𝑏 , 𝑐, 𝑑} be a set. Then 

the hyperoperation "ο" on H is defined by Table 4.  

With simple calculation (𝐻, 𝜊, 0) is a Hyper d-Algebra. 

Let I=  {0, 𝑎, 𝑏, 𝑐} be a subset of H. Then I is a Hyper 

d-Ideal of H. Since: 
 

0. 0I I  (1) 
 

1I .a b I and a I implyb I    (2) 
 

2I . c I and d H implyc d I    (3) 
 

Thus, I is a Hyper-d-Ideal of H. 
Proposition 5.1.3. Let I be a Hyper d-Ideal of H and let A be 

a subset of a Hyper d-Algebra H such that A ≪ I. Then A ⊆ I. 

Proof. Let I be a Hyper d-Ideal of H and let A be a 

subset of H such that A ≪ I. Then for all a ∈ A there exist 

x ∈ I such that a ≪ x ⇒ 0 ∈ aοx ≪ I. x ∈ I imply a ∈ I, 

(Since I is a Hyper d-Ideal of H). Thus, A ⊆ I. 

Example 5.1.4. Let H = {0, 𝑎, 𝑏, 𝑐} be a set. Then the 

hyperoperation "ο” on H is defined by Table 5. 

Clearly (𝐻, 𝜊, 0) is a Hyper d-Algebra. 

Let I = {0, 𝑎, 𝑏} be a non-empty subset of a Hyper 

d-Algebra H. Then: 
 

0 0I . I  (1) 
 

1 0I .a b {a,b} I { ,a,b} and a I imply b I      (2) 
 

2I . a I and c H implya c I    (3) 
 

Thus, I is a Hyper-d-Ideals of a Hyper-d-Algebra. 
Lemma 5.1.5. If I is a Hyper d-Ideal of a Hyper 

d-Algebra H, then 0 ∈ I. 

Table 4: Hyper d-IDEAL of H 

0 0 a b c d  

0 {0} {0, 0, a} {0, 0, b} {0, 0, c} {0, 0, 0, 0, c} 
a {a} {0, a, b} {0, a, b} {0, b, c} {0, 0, 0, b, c} 
b {b} {0, 0, b} {0, 0, b} {0, b, c} {0, 0,0, 0, a} 
c {c} {0, a, c} {0, c, a} {0, 0, c} {0, 0, 0, c, a} 
d {d} {0, a, b} {0, b, c} {0, a, b} {0, a, b, c, d} 

 

Table 5: Hyper d-Ideal 

0 0 a b c 

0 {0} {0, 0, a} {0, b} {0, b} 
a {a} {0, 0, a,} {a, b} {0, b} 

b {b} {0, 0, b} {0, b} {0, b} 
c {c} {0, a, b} {0, a} {0, 0} 

 

Proof. Assume I am a Hyper d-Ideal of a Hyper 

d-Algebra H. 

Since I ≠ ∅, for all x ∈ I, x ≪  𝑥, we have 0 ∈ x𝜊x ⊆ 𝐼. 
Thus, 0 ∈ I.  

Proposition 5.1.6. Let I be a Hyper d-Ideal of a Hyper 

d-Algebra H. If y ≪ x and x ∈ I, then y ∈ I. 
Proof. Let I be a Hyper d-Ideal of a Hyper d-Algebra 

H such that y ≪ x and x ∈ I. 

Since y ≪ x ⇒ 0 ∈ y ο x ⊆I ⇒  0 ∈ 𝐼. (proposition 5.1.3.) 

Consequently, 𝑦𝜊𝑥≪ I and x ∈ 𝐼 imply 𝑦 ∈ 𝐼. 

Therefore, 𝑦 ∈ 𝐼. 
Definition 5.1.7. Let H be a Hyper d-Algebra. Then a 

hyper d-ideal I of H is called a Hyper d#-ideal of H. 

𝑥𝜊𝑧 ≪ 𝐼 whenever 𝑥𝜊𝑦 ≪ 𝐼 and 𝑦𝜊𝑧 ≪ 𝐼, for arbitrary x, 

y, z ∈ H. 

Example 5.1.8. Let H= {0, 𝑎, 𝑏, 𝑐 } be a set. Then the 

hyperoperation “ο” on H is defined by Table 6. 

Clearly (𝐻, 𝜊, 0) is a hyper d- Algebra. Let I= {0, 𝑎, 𝑏} 

be a subset of a hyper d-Algebra. Then: 

 

0 0

0

a c { ,b,a } I , whenever a a { ,a } I

and a c { ,b,a } I

   

 
 (1) 

 
0a { a } I , whenever a b { a,b } I

and b c {b } I

   

 
 (2) 

 
0 0

0

a c { ,b,a } I , whenever a a { ,a } I

and a c } ,b,a } I

   

 
 (3) 

 
0

0

a b { a,b } I , whenever a c { ,b,a } I

and c b { ,a } I

   

 
 (4) 

 

𝑇ℎ𝑢𝑠, 𝐼 is a hyper 𝑑# − ideal of 𝐻.  
Definition 5.1.9. Let I be a Hyper d#-Ideal of a Hyper 

d-Algebra H satisfies 𝑥𝜊𝑦 ≪ 𝐼 and 𝑦𝜊𝑥 ≪ 𝐼 imply 

(𝑥𝜊𝑧)𝜊(𝑦𝜊𝑧) ≪  𝐼 and (𝑧𝜊𝑥)𝜊(𝑧𝜊𝑦) ≪ I, for all x, y ∈ H. Then 
I is called a Hyper d*-Ideal of H. 

Example 5.1.10. Let H = {0, 1, 2, 3, 4} be a set. Then the 

hyperoperation "ο” on H is defined by Table 7.  

Clearly (𝐻, 𝜊, 0) is a Hyper d-Algebra. 
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Table 6: Hyper d*-ideal 

o 0 a b c 

0 {0} {0, a} {0, b} {0, 0, a} 
a {a} {0, a} {a, b} {0, b, a} 
b {b} {0, b} {0, b} {0, 0, b} 
c {c} {0, a} {0, a} {0, a, c} 

 
Table 7: Hyper d*-ideal 

o 0 1 2 3 4 

0 {0} {0, 0, 1} {0, 2} {0, 2} {0, 0, 0} 
1 {1} {0, 0, 1} {1, 2} {0, 0} {0, 0, 1} 
2 {2} {0, 1, 2} {0, 2} {1, 2} {0, 0, 2} 
3 {3} {0, 1, 2} {0, 1} {0, 1} {0, 0, 2} 
4 {4} {0, 0, 2} {0, 1} {0, 1} {0, 1, 2} 

 

Let I= {0,1,2,3} be a subset of a Hyper d- Algebra. 

Since, 0ο1=  {0,1} ≪ 𝐼 and 1ο0= {0,1} ≪ 𝐼 imply 

(0𝜊2)𝜊(1𝜊2) = {0,1,2} ≪ 𝐼 = {0,1,2,3} and 

(2𝜊0)𝜊(2𝜊1) ≪ 𝐼 = {0,1,2} ≪ 𝐼 = {0,1,2,3} and 3ο4 =
 {0,2} ≪ 𝐼 and 4ο3= {0,1} ≪ 𝐼 imply (3𝜊3)𝜊(4𝜊3) =
{0,1} ≪ 𝐼 = {0,1,2,3} and (3𝜊3)𝜊(3𝜊4) ≪ 𝐼 =
{0,1,2} ≪ 𝐼 = {0,1,2,3}. Thus, I is a Hyper d*-Ideal of H. 

Discussion 

The introduction of hyper BCK-algebra (1999) lead to 

the development of different hyper algebraic structures. 

With the motivation of these results, we investigate the 

new concepts of Hyper d-Algebra, Hyper d-Ideals, Hyper 

d*-Algebra with different properties mentioned in the 

main result above. In general in this research work we 

used the methods of direct proof method, indirect proof 

and proof by contradiction methods. 

Conclusion 

In this research paper the new concept of Hyper d-

Algebra with different characterizations are discussed. 

This idea can be extended to other algebraic structures by 

including different properties with application. 
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