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Abstract: We present a vector-host deterministic model for the 

transmission and control of malaria, using prevention and treatment as 

controls. A novel addition to our model is a new prevention function that 

highlights the role of prevention in reducing vector populations; an 

essential arsenal in the fight against malaria. Another innovation is the use 

of a novel treatment function, which reflects the fact that, at any given time, 
only a proportion of the infected population has access to proper treatment; 

increasing this proportion is key to the effective control of malaria. Optimal 

control methods are used to determine a proper combination of prevention 

and treatment, necessary to effectively reduce malaria transmission. 

Simulations of the solutions of the optimality system, using varying 

parameter values, show that malaria infections can be drastically reduced 

and possibly eradicated, if contiguous communities implement appropriate 

prevention and treatment strategies.  
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Introduction  

Malaria is a leading cause of mortality and morbidity in 

tropical and subtropical regions of the world, where an 

estimated two hundred million people are at constant risk 

of infection, with Africa being the most impacted.  

The World Health Organization (WHO) reports that in 

Sub-Saharan Africa, malaria kills at least one million 

people annually and it has the potential to increase 

significantly due to continuous climate change. In 

developing countries, the disease persists and has become 
a severe public health and socio-economic challenge. 

Human malaria is a mosquito-borne disease caused by 

the four species of the genus Plasmodium, a protozoan 

parasite. The following species are the causative agents for 

malaria in humans: Plasmodium falciparum, the deadliest 

human parasite and most prevalent in the tropics; 

Plasmodium vivax, the common cause of clinical malaria, 

yet it’s rarely fatal; Plasmodium malariae, a rare cause of 

clinical malaria, particularly in Africa; it can last for 

decades as low-grade parasitaemia. Plasmodium ovale, 

causes clinically relevant but not severe disease however, it 

can be discovered in infections with some other species. 
Transmission of the Plasmodium parasite is through 

the bite of an infected female anopheles’ mosquito 

(Putri and Jaharuddin, 2014). The vector becomes 

infected when it bites an infected human.  

The bites usually occur between dusk and dawn and 

their intensity depends on factors related to the 

Plasmodium parasite, the vector, the human, the 

environment and whether it chooses to bite humans or 

animals (WHO, 2019a). Infection of malaria in humans 

takes place when mosquitoes inject their saliva containing 

sporozoites into humans; they are carried to the liver 

within 30-60 min.  

They then penetrate the liver hepatocytes and undergo 

a phase of asexual multiplication that results in the 

production of approximately 8-6 merozoites and these 

merozoites penetrate the red blood cells.  

This continuous activity is responsible for the cause of 

malaria infection. The symptoms of malaria include fever, 

chills together with headache, vomiting, anemia, diarrhea, 

liver and neurological damage (Adamu et al., 2017). 

Personal protection measures are the first line of 

defense against mosquito-borne diseases. One of the 

methods of personal protection is the use of mosquito 
repellents. These are substances applied to exposed 

skin or to clothing to prevent human-mosquito contact. 

These only repel but do not kill mosquitoes. Other 

techniques for personal protection are the use of 

Insecticide-Treated Bed Nets (ITNs) and Indoor 

Residual Spraying (IRS). The use of ITNs for 

individuals against malaria has been shown to reduce 
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the morbidity of childhood malaria (below five years of 

age) by 50% and global child mortality by 20-30% 

(Binka et al., 1996). When used on a large scale ITNs 

are considered to represent efficient tools for malaria 

vector control. There is, however, a limiting factor of 
resistance in the insecticides used for impregnated nets. 

Resistance of the most important African malaria 

vector Anopheles gambiae S.l. to pyrethroid is already 

widespread in several West African countries most 

especially Ghana. In addition, government intervention 

comes in many forms including mass spraying of 

endemic areas. Many of these prevention strategies 

contribute to a reduction of the vector population. 

The use of mathematical models to investigate the 

spread of infectious diseases is widely used by 

mathematical biologists and epidemiologists. One of the 
first researchers to publish a series of papers on malaria 

using mathematical models to study transmission 

processes (Ross, 1911). His research was on the 

formulation of a differential equation model using 

standard incidence and some biological factors such as the 

biting frequency of the mosquitoes. Therefore, it is not 

necessary to kill all mosquitoes in order to eradicate 

malaria. Several malaria models have been developed and 

studied. In addition, the application of optimal control 

methods to malaria epidemic models, to investigate 

prevention and treatment strategies for controlling malaria, 

has been investigated by several researchers. Notable among 
these studies include (Adamu et al., 2017; Bakare and 

Abolarin, 2018; Bala and Gimba, 2019; Blayneh et al., 

2009; Nana-Kyere and Doe, 2017; Yusuf and Benyah, 

2012) and others.  

Formulation of the Model 

We formulate an SEIRS-SI epidemic model for the 
spread of malaria in human and mosquito populations, 
respectively. The compartments in the human population 
consist of susceptible individuals 𝑆ℎ, exposed individuals 
𝐸ℎ, infectious individuals 𝐼ℎ and recovered individuals 𝑅ℎ. 
The total human population 𝑁ℎ(𝑡), at time t, is given by 

 
𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) 

 

Similarly, the compartments in the mosquito 

population are susceptible vectors 𝑆𝑣  and infectious 

vectors 𝐼𝑣. The total vector population 𝑁𝑣(𝑡), at time 𝑡, 
is given by: 

 
𝑁𝑣(𝑡) = 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡) 

 

Movement from the susceptible classes to either the 

exposed class for humans or the infectious class for the 

vector population depends on the biting rate 𝑏  of the 

mosquitoes and their transmission probabilities 𝛽ℎ , 𝛽𝑣 

respectively. The biting rate 𝑏 is defined as the average 

number of bites per mosquito per day, while the 

transmission probabilities 𝛽ℎ , 𝛽𝑣 , is the probability that an 

infectious bite produces a new case in a susceptible 

population only. 
This model is related partly, to the one in Esteva and 

Vargas (1998), where they assumed that apart from 

humans, the mosquitoes have alternative hosts available 

as blood sources (Esteva and Vargas, 1998). Let m be the 

number of alternative sources for a blood meal. The 

probability that a mosquito chooses a human as a host 

over the other sources is given by 
𝑁ℎ

𝑁ℎ+𝑚
. The probability 

that an individual receives a bite from a mosquito per unit 

of time is given as (
𝑏𝑁𝑣

𝑁ℎ
) (

𝑁ℎ

𝑁ℎ+𝑚
) and the rate at which a 

susceptible human is being infected is (
𝛽ℎ𝑏𝐼𝑣

𝑁ℎ+𝑚
). 

For the vector population, susceptible mosquitoes 
become infected when they bite an infected human. Once 

infected, they remain infected for life. The probability that 

a mosquito takes a human blood meal is (
𝑏𝑁ℎ

𝑁ℎ+𝑚
) per unit 

time and the rate at which a susceptible vector is being 

infected is (
𝛽𝑣𝑏𝐼ℎ

𝑁ℎ+𝑚
). 

In the absence of vaccination, the key intervention 

strategies for the effective control of malaria are 

prevention and treatment. 

Prevention as a Means of Reducing Vector 

Populations 

Many of the prevention methods like Indoor Residual 

Spraying (IRS) and Insecticide Treated bed-Nets (ITNs) 

kill mosquitoes and hence, contribute to a reduction in the 

mosquito population; the fewer the number of mosquitoes 

the less likelihood of a human coming into contact with a 

mosquito. Analysis from Ross (1911) shows that malaria 

can only persist if the number of mosquitoes is above a 

certain threshold (Ross, 1911). A major innovation in our 

model is the addition of a term that shows the contribution 

of prevention efforts in reducing mosquito populations. 

With a prevention rate of 𝛼 per unit time, we represent by 

𝑐𝛼, (0 ≤ 𝑐 ≤ 1)  the proportion of the prevention effort 

that goes into reducing the vector populations. Given a per 

capita natural death rate of 𝜇𝑣 for the vector, we define the 

total per-capita death rate of the vector as: 
 
𝜇𝑣 + 𝑐𝛼 (1) 

 

For instance, 𝑐 = 0 corresponds to protection methods 

like mosquito repellents applied to exposed skin to 

prevent human-mosquito contact. These do not kill 

mosquitoes. However, the other values of 𝑐, (0 < 𝑐 ≤ 1) 
corresponds to the use of prevention methods like IRS and 

ITNs, which kill the mosquitoes and thus, help to reduce 

their population. 
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A Novel Treatment Function 

Effective treatment of malaria includes the use of 
appropriate medications, especially, those recommended 

by WHO (2019a). In all the models reviewed, the 

treatment (recovery) term is given as: 
 
𝛾𝐼ℎ (2) 
 
where 𝛾 is the per-capita recovery rate and 𝐼ℎ is the total 

infective population. The treatment term given above, 

implicitly, assumes that treatment is readily available to 

all infected individuals. In fact, there are many instances 

in which those infected do not have ready access to 

healthcare facilities. Besides, there are individuals who 

cannot afford the cost of the medication. The reality of all 

of this is that, at any given time, only a proportion 𝜅, of 

the infected get effective treatment. Another innovation in 

our model, is we replace Eq. (1) with the term: 
 
𝛾(𝜅𝐼ℎ) (3) 
 

to show that, at any given time, only a proportion of 

the infective population receives full treatment. 

Bearing in mind that, all untreated cases become 

reservoirs for mosquitoes to further transmit malaria to 
healthy individuals, part of our strategies for 

eliminating malaria in our communities, will be to 

ensure that treatment is readily available to all 

infectious individuals. 

 Taking into consideration the aforementioned, the 

description of the SEIRS-SI model is presented in Fig. 1. 

The resulting system of non-linear ordinary differential 

equations with saturation incidence is given as: 

 

{
 
 
 
 

 
 
 
 𝑆ℎ̀ = 𝛬ℎ −

𝛽ℎ𝑏𝑙𝑣𝑆ℎ

𝑁ℎ+𝑚
− (𝜇ℎ + 𝛼)𝑆ℎ + 𝜔𝑅ℎ

𝐸̀ℎ =
𝛽ℎ𝑏𝐼ℎ𝑆ℎ

𝑁ℎ+𝑚
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ

𝐼ℎ = 𝜌ℎ𝐸ℎ − (𝜇ℎ + 𝛾𝜅 + 𝛿)𝐼ℎ
𝑅̀ℎ = 𝛾(𝜅𝐼ℎ) + 𝛼𝑆ℎ − (𝜇ℎ +𝜔)𝑅ℎ

𝑆̀𝑣 = 𝛬𝑣 −
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝑁ℎ+𝑚
− (𝜇𝑣 + 𝑐𝛼)𝑆𝑣

𝐼𝑣 =
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝑁ℎ+𝑚
− (𝜇𝑣 + 𝑐𝛼)𝐼𝑣

 (4) 

 

 
 
Fig. 1: Schematic diagram for the dynamics of the SEIRS-SI 

epidemic model 

Table 1: Description of state variables 

State variables Explanation 

𝑆ℎ(𝑡) Susceptible humans at time t 

𝐸ℎ(𝑡) Exposed humans at the time t 

𝐼ℎ(𝑡) Infectious humans at time t 

𝑅(𝑡) Recovered humans at the time t 

𝑆𝑣(𝑡) Susceptible mosquitoes at time t 

𝐼𝑣(𝑡) Infectious mosquitoes at time t 
 
Table 2: Description of parameters used in the model in Eq. 4  

Parameters  Detailed explanation 

𝛬ℎ Recruitment rate for humans 

𝛬𝑣 Recruitment rates for mosquitoes 

𝛽ℎ Transmission rate from infectious vector to a susceptible human 

𝛽𝑣 Transmission rate from infectious human to a susceptible vector 

𝜇ℎ Per-capita natural death rate for humans 

𝛿 Disease-induced death rate 

𝛾 Per-capita recovery rate 

𝛼 Prevention rate 

𝑐𝛼 Prevention efforts directed at reducing the mosquito population 

𝜇𝑣 Natural per-capita death rate for mosquitoes 
(𝜇𝑣 + 𝑐𝛼) Total per-capita death rate for mosquitoes 

𝜇ℎ Per-capita natural death rate for humans 

𝜔 Rate of loss of immunity for recovered individuals 

𝑏 Biting rate for the mosquitoes 

𝑚 Number of alternative hosts for a blood meal 

𝜌ℎ Progression rate from the exposed state to the infectious state 
1

𝜌ℎ
 Latent period 

𝑐 A constant 0 ≤ 𝑐 ≤ 1 

𝜅 A constant 0 ≤ 𝜅 ≤ 1 

 
The description of the state variables and parameters 

for the model are defined in Tables 1-2. 

where: 
 

𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡)  
𝑁𝑣(𝑡) = 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡) 

 
Let: 

 
𝑞1 = 𝜇ℎ +𝛼 (5)  
𝑞
2
= 𝜇ℎ + 𝜌ℎ 

𝑞3 = 𝜇ℎ + 𝛾𝜅 + 𝛿 

𝑞4 = 𝜇ℎ +𝜔 

𝑞5 = 𝜇𝑣 + 𝑐𝛼 
 

Then, Eq. (4) can be written as 
 

{
 
 
 
 

 
 
 
 𝑆ℎ̀ = 𝛬ℎ −

𝛽ℎ𝑏𝑙𝑣𝑆ℎ

𝑁ℎ+𝑚
− 𝑞1𝑆ℎ + 𝜔𝑅ℎ

𝐸̀ℎ =
𝛽ℎ𝑏𝐼ℎ𝑆ℎ

𝑁ℎ+𝑚
− 𝑞2𝐸ℎ

𝐼ℎ = 𝜌ℎ𝐸ℎ − 𝑞3𝐼ℎ
𝑅̀ℎ = 𝛾𝜅𝐼ℎ +𝛼𝑆ℎ − 𝑞4𝑅ℎ

𝑆̀𝑣 = 𝛬𝑣 −
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝑁ℎ+𝑚
− 𝑞5𝑆𝑣

𝐼𝑣 =
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝑁ℎ+𝑚
− 𝑞5𝐼𝑣

 (6) 

 

Model Analysis 

In order for the model in Eq. (6) to be mathematically 

and epidemiologically meaningful, all the populations and 

subpopulations must be non-negative for 𝑡 > 0. This can 
be achieved by determining an appropriate feasible 

region, for the model in Eq. (4). 



Perpetual Appiah et al. / Journal of Mathematics and Statistics 2024, Volume (20): 18.36 

DOI: 10.3844/jmssp.2024.18.36 

 

21 

Positivity of Solutions 

The following proposition would be used to investigate 
the positivity of the solutions of state variables for t >0.  

Proposition 1 (positivity of solutions). 

Let: 

 
𝛺: = 𝛺ℎ × 𝛺𝑣 ⊂ ℝ

4 ×ℝ2 
 
where: 

 

𝛺ℎ = {(𝑆ℎ, 𝐸ℎ , 𝐼ℎ , 𝑅ℎ)𝜖ℝ+
4 : 𝑆ℎ +𝐸ℎ + 𝐼ℎ +𝑅ℎ ≤

𝛬ℎ
𝜇ℎ
, } 

 
and: 
 

𝛺𝑣 ∶= {(𝑆𝑣 , 𝐼𝑣)𝜖ℝ+
2 : 𝑆𝑣 + 𝐼𝑣 ≤

𝛬𝑣
𝜇𝑣 + 𝑐𝛼

} 

 
 

Suppose that the initial conditions satisfy: 
 
{𝑆ℎ(0) > 0, 𝐸ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0,𝑅ℎ(0) ≥ 0, 𝑆𝑣 > 0, 𝐼𝑣(0))

≥ 0} ∈ 𝛺 
 

Then the solution set: 
 
{𝑆ℎ(𝑡),  𝐸ℎ(𝑡),  𝐼ℎ(𝑡),  𝑅ℎ(𝑡),  𝑆𝑣(𝑡),  𝐼𝑣(𝑡)} for Eq. (6) satisfy: 
 

{𝑆ℎ(𝑡) > 0,𝐸ℎ(𝑡) ≥ 0, 𝐼ℎ(𝑡) ≥ 0, 𝑅ℎ(𝑡) ≥ 0, 𝑆𝑣(𝑡) ≥ 
0, 𝐼𝑣(𝑡) ≥ 0} for all 𝑡 > 0 

 
Proof. From Eq. (4), the time derivative of 𝑆ℎ satisfies: 

 

( )

( )

h h v
h h h h h

h

h v
h h h

h

dS bI
S S R

dt N m

bI
S S

N m


  


 

     


   


 (7) 

 

It follows that: 

 

𝑑𝑆ℎ

𝑑𝑡
≥ −(

𝛽ℎ𝑏

𝑁ℎ+𝑚
𝐼𝑣 + (𝜇ℎ + 𝛼))𝑆ℎ  (8) 

 
Separating the variables gives: 

 

𝑑𝑆ℎ

𝑑𝑡
≥ −(

𝛽ℎ𝑏

𝑁ℎ+𝑚
𝐼𝑣 + (𝜇ℎ + 𝛼))𝑑𝑡 ≥ (9) 

−(
𝛽ℎ𝑏

𝑁ℎ +𝑚
𝐼𝑣
𝑚𝑎𝑥 + (𝜇ℎ + 𝛼))𝑑𝑡 

 
where, 𝐼𝑣

𝑚𝑎𝑥 is the maximum of 𝐼𝑣 in the interval [0, 𝑇]. 
Integrating both sides gives: 
 

𝑙𝑛𝑆ℎ ≥ −(
𝛽ℎ𝑏

𝑁ℎ+𝑚
∫ 𝐼𝑣

𝑚𝑎𝑥𝑑𝜏
𝑡

0
+ (𝜇ℎ +𝛼)𝑡) + 𝑘 ≥

−(
𝛽ℎ𝑏𝐼𝑣

𝑚𝑎𝑥

𝑁ℎ+𝑚
𝑡 + (𝜇ℎ +𝛼)𝑡) + 𝑘  (10) 

 

where, 𝑘 is a constant of integration. 

Exponentiation gives: 

𝑆ℎ(𝑡) ≥ 𝑒
−(

𝛽ℎ𝑏𝐼𝑣
𝑚𝑎𝑥

𝑁ℎ+𝑚
+(𝜇ℎ+𝛼))𝑡+𝑘

 (11) 

 

That is: 

 

𝑆ℎ(𝑡) ≥ 𝐴𝑒
−(

𝛽ℎ𝑏𝐼𝑣
𝑚𝑎𝑥

𝑁ℎ+𝑚
+(𝜇ℎ+𝛼))𝑡

  (12) 
 

where, 𝐴 = 𝑒𝑘 . From the initial condition, we have 

𝑆ℎ(0) ≥ A. This implies that: 

 

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−(

𝛽ℎ𝑏𝐼𝑣
𝑚𝑎𝑥

𝑁ℎ+𝑚
+(𝜇ℎ+𝛼))𝑡

≥ 0 (13) 
 

The time derivative of 𝐸ℎ satisfies: 

 
𝑑𝐸ℎ

𝑑𝑡
=

𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝑁ℎ+𝑚
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ ≥ −(𝜇ℎ + 𝜌ℎ)𝐸ℎ (14) 

 

It follows that: 

 
𝑑𝐸ℎ

𝑑𝑡
≥ −(𝜇ℎ + 𝜌ℎ)𝐸ℎ  (15) 

 

Separating the variables gives: 

 
𝑑𝐸ℎ

𝐸ℎ
≥ −(𝜇ℎ + 𝜌ℎ)𝑑𝑡 (16) 

 

Integrating gives: 

 
𝑙𝑛 𝐸ℎ ≥ −(𝜇ℎ + 𝜌ℎ)𝑡 + 𝑘  (17) 
 

Exponentiation gives: 
 
𝐸ℎ(𝑡) ≥ 𝑒

−(𝜇ℎ+𝜌ℎ)𝑡+𝑘  (18) 
 
where, 𝑘 is a constant. The expression can now be written as: 

 

𝐸ℎ(𝑡) ≥ 𝐵𝑒
−(𝜇ℎ+𝜌ℎ)𝑡   (19) 

 

where, 𝐵 = 𝑒𝑘 . With the given initial condition and at 𝑡 =
0, we have 𝐸ℎ(0) ≥ 𝐵.  

 
Therefore: 

 

𝐸ℎ(𝑡) ≥ 𝐸ℎ(0)𝑒
−(𝜇ℎ+𝜌ℎ)𝑡 ≥ 0  (20) 

 

Similarly, it can be shown that: 
 

𝐼ℎ(𝑡) ≥ 𝐼ℎ(0)𝑒
−(𝜇ℎ+𝛾𝜅)𝑡 ≥ 0  (21) 

 

and: 

 

𝑅ℎ(𝑡) ≥ 𝑅ℎ(0)𝑒
−(𝜇ℎ+𝜔)𝑡 ≥ 0  (22) 

 

𝑆𝑣(𝑡) ≥ 𝑆𝑣(0)𝑒
−(

𝛽𝑣𝑏𝐼ℎ
𝑚𝑎𝑥

𝑁ℎ+𝑚
+(𝜇𝑣+𝛼𝑐))𝑡

≥ 0  (23) 
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and: 

 

𝐼𝑣(𝑡) ≥ 𝐼𝑣(0)𝑒
−(𝜇ℎ+𝛼𝑐)𝑡 ≥ 0  (24) 

 

Proposition 2 (invariant region). The region 𝛺 = 𝛺ℎ × 

𝛺𝑣 defined by: 

 

𝛺ℎ = {(𝑆ℎ , 𝐸ℎ, 𝐼ℎ , 𝑅ℎ)𝜖ℝ+
4 : 𝑆ℎ +𝐸ℎ + 𝐼ℎ +𝑅ℎ ≤

𝛬ℎ
𝜇ℎ
, 𝑆ℎ

> 0, 𝐸ℎ > 0, 𝐼ℎ > 0, 𝑅ℎ > 0} 

 
and: 
 

𝛺𝑣 = {(𝑆𝑣 , 𝐼𝑣)𝜖ℝ+
2 : 𝑆𝑣 + 𝐼𝑣 ≤

𝛬𝑣
𝜇𝑣 + 𝑐𝛼

, 𝑆𝑣 > 0, 𝐼𝑣 > 0} 

 
 

Is positively invariant under the flow given by the 

system in (6). 

Proof. Using the expression for total human population: 
 

𝑁ℎ = 𝑆ℎ +𝐸ℎ + 𝐼ℎ +𝑅ℎ  we have: 
 
𝑁̀ℎ = 𝑆̀ℎ + 𝐸̀ℎ + 𝐼ℎ + 𝑅̀ℎ = 𝛬ℎ − 𝜇ℎ𝑁ℎ − 𝛿𝐼ℎ  (25) 
 

From the last equation in Eq. (25), we obtain 

we obtain: 
 
𝑁̀ℎ + 𝜇ℎ𝑁ℎ = 𝛬ℎ − 𝛿𝐼ℎ
𝑁̀ℎ + 𝜇ℎ𝑁ℎ ≤ 𝛬ℎ

  (26) 

 

Using integrating factor 𝑒𝜇ℎ𝑡, the solution of the linear 

system in Eq. (26) gives: 
 

𝑁ℎ(𝑡) ≤
𝛬ℎ

𝜇ℎ
+ 𝑘1𝑒

−𝜇ℎ𝑡  (27) 

 

where, the constant 𝑘1 = 𝑁ℎ(0) −
𝛬ℎ

𝜇𝑣
. Substituting into 

(27) and re-arranging gives 
 

𝑁ℎ(𝑡) + (
𝛬ℎ

𝜇ℎ
−𝑁ℎ(0))𝑒

−𝜇ℎ𝑡 ≤
𝛬ℎ

𝜇ℎ
  (28) 

 

The inequality in (28), shows that: 

 

𝑁ℎ(0) ≤
𝛬ℎ
𝜇ℎ

⇒ 𝑁(𝑡) ≤
𝛬ℎ
𝜇ℎ
, ∀𝑡 ≥ 0 

 

That is, if the initial population 𝑁ℎ(0), lies within the 

feasible region 𝛺ℎ, then 𝑁ℎ(𝑡) lies in the feasible region 

for the all-time 𝑡 > 0: 

 

limsup ( ) h
t h

h

N t





  

 

The host population is bounded above by its carrying 

capacity 𝐾ℎ =
𝛬ℎ

𝜇ℎ
. 

Similarly, for the vector population, it can be shown that: 

𝑁𝑣(0) ≤
𝛬𝑣

𝜇𝑣 + 𝑐𝛼
⇒ 𝑁𝑣(𝑡) ≤

𝛬𝑣
𝜇𝑣 + 𝑐𝛼

, ∀𝑡 ≥ 0 

 

That is, if the initial vector 𝑁𝑣(0) , lies within the 

feasible region 𝛺𝑣, then 𝑁𝑣(𝑡) lies in the feasible region 

for the all-time 𝑡 > 0: 
 

limsup ( ) h
t h

h

N t
c 







 

 

The vector population is bounded above by its 

carrying 𝐾𝑣 =
𝛬𝑣

𝜇𝑣+ 𝑐𝛼
. 

The region 𝛺 = 𝛺ℎ × 𝛺𝑣  is, therefore, positively 
invariant. Hence, the model in Eq. (6) is mathematically 

and epidemiologically well-posed. 

Equilibrium Points 

Without loss of generality, we determine the 

equilibrium points of the system in Eq. (6), with 𝜅 = 1. 

The equilibrium points are the solutions of: 

 

𝑆̀ℎ = 𝐸̀ℎ = 𝐼ℎ = 𝑅̀ℎ = 𝑆̀𝑣 = 𝐼𝑣 = 0  (29) 

 

The system has unique disease-free and endemic 
equilibrium points denoted respectively, by: 

 

𝛩0 = (𝑆ℎ
0 , 𝐸ℎ

0 , 𝑙ℎ
0 , 𝑅ℎ

0 , 𝑆𝑣
0 , 𝐼𝑣

0) 
 
and: 
 

* * * * * *( , , , , , )h h h h v vS E I R S I   

 
The DFE is given by: 

 

𝛩0 = (
𝛬ℎ(𝜇ℎ+𝜔)

𝜇ℎ(𝛼+𝜇ℎ+𝜔)
, 0, 0,

𝛬ℎ𝛼

𝜇ℎ(𝛼+𝜇ℎ+𝜔)
,

𝛬𝑣

𝛼𝑐+𝜇𝑣
, 0) (30) 

 
The endemic equilibrium point is given by: 

 
* * * * * *( , , , , , )h h h h v vS E I R S I  

 
where: 
 

(𝐾ℎ +𝑚)
2𝑞2𝑞3𝑞5

2(𝑞2𝑞3𝑞4 − 𝛾𝜅𝜔𝜌ℎ)

*

hS =
+𝑞2𝑞3𝑞4𝑞5𝛬ℎ𝑏𝛽𝑣(𝐾ℎ +𝑚)

𝛬𝑣𝑏2𝛽ℎ𝛽𝑣𝜌ℎ(𝑞2𝑞3𝑞4 − 𝛾𝜅𝜔𝜌ℎ)

+𝑏𝛽𝑣𝑞2𝑞3𝑞5𝜌ℎ(𝐾ℎ +𝑚)[𝑞1𝑞4 −𝛼𝜔]

 

 

*

hE =

(𝑞2𝑞3
2𝑞5

2(𝐾ℎ +𝑚)
2(𝑞1𝑞4 − 𝛼𝜔))

2 2

3 4h v h v h hb q q q   

𝛬𝑣𝑏2𝛽ℎ𝛽𝑣𝜌ℎ(𝑞2𝑞3𝑞4 − 𝛾𝜅𝜔𝜌ℎ)

+𝑏𝛽𝑣𝑞2𝑞3𝑞5𝜌ℎ(𝐾ℎ +𝑚)[𝑞1𝑞4 −𝛼𝜔]

 

    

   

2 2

2 3 5

2
* 4

2

2 3 4 2 3 5 1 4

2 1 4h

h v h v h
h

v h v h h v h

q q q K m q q

b q
I

b q q q b q q q Kh m q q



  

      

  

 


      
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   

 
   

2 2

2 3 5 3 1

2 2

2 3 5*

2

2 3 4 2 3 5 1 4

h

h v h v h h v h h

h

v h v h h v h

K m q q q q q

b b q q q K m
R

b q q q b q q q Kh m q q

 

     

      

  

    


      

 

 

 

 

2 3 4

2

2 3 5 1 4*

2

5 2 3 4 4

v h h h

v

h h h h v h

b N m q q q

q q q Kh m q q
S

b q Kh m q q q b q

 



    

    

    
     

 

 
 

2
2 2

2 3 5 1 4 4*

2

5 2 3 4 4

h h v h v h

v

h h h h v h

q q q K m q q b q
I

b q Kh m q q q b q

   

    

      
     

 

 

The Basic Reproduction Number 

In epidemiology, the next-generation matrix is a method 
used to derive the basic reproduction number, for a 
compartmental model of the spread of infectious diseases 
and the method is given by Van den Driessche and 
Watmough (2002); Diekmann et al. (1990). Many of 
today's most important emerging infectious diseases are 

multi-host infections by their very nature. As a result, 
they require a slightly more complex formalism for 
investigating epidemic thresholds, etc. The basic tool for 
examining epidemic thresholds in complex, structured 
models is the so-called next-generation matrix. Consider 
a population of individuals (or species) subdivided into 
𝑛  compartments, of which 𝑚  are infected. Let 𝑥𝑖 
represent the proportion of the population in the ith 

compartment and let the vector of the proportions in all 
the compartments be 𝑥. 

In order to compute ℜ0, it is important to distinguish 

new infections from all other changes in the population. 

Let: 

 

 𝐹𝑖(𝑥)  the rate of appearance of new infections in 

compartment 𝑖 

 𝑉𝑖
+(𝑥)

 is the rate of transfer of individuals into 

compartment I by all other means and 

 𝑉𝑖
−(𝑥)

 is the rate of transfer of individuals out of 

compartment 𝑖 

 

It is assumed that each function is continuously 

differentiable at least twice in each variable. The disease 

transmission model consists of non-negative initial 

conditions together with the following system of equations: 
 
𝑥̀𝑖 = 𝑓𝑖(𝑥) = 𝐹𝑖(𝑥) − 𝑉𝑖(𝑥), 𝑖 = 1,… , 𝑛  (31) 

 

where, i i iV V V    We define the matrices: 

 

𝐹 = [
𝜕𝐹𝑖
𝜕𝑥𝑗

(𝐸0)] , 𝑉 = [
𝜕𝑉𝑖
𝜕𝑥𝑗

(𝐸0)] 

 

where, 𝐸0  denotes the disease-free equilibrium and the 

indices 𝑖, 𝑗 = 1,⋯ ,𝑚. The matrix 𝐺, given by: 

𝐺 = 𝐹𝑉−1 

 
is called the next-generation matrix, (Diekmann et al., 1990). 

The entries of the matrix give the rate at which infected 

individuals of state 𝑗 generate new infections of type 𝑖. 
The basic reproduction number ℜ0, is the dominant 

eigenvalue of 𝐺 denoted by 𝜌(𝐺). That is: 
 
ℜ0 = 𝜌(𝐺) = 𝜌(𝐹𝑉

−1)  (32) 
 

One important aspect of the basic reproduction 

number is that; it determines whether a disease will persist 

or die out if there is an outbreak or there is a small 

perturbation of the system. Therefore, using the next-

generation matrix approach (Diekmann et al., 1990) the 

appearance of new cases of infections 𝐹𝑖 and the rate of 

transfer of infectious from one compartment to a different 

one in the systems 𝑉𝑖 for Eq. (6) is given as: 
 

𝐹𝑖 =

[
 
 
 
 
𝛽ℎ𝑏𝐼𝑣𝑠ℎ
𝐾ℎ +𝑚
0

𝛽𝑣𝑏𝐼ℎ𝑆𝑣
𝐾ℎ +𝑚]

 
 
 
 

 and 𝑉𝑖 = [

(𝜌ℎ − 𝜇ℎ)𝐸ℎ
(𝛿 + 𝜅𝛾 + 𝑢ℎ)𝐼ℎ
(𝑢𝑣 + 𝑐𝛼)𝐼𝑣

] 

 
The corresponding Jacobian matrix 𝐹 and 𝑉 evaluated 

at the DFE respectively is given as: 
 

𝐹 =

[
 
 
 
 0 0

𝑆ℎ𝑏𝛽ℎ
𝐾ℎ +𝑚

0 0 0

0
𝑆𝑣𝑏𝛽𝑣
𝐾ℎ +𝑚

0
]
 
 
 
 

 

 
and: 
 

𝑉 = [

𝜇ℎ + 𝜌ℎ 0 0
−𝜌ℎ 𝛿 + 𝜅𝛾 + 𝜇ℎ 0
0 0 𝛼𝑐 + 𝜇𝑣

] 

 
The next generation matrix 𝐺 = 𝐹𝑉−1 is given as: 

 

𝐺 =

[
 
 
 
 0 0

(𝛬ℎ𝜇ℎ + 𝛬ℎ)𝑏𝛽ℎ
𝛹1

0 0 0
𝛬𝑣𝑏𝛽𝑣𝜌ℎ
𝛹2

𝛬𝑣𝑏𝛽𝑣
𝛹2

0
]
 
 
 
 

 

 

where: 
 

𝛹1 = (𝑐 + 𝜇𝑣)(𝛼𝜇ℎ + 𝜇ℎ
2 + 𝜇ℎ𝜔)(𝐾ℎ +𝑚)

𝛹2 = (𝛼𝑐 + 𝜇𝑣)(𝛿 + 𝜅𝛾 + 𝜇ℎ)(𝐾ℎ +𝑚)
 

 

The eigenvalues obtained from 𝐺 are: 

 

1(𝛼) = +
√

𝛬ℎ𝛬𝑣𝑏2𝛽ℎ𝛽𝑣(𝜇ℎ +𝜔)𝜌ℎ
(𝛼 + 𝜇ℎ + 𝜔)(𝛿 + 𝜅𝛾 + 𝜇ℎ)(𝜇ℎ + 𝜌ℎ)

𝜇ℎ(𝛼𝑐 + 𝜇𝑣)2(𝐾ℎ +𝑚)2

 

2(𝛼) = −√
𝛬ℎ𝛬𝑣𝑏

2𝛽ℎ𝛽𝑣(𝜇ℎ+𝜔)𝜌ℎ
(𝛼+𝜇ℎ+𝜔)(𝛿+𝜅𝛾+𝜇ℎ)(𝜇ℎ+𝜌ℎ)

𝜇ℎ(𝛼𝑐+𝜇𝑣)
2(𝐾ℎ+𝑚)

2

 (33) 
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The spectral radius is the dominant eigenvalue 

obtained in Eq. (33). The basic reproduction number, with 

prevention at the rate 𝛼, denoted by 𝑅𝑜(𝛼), is given by: 
 

0(𝛼) = √
𝛬ℎ𝛬𝑣𝑏

2𝛽ℎ𝛽𝑣(𝜇ℎ+𝜔)𝜌ℎ
𝜇ℎ(𝛼𝑐+𝜇𝑣)(𝐾ℎ+𝑚)(+𝜇ℎ+)

(+𝑘+𝜇ℎ)(𝜇ℎ+𝜌ℎ)

 (34) 

 
The corresponding basic reproduction number without 

prevention (𝛼 = 0) is: 
 

2

2 2
(0) =

( ) ( ) ( )( )

h v h v h
o

h v h h h h

b

K m k

    


         
 (35) 

 
From Eqs. 34-35 it is easy to see that: 

 
0(𝛼) ≤ 0(0)  (36) 
 

The inequality in indicates that it is easier to control 

the spread of an infectious disease when there is 

prevention than without prevention. 

The Endemic Equilibrium Point Expressed in 

Terms of 0 

Using 𝜅 = 1, the endemic equilibrium is expressed in 

terms of the basic reproduction number as fellow: 
 

𝐴(𝑞2𝑞3𝑞4 − 𝛾𝜔𝜌ℎ)

*

hS =
+𝐵𝑞4𝑜

2(𝛼)(𝑞1𝑞4 − 𝛾𝜔)

𝐶𝑜
2(𝛼)(𝑞1𝑞4 − 𝛾𝜔)

*

hE =
𝐷(𝑜

2(𝛼) − 1)

𝐶

*

hI = −
𝐷𝑞3(𝑜

2(𝛼) − 1)

𝐶

*

hR =

𝐴𝜌ℎ(𝛼𝑞3 − 𝛾𝜅𝑞1)

+(𝐴𝜌ℎ + 𝐵)𝑜
2(𝛼)(𝑞1𝑞4 −𝛼𝜔)

𝐶𝑜
2(𝛼)(𝑞1𝑞4 −𝛼𝜔)

*

vS =
𝐺𝑞5𝑜

2(𝛼) + 𝐴𝑞4

𝐻𝑞5𝑜
2(𝛼)

*

vI = −
𝐷(𝑜

2(𝛼) − 1)

𝐻

 

 
where: 

 
𝐴 = 𝛬ℎ𝛬𝑣𝑏

2𝛽ℎ𝛽ℎ𝜌ℎ 

𝐵 = 𝛬ℎ𝑏𝛽𝑣𝜌ℎ𝑞2𝑞3𝑞5(𝐾ℎ +𝑚) 
𝐶 = 𝛬𝑣𝑏

2𝛽ℎ𝛽𝑣𝜌ℎ(𝑞2𝑞3𝑞4 − 𝛾𝜔𝜌ℎ) 
+𝑏2𝛽𝑣𝜌ℎ𝑞2𝑞3𝑞5(𝐾ℎ +𝑚)(𝑞1𝑞4 − 𝛾𝜔) 
𝐷 = 𝑞2𝑞3𝑞5

2(𝐾ℎ +𝑚)
2(𝑞1𝑞4 −𝛼𝜔) 

𝐺 = 𝛬𝑣𝑏𝛽ℎ(𝐾ℎ +𝑚)(𝑞2𝑞3𝑞4 − 𝛾𝜔𝜌ℎ) 
𝐻 = 𝛬ℎ𝑏

2𝛽ℎ𝛽𝑣𝜌ℎ𝑞4 + 𝑏𝛽ℎ𝑞5(𝐾ℎ +𝑚)(𝑞2𝑞3𝑞4 − 𝛾𝜔𝜌ℎ) (37) 

 

Stability Analysis 

Local Stability Analysis of the Disease-Free 

Equilibrium Point 

The following theorem establishes the local stability 

of the disease-free equilibrium point. 

Theorem 1. The disease-free equilibrium point for the 

model in 4 is locally asymptotically stable in 𝛺 if ℜ𝑜(0) <
1 and unstable if ℜ𝑜(0) > 1. 

Proof. The Jacobian matrix 𝐽 , for linearizing the 

system of differential equation in Eq. 4 at the DFE, with 

𝛼 = 0, is given by:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

v h h h
h

h h

v h h h
2

h h

h 3

4

v v h v

h h

v v h v
v

h h

-1 bβ S bβ
- μ 0 0 ω 0 -

K +m K +m

1 bβ S bβ
-q 0 0 0

K +m K +m

0 ρ -q 0 0 0
j =

0 0 kγ -q 0 0

S bβ 1 bβ
0 0 - 0 - 0

K +m K +m

S bβ 1 bβ
0 0 0 - μ

K +m K +m

 

 
Evaluating 𝐽 at DFE gives: 

 
𝐽(𝛼0) =

[
 
 
 
 
 
 
 
 −𝜇ℎ 0 0 𝜔 0

−𝛬ℎ𝑏𝛽ℎ

(𝐾ℎ+𝑚)𝜇ℎ

0 −𝑞2 0 0 0
𝛬ℎ𝑏𝛽ℎ

(𝐾ℎ+𝑚)𝜇ℎ

0 𝜌ℎ −𝑞3 0 0 0
0 0 𝜅𝛾 −𝑞4 0 0

0 0 −
𝛬𝑣𝑏𝛽𝑣

(𝐾ℎ+𝑚)𝜇𝑣
0 −𝜇𝑣 0

0 0
𝛬𝑣𝑏𝛽𝑣

(𝐾ℎ+𝑚)𝜇𝑣
0 0 −𝜇𝑣 ]

 
 
 
 
 
 
 
 

             (38) 

 

Three of the eigenvalues of 𝐽(𝜃0) is given as: 

 

𝜆1,2,3 = −𝜇𝑣 ,−𝜇ℎ ,−(𝜇ℎ + 𝜔) < 0 (39) 
 

Respectively we now use the corollary of gershgorin's 

circle theorem given in Appendix A, to establish the 

stability of the 33 sub-matrix 𝐽3(𝛼0), given by: 
 

𝐽3(𝛼0) =

[
 
 
 
 −𝜌ℎ − 𝜇ℎ 0

𝛬ℎ𝑏𝛽ℎ

𝜇ℎ(𝐾ℎ+𝑚)

𝜌ℎ −𝛿 − 𝜅𝛾 − 𝜇ℎ 0

0
𝛬𝑣𝑏𝛽𝑣

(𝐾ℎ+𝑚)𝜇𝑣
−𝜇𝑣 ]

 
 
 
 

 (40) 

 
Applying the corollary of Gershgorin's circle theorem 

to the Jacobian matrix 𝐽3(𝛼0) gives the inequalities. 
 

( )
( )h

h h
h

h h

b

K m


 



 
   

 
 (41) 

 
−(𝛿 + 𝑘𝛾 + 𝜇ℎ) < −𝜌ℎ (42) 

 

−𝜇𝑣 < −(
𝛬𝑣𝑏𝛽𝑣

(𝐾ℎ  + 𝑚)𝜇𝑣
) (43) 

 
The above inequalities can be rewritten respectively, as: 

 

1 > (
𝛬ℎ𝑏𝛽ℎ

(𝐾ℎ+𝑚)(𝜌ℎ+𝜇ℎ)𝜇ℎ
) (44) 

 

1 > (
𝜌ℎ

(𝛿 + 𝜅𝛾 + 𝜇ℎ)
) (45) 
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1 > (
𝛬𝑣𝑏𝛽𝑣

(𝐾ℎ+𝑚)𝜇𝑣
2) (46) 

 

Multiplying the inequalities 44-46 gives: 

  

1 >
𝛬ℎ𝛬𝑣𝑏

2𝛽ℎ𝛽𝑣𝜌ℎ

𝜇ℎ𝜇𝑣
2(𝐾ℎ+𝑚)

2
= 𝑜

2(0)  (47) 

 

This implies that: 

 

𝑜
2(0) < 1 (48) 

 

This shows that all the eigenvalues of the 33 sub-

matrix in (40) are negative, or have negative real parts.  
Therefore, DFE is locally asymptomatically stable. 

Local Stability of Endemic Equilibrium Point 

The following theorem establishes the local stability 

of the EE, with 𝜅 = 1. 

Theorem 2. The endemic equilibrium is locally 

asymptotically stable in 𝛺 if 𝑜(𝛼) > 1 and unstable if 

(𝛼) < 1. 

Proof. The Jacobian matrix evaluated at the EE θ∗ is:  
 

𝐽 (
* ) =

[
 
 
 
 
 
 −𝑍1 − 𝑞1 0 0 𝜔 0 −

𝜏1

𝐶(𝐾ℎ+𝑚)

𝑍1 −𝑞2 0 0 0
𝜏1

𝐶(𝐾ℎ+𝑚)

0 𝜌ℎ −𝑞3 0 0 0
𝛼 0 𝜅𝛾 −𝑞4 0 0
0 0 −𝑍2 0 −𝑍3 − 𝑞5 0
0 0 𝑍2 0 𝑍3 −𝑞5 ]

 
 
 
 
 
 

 (49) 

 

where: 
 

         

  
 

    

 

  
 

2 2

1 1 4 0 4 2 3 4 1 4 0

2

0

1

2 2

0 5 4 0 5

2

2

0 3

3

1

1

h h

h

h

h

h

q q BR q q q q k A q q R b

R Db
z

H K m

GR q Aq R b vq
z

H K m

R Db vq
z

C K m

      

 

  

 

    
















 

 

Using the corollary of Gershgorin's circle theorem in 

Appendix A, we have: 

 

−(𝑞1 +𝑍1) < −(𝜔 +
𝜏1

𝐶(𝐾ℎ+𝑚)
) (50) 

 

−𝑞2 < −(𝑍1 +
𝜏1

𝐶(𝐾ℎ+𝑚)
) (51) 

 

−𝑞3 < −𝜌ℎ (52) 

 

−𝑞4 < −(𝛼 + 𝜅𝛾) (53) 

−(𝑞5 +𝑍3) < −
(𝐺𝑅𝑜

2(𝛼)𝑞5+𝐴𝑞4)𝑅𝑜
2(𝛼)𝑏𝛽𝑣𝑞5

𝐻(𝐾ℎ+𝑚)
 (54) 

 

−𝑞5 < −
(𝐺𝑅𝑜

2(𝛼)𝑞5+𝐴𝑞4)

𝐻(𝐾ℎ+𝑚)

𝑅𝑜
2(𝛼)𝑏𝛽𝑣𝑞5

𝐻(𝐾3+𝑚
−𝑍3 (55) 

 

The inequalities in Eqs. 51-55 can be rewritten 

respectively, as: 

 

(𝑞1 +𝑍1)− (𝜔 +
𝜏1

𝐶(𝐾ℎ+𝑚)
) > 0 (56) 

 

𝑞2 − (𝑍1 +
𝜏1

𝐶(𝐾ℎ+𝑚)
) > 0 (57) 

 

𝑞3 − 𝜌ℎ > 0 (58) 
 

𝑞4 − (𝛼 + 𝜅𝛾) > 0 (59) 
 

(𝑞5 +𝑍3) − (
(𝐺𝑅𝑜

2(𝛼)𝑞5+𝐴𝑞4)𝑅𝑜
2(𝛼)𝑏𝛽𝑣𝑞5

𝐻(𝐾ℎ+𝑚)
) > 0 (60) 

 

𝑞5 − (
(𝐺𝑅𝑜

2(𝛼)𝑞5+𝐴𝑞4)𝑅𝑜
2(𝛼)𝑏𝛽𝑣𝑞5

𝐻(𝐾ℎ+𝑚)
+𝑍3) > 0 (61) 

 
Adding the inequalities in Eqs. 56-61 gives: 

 

2
(𝑅𝑜

2(𝛼)−1)𝐷𝑏𝛽𝑣𝑞3

𝐶(𝐾ℎ+𝑚)
+ 2

(𝑅𝑜
2(𝛼)−1)𝐷𝑏𝛽ℎ

𝐻(𝐾ℎ+𝑚)
+ 𝑍4 > 0 (62) 

 
where: 

 

𝑍4 = 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 2𝑞5 +𝜔+ 𝜌ℎ + (𝛼 + )  (63) 

+2(𝜔 +
𝜏1

𝐶(𝐾ℎ+𝑚)
)  + 2 (

(𝐺𝑅𝑜
2(𝛼)𝑞5+𝐴𝑞4)𝑅𝑜

2(𝛼)𝑏𝛽𝑣𝑞5

𝐻(𝐾ℎ+𝑚)
)  

 

The inequality in (64) can be rewritten as: 

 

(𝑜
2(𝛼) − 1) (2

𝐷𝑏𝛽𝑣𝑞3

𝐶(𝐾ℎ+𝑚)
+ 2

𝐷𝑏𝛽ℎ

𝐻(𝐾ℎ+𝑚)
) + 𝑍4 > 0 (64) 

 

Since 𝑍4 > 0, then the inequality in (64) is satisfied 

provided:  
 

(𝑜
2(𝛼) − 1) (2

𝐷𝑏𝛽𝑣𝑞3

𝐶(𝐾ℎ+𝑚)
+ 2

𝐷𝑏𝛽ℎ

𝐻(𝐾ℎ+𝑚)
) > 0 (65) 

 
Again, the inequality in (66) is positive if: 

 
(ℜ𝑜

2(𝛼) − 1) > 0 (66) 
 

That is: 
 
𝑜
2(𝛼) > 1 (67) 

 
Or equivalently: 

 
𝑜(𝛼) > 1 (68) 
 

Hence, the endemic equilibrium is locally asymptotically 

stable provided 𝑜(𝛼) > 1 and unstable otherwise. 

Global Stability of Disease-Free Equilibrium Point 

 In order to ensure that DFE is independent of the 

initial size of the sub-population of the model, it is 
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necessary to show that the DFE is globally asymptotically 

stable. One of the approaches to studying the global 

asymptotic stability of DFE is to construct an appropriate 

Lyapunov function (Lazarus, 2018). The following 

theorem describes the global stability.  

Theorem 3. The DFE is globally asymptotically stable 

in 𝛺 if ℜ𝑜 ≤ 1.  
 

Proof. Consider a Lyapunov function: 
 

𝑉 = 𝑐0𝐸ℎ + 𝑐1𝐼ℎ + 𝑐2𝐼𝑣 

 

where: 
 

𝑐0 > 0, 𝑐1 > 0, 𝑐2 > 0 
 

The time derivative of the Lyapunov function 𝑉 gives 

the following expression: 
 

𝑉̀ = 𝑐0𝐸̀ℎ + 𝑐1𝐼ℎ + 𝑐2𝐼𝑣 
 

Substituting 𝐸̀ℎ , 𝐼ℎ  and 𝐼𝑣  into the equation above 

gives us: 
 

𝑉̀ = 𝑐0 [
𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ] (69) 

 +𝑐1[𝜌ℎ𝐸ℎ − (𝜇ℎ + 𝛾𝜅 + 𝛿)𝐼ℎ] 

+𝑐2 [
𝛽𝑣𝑏𝐼ℎ𝑆𝑣
𝐾ℎ +𝑚

− (𝜇𝑣 + 𝑐𝛼)𝐼𝑣] 

 
Note that: 

 

𝑆ℎ =
𝛬ℎ(𝜇ℎ+𝜔)

𝜇ℎ(𝜇ℎ+𝛼+𝜔)
 and 𝑆𝑣 =

𝛬𝑣

𝜇𝑣+𝛼𝑐
  (70) 

 
Substituting Eq. (70) into Eq. (69) gives: 

 

𝑉̀ = 𝑐0 [
𝛽ℎ𝑏𝐼𝑣𝛬ℎ(𝜇ℎ+𝜔)

𝜇ℎ(𝜇ℎ+𝛼+𝜔)(𝐾ℎ+𝑚)
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ] (71) 

+𝑐1[𝜌ℎ𝐸ℎ − (𝜇ℎ + 𝛾𝜅 + 𝛿)]𝐼ℎ 

2 ( )
( )( )

v h v
v v

v h

bI
c c I

c K m


 

 

 
   

  
 

Grouping Eq. (71) into Eh, Ih and Iv gives: 
 
𝑉̀ = [𝑐1𝜌ℎ − 𝑐0(𝜇ℎ + 𝜌ℎ)]𝐸ℎ (72) 

2 1( )
( )( )

v v
h h

v h

b
c c k I

c K m


  

 

 
    

  
 

+[𝑐0
𝛽ℎ𝑏𝛬ℎ(𝜇ℎ +𝜔)

𝜇ℎ(𝜇ℎ +𝛼 +𝜔)(𝐾ℎ +𝑚)
− 𝑐2(𝜇𝑣 + 𝑐𝛼)] 𝐼𝑉 

 

Further simplification gives: 

 

𝑉̀ = 𝑐0(𝜇ℎ + 𝜌ℎ)[
𝑐1𝜌ℎ

𝑐0(𝜇ℎ+𝜌ℎ)
− 1]𝐸ℎ

+𝑐1(𝜇ℎ + 𝛿 + 𝛾)𝜅 [

𝑐2𝛽𝑣𝑏𝛬𝑣
𝑐1(𝜇ℎ + 𝛿 + 𝛾𝜅)

(𝜇𝑣 + 𝑐𝛼)(𝐾ℎ +𝑚)
] 𝐼ℎ

+𝑐2(𝜇𝑣 + 𝛼𝑐) [
𝑐0𝛽ℎ𝑏𝛬ℎ(𝜇ℎ+𝜔)

𝑐2(𝜇𝑣+𝛼𝑐)𝜇ℎ(𝜇ℎ++)(𝐾ℎ+𝑚)
− 1] 𝐼𝑣

  (73) 

 

Considering the coefficient of 𝐼𝑣  in Eq. (72), we 

choose the constant 𝑐0, 𝑐1, 𝑐2 respectively as: 

𝑐0 =
𝑐2𝜇ℎ(𝜇ℎ + 𝛼𝜔)(𝜇𝑣 + 𝑐𝛼)(𝐾ℎ +𝑚)

𝛽ℎ𝑏𝛬ℎ(𝜇ℎ +𝜔)

𝑐1 =
𝑐0(𝜇ℎ + 𝜌ℎ)

𝜌ℎ

𝑐2 =
𝑐1(𝜇ℎ + 𝛿 + 𝛾𝜅)(𝜇𝑣 + 𝑐𝛼)(𝐾ℎ +𝑚)

𝛽𝑣𝑏𝛬𝑣

 

 

Substituting 𝑐0, 𝑐1 and 𝑐2into Eq. (73) gives: 

 

𝑉̀ = 𝑐0(𝜇ℎ + 𝜌ℎ)[
𝑐0(𝜇ℎ+𝜌ℎ)𝜌ℎ

𝑐0𝜌ℎ(𝜇ℎ+𝜌ℎ)
− 1]𝐸ℎ

+𝑐1(𝜇ℎ + 𝛿 + 𝛾𝜅) [

𝑐1(𝜇ℎ + 𝛿 + 𝛾𝜅)(𝜇𝑣 + 𝑐𝛼)
(𝐾ℎ+𝑚)𝛽𝑣𝑏𝛬𝑣

𝑐1(𝜇ℎ+𝛿+𝛾𝜅)(𝜇𝑣+𝑐𝛼)
− 1

(𝐾ℎ +𝑚)𝛽𝑣𝑏𝛬𝑣

] 𝐼ℎ

+𝑐2(𝜇𝑣 +𝛼𝑐) [

𝑐0𝛽𝑣𝛽ℎ𝑏
2𝛬𝑣𝛬ℎ(𝜇ℎ +𝜔)𝜌ℎ

𝑐1(𝜇ℎ + 𝛿 + 𝛾𝜅)(𝜇𝑣 +𝛼𝑐)
2

𝜇ℎ(𝜇ℎ + 𝛼 +𝜔)(𝐾ℎ +𝑚)
2

] 𝐼𝑣 .

  (74) 

 

Simplifying Eq. (74) gives: 

 

𝑉̀ = 𝑐2(𝜇𝑣 +𝛼𝑐) [

𝑐0𝛽𝑣𝛽ℎ𝑏
2𝛬𝑣𝛬ℎ(𝜇ℎ +𝜔)𝜌ℎ

𝑐1(𝜇ℎ + 𝛿 + 𝛾𝜅)(𝜇𝑣 +𝛼𝑐)
2

𝜇ℎ(𝜇ℎ +𝛼 + 𝜔)(𝐾ℎ +𝑚)
2

] 𝐼𝑣  (75) 

 

Again, substituting 𝑐1 and 𝑞5 from Eq. (77) and Eq. gives: 

 

𝑉̀ = 𝑐2(𝑞5) [

𝑐0𝛽𝑣𝛽ℎ𝑏
2𝜌ℎ𝛬𝑣𝛬ℎ(𝜇ℎ+𝜔)𝜌ℎ

𝑐0(𝜇ℎ+𝜌ℎ)(𝜇ℎ+𝛿+𝛾𝜅)
− 1

(𝑞5)
2𝜇ℎ(𝜇ℎ + 𝛼 +𝜔)(𝐾ℎ +𝑚)

2
] 𝐼𝑣 , (76) 

 

Which can be expressed in terms of 𝑅𝑜
2 as: 

 

𝑉̀ = 𝑐2(𝜇𝑣 +𝛼𝑐)[𝑜
2(𝛼) − 1]𝐼𝑣 (77) 

 

Therefore: 

 

{
𝑉̀ = 0  if 𝑜

2 = 1

𝑉̀ < 0  if 𝑜
2 < 1

 (78) 

 

Hence, the DFE is globally asymptotically stable in 𝛺 

if 𝑜
2 ≤ 1. 

Global Stability of the Endemic Equilibrium 

The following theorem will be used to prove for global 

stability of the EE. 

Theorem 4. The EE is globally asymptotically stable 

in Ω if 𝑜(𝛼) > 1. 

Proof. We define the following candidate logarithmic 

Lyapunov function as: 

 

𝑉̀ = 𝑐1 (𝑆ℎ −
*

hS − *

hS 𝑙𝑜𝑔
𝑆ℎ

*

hS
)+ 
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𝑐2 (𝐸ℎ −
*

hE − *

hE 𝑙𝑜𝑔
𝐸ℎ

*

hE
)+ 

𝑐3 (𝐼ℎ −
*

hI − *

hI 𝑙𝑜𝑔
𝐼ℎ

*

hI
) + 

𝑐4 (𝑆𝑣 −
*

vS − *

vS 𝑙𝑜𝑔
𝑆𝑣

*

vS
) + 

𝑐5 (𝐼𝑣 −
*

vI − *

vI 𝑙𝑜𝑔
𝐼𝑣

*

vI
) 

 
where, (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5) > 0, are to be determined. Note 

that 𝑉 = 0  when (𝑆ℎ ,  𝐸ℎ, 𝐼ℎ, 𝑆𝑣, 𝐼𝑣) =
* * * * * *( , , , , , )h h h h v vS E I R S I and 𝑉 > 0 , otherwise. Hence, 𝑉  is 

radially unbounded. We need to show that the derivative 

𝑉 > 0. The time derivative of 𝑉 is given by: 
 

𝑉̀ = 𝑐1 (1 −

*

hS

𝑆ℎ
) 𝑆̀ℎ + 𝑐2 (1 −

*

hE

𝐸ℎ
) 𝐸̀ℎ + 𝑐3  (79) 

(1 −

*

hI

𝐼ℎ
) 𝐼ℎ + 𝑐4(1 −

*

vS

𝑆𝑣
)𝑆̀𝑣 + 𝑐5 (1−

*

vI

𝐼𝑣
)𝐼𝑣  

 

Substitute 𝑆̀ℎ , 𝐸̀ℎ , 𝐼ℎ , 𝑆̀𝑣 , 𝐼𝑣 into Eq. (79) gives:  
 

𝑉̀ = 𝑐1

*

h h

h

S S

S

 
 
 

[𝛬ℎ −
𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− (𝜇ℎ +𝛼)𝑆ℎ + 𝜔𝑅ℎ] + 𝑐2

*

h h

h

E E

E

 
 
 

[
𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ] + 𝑐3

*

h h

h

I I

I

 
 
 

[𝜌ℎ𝐸ℎ −

(𝜇ℎ + 𝛾𝜅 + 𝛿)𝐼ℎ] + 𝑐4

*

v v

v

S S

S

 
 
 

[𝛬𝑣 −
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 +

𝛼𝑐)𝑆𝑣] + 𝑐5

*

v v

v

I I

I

 
 
 

[
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝛼𝑐)𝐼𝑣] (80) 

 
Replacing 𝛬ℎ and 𝛬𝑣 with the corresponding values at 

the endemic equilibrium points gives:  

 

𝑉̀ = 𝑐1

*

h h

h

S S

S

 
 
 

* *( )h v h
h h h

h

bI S
S R

K m


  

 
   

 
 (81) 

−𝑐1

*

h h

h

S S

S

 
 
 

* *( )h v h
h h h

h

bI S
S R

K m


  

 
   

 
 

+𝑐2

*

h h

h

E E

E

 
 
 

( )h v h
h h h

h

bI S
E

K m


 

 
  

 
 

+𝑐3

*

h h

h

I I

I

 
 
 

[𝜌ℎ𝐸ℎ − (𝜇ℎ + 𝛾𝜅 + 𝛿)𝐼ℎ] 

+𝑐4

*

v v

v

S S

S

 
 
 

[ v h v

h

bI S

K m




− *( )v vc S  ] 

−𝑐4

*

v v

v

S S

S

 
 
 

[
𝛽𝑣𝑏𝐼ℎ𝑆𝑣
𝐾ℎ +𝑚

− (𝜇𝑣 +𝛼𝑐)𝑆𝑣] 

+𝑐5

*

v v

v

I I

I

 
 
 

[
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝛼𝑐)𝐼𝑣]   

 
Factorizing like terms gives: 

 

𝑉̀ = 𝑐1

*

h h

h

S S

S

 
 
 

[
*

h v h h v h

h h

bI S bI S

K m K m

  
 

  
] (82) 

−𝑐1

*

h h

h

S S

S

 
 
 

[(𝜇ℎ +𝛼)(𝑆ℎ −
*

hS ) −𝜔  *

h hR R ] 

+𝑐2  
*

h h h v h
h

h h

E E bI S
h E

E K m


 

  
   

  
 

+𝑐3

*

h h

h

I I

I

 
 
 

[𝜌ℎ𝐸ℎ − (𝜇ℎ + 𝛾𝜅 + 𝛿)𝐼ℎ] 

+𝑐4

*

v v

v

S S

S

 
 
 

[
* *

v h v

h

bI S

K m




− v h v

h

bI S

K m




] 

   
*

*

4
v v

v v v

v

S S
c c S S

S
 


    

+𝑐5 (
*

v v

v

I I

I


) [

𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 +𝛼𝑐)𝐼𝑣]  

 
Multiplying out all of Eq. (82) is given as: 

 
𝑉̀

=
* * * *2

1 1

( )

h v h h v h

h h h

c bI S c bI S

K m K m S

 


 
−
𝑐1𝛽ℎ𝑏𝐼𝑣𝑆ℎ
𝐾ℎ +𝑚

+
* *2

1 h v h

h

c bI S

K m





−
𝑐1(𝜇ℎ +𝛼)  *

h hS S
2

𝑆ℎ

+𝑐1𝜔  *

h hR R  *

h hS S

𝑆ℎ

+
𝑐2𝛽ℎ𝑏𝑆ℎ𝐼𝑣
(𝐾ℎ +𝑚)

−𝑐2𝛽ℎ𝑏𝑆ℎ𝐼𝑣
*

hE

(𝐾ℎ +𝑚)𝐸ℎ
− 𝑐2(𝜇ℎ + 𝜌ℎ)𝐸ℎ

+ 𝑐2(𝜇ℎ + 𝜌ℎ)
*

hE + 𝑐3𝜌ℎ𝐸ℎ −
𝑐3𝜌ℎ𝐸ℎ

*

hI

𝐼ℎ

− 𝑐3(𝜇ℎ + 𝛾𝑘 + 𝛿)𝐼ℎ + 𝑐3(𝜇ℎ + 𝛾𝑘 + 𝛿)
*

hI +
𝑐4𝛽𝑣𝑏

*

hI *

vS

𝐾ℎ +𝑚

−
𝑐4𝛽𝑣𝑏

*

hI 𝑆𝑣
2

(𝐾ℎ +𝑚)𝑆𝑣

−𝑐4𝛽𝑣𝑏𝐼ℎ𝑆𝑣
𝐾ℎ +𝑚

+
𝑐4𝛽𝑣𝑏𝐼ℎ

*

vS

𝐾ℎ +𝑚

−
𝑐4(𝜇𝑣 + 𝑐𝛼)(𝑆𝑣 −

*

vS )
2

𝑆𝑣

+𝑐5𝛽𝑣𝑏𝐼ℎ𝑆𝑣
𝐾ℎ +𝑚

−
𝑐5𝛽𝑣𝑏𝐼ℎ𝑆𝑣

*

vI

(𝐾ℎ +𝑚)𝐼𝑣
 

−𝑐5(𝜇𝑣 + 𝛼𝑐) (𝐼𝑣 −
*

vI ) (83) 
 

It is clearly seen that when 𝑐1 = 𝑐2, −
𝑐1𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
 cancels 

𝑐2𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
; when 𝑐4 = 𝑐5, −

𝑐4𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
 cancels 

𝑐5𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
 and 

when 𝑐3 =
𝑐2(𝜇ℎ+𝜌ℎ)

𝜌ℎ
, 𝑐3𝜌ℎ𝐸ℎ cancels −𝑐2 𝜌ℎ)𝐸ℎ. 

Equation (83) now simplifies to: 



Perpetual Appiah et al. / Journal of Mathematics and Statistics 2024, Volume (20): 18.36 

DOI: 10.3844/jmssp.2024.18.36 

 

28 

 

 

 

* 2 * * * *2

2 2 2

* * * * * *

2 2 2

*

*
*

2 3* *

*
*

3 3 3*

( )( )

( )( )
.

( ) ( )

( ) (h

h h h h v h h v h

h h h h

h v h v h h h h h h v

h v h h

h h v
h h h h h

h h v

h
h h h h

h h

c S S c bI S c bI S
V

S K m K m S

c bI S I c R R S S c bS I

K m I S K m

E S I
c E c k I

E S I

I
c k I c E c k

I E

   

  

    

     

 
    

 

 
 

 

     

      *

* 2 * *2

4 4

* * * * *

4 4

* *

)

( )( )

( )

( )

h

v v v v h v

v h v

v h v v h v v h v

h h v h v

I

c c S S c bI S

S K m S

c bI S c bI S I I S

K m K m I I S



  

 



 
 




 

 (84) 

 

From the Equilibrium points in Eq. (80), we obtain 

the following: 

 

* *
*

* *

3 2

* * *
*2

3 2*

* * * *
* 2

* *

( )

( ) ( )

( )

h h v
h

h

h h h h

h h v h h
h h h h

h h h

h h h v h h
h

h h h h h

bS I
E

K m

c k I c E

c bS I I E
c E c

K m I E

I c bS I I E
E

I E K m I E


 

    


  



 


   

  





 (85) 

 

Now, we have: 

 

𝑉̀ =
−𝑐2(𝜇ℎ+𝛼)(𝑆ℎ−

*
hS )

2

𝑆ℎ
+
𝑐2𝛽ℎ𝑏

*
vI *

hS

𝐾ℎ+𝑚

−𝑐2𝛽ℎ𝑏
*
vI 𝑆ℎ

2

(𝐾ℎ+𝑚)𝑆ℎ
+

𝑐2𝛽ℎ𝑏
*
vI *

hS *
vI

*( )h vK m I

+𝑐2𝜔(𝑅ℎ−
*
hR )(𝑆ℎ−

*
hS )

𝑆ℎ
−

𝑐2𝛽ℎ𝑏
*
hS *

vI

(𝐾ℎ+𝑚)
⋅

*
hE 𝑆ℎ𝐼𝑣

𝐸ℎ
*
hS *

vI

+𝑐2𝛽ℎ𝑏
*
hS *

vI

𝐾ℎ+𝑚
−
𝑐2𝛽ℎ𝑏

*
hS *

vI

𝐾ℎ+𝑚

*
hI 𝐸ℎ

𝐼ℎ
*
hE

+
𝑐2𝛽ℎ𝑏

*
hS *

vI

𝐾ℎ+𝑚
−

𝑐3(𝜇ℎ + 𝛾𝑘 + 𝛿)𝐼ℎ −
𝑐4(𝜇𝑣+𝑐𝛼)(𝑆𝑣−

*
vS )

2

𝑆𝑣

+𝑐4𝛽𝑣𝑏
*
hI *

vS

𝐾ℎ+𝑚
−

𝑐4𝛽𝑣𝑏
*
hI 𝑆𝑣

2

(𝐾ℎ+𝑚)𝑆𝑣
+

𝑐4𝛽𝑣𝑏𝐼ℎ
*
vS

𝐾ℎ+𝑚
.

*
hI

*
hI

−𝑐4𝛽𝑣𝑏
*
hI *

vS

(𝐾ℎ+𝑚)
⋅

*
vI 𝐼ℎ𝑆𝑣

𝐼𝑣
*
hI *

vS

− 𝑐4(𝜇𝑣 +

𝛼𝑐) (𝐼𝑣 −
*
vI )  (86) 

 

This implies that: 

𝑉̀ =
−𝑐2(𝜇ℎ + 𝛼)( hS − *

hS )
2

hS

+ 2 hc b *
vI *

hS

hK m
 

[3 −

*
hS

hS
−

*
hE vI 𝑆ℎ

𝐸ℎ
*
vI *

hS

−

*
hI 𝐸ℎ

hI
*
hE

] 

+ 2 hc b vI
*
hS

hK m
+

1c (𝑅ℎ −
*
hR ) ( hS − *

hS )

hS
 

−𝑐3(𝜇ℎ + 𝛾𝑘 + 𝛿)𝐼ℎ

−
𝑐4(𝜇𝑣 + 𝑐𝛼) ( vS − *

vS )
2

vS

+ 2 hc b *
hI *

vS

hK m
 

[2−

*
vS

vS
−

*
vI hI 𝑆𝑣

vI
*
hI *

vS

]
+ 2 hc b 𝐼ℎ

*
vS

hK m
 

−𝑐4(𝜇𝑣 + 𝛼𝑐) (𝐼𝑣 −
*
vI )  (87) 

 

Again, suppose we have the relation 𝑐2 =

𝑐4(𝜇𝑣+𝑐𝛼)(𝐾ℎ+𝑚)

𝛽ℎ𝑏
*
hS

 and 𝑐3 =
𝑐4𝛽𝑣𝑏

*
vS

(𝜇ℎ+𝛾𝜅+𝛿)(𝐾ℎ+𝑚)
, then Eq. (87) 

becomes: 

 

𝑉̀ =
−𝑐2(𝜇ℎ +𝛼)( hS − *

hS )
2

hS

+ 2 hc b *
vI *

hS

hK m
 

[3−

*
hS

hS
−

*
hE vI hS

hE
*
vI *

hS

−

*
h hI E

*
h hI E

]
+𝑐4(𝜇𝑣+𝑐𝛼)(𝐾ℎ+𝑚)

𝛽ℎ𝑏
*
hS

 (88) 

.
𝛽ℎ𝑏𝐼𝑣

*
hS

hK m

+ 1c ( hR − *
hR ) ( hS − *

hS )

hS
 

−
4 vc b *

vS ( h    ) 𝐼ℎ

h    ( hK m )
 

−
𝑐4(𝜇𝑣 + 𝑐𝛼)( vS − *

vS )
2

vS
+

4

* *
v h vc bI S

hK m
 

[2−

*
vS

vS
−

*
vI 𝐼ℎ𝑆𝑣

vI
*
hI *

vS

] −
4

* *
v h vc bI S

hK m
 

−𝑐4(𝜇𝑣 + 𝛼𝑐)
*

vI  

 

This simplifies to: 

 

𝑉̀ =
−𝑐2(𝜇ℎ +𝛼) ( hS − *

hS )
2

hS
+

*
2 h vc bI *

hS

hK m
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[3−

*
hS

hS
−

*
hE vI hS

hE
*
vI *

hS

−
*

*
h h

h h

I E

I E
] +

𝑐2𝜔(
*

h hR R )( hS −
*
hS )

hS
−

𝑐4(𝜇𝑣+𝑐𝛼)(
*

v vS S )

2

vS
+

𝑐4𝛽𝑣𝑏
*
hI *

vS

hK m
[2 −

*
vS

vS
−

*
vI 𝐼ℎ vS

𝐼𝑣
*
hI *

vS

] −

𝑐4(𝜇𝑣 +𝛼𝑐) (
*
vI ) (89) 

 

Substituting *
vI  into Eq. (89) gives: 

 

𝑉̀ =
−𝑐2(𝜇ℎ+𝛼)( hS −

*
hS )

2

hS

+𝑐2𝛽ℎ𝑏
*
vI *

hS

hK m
[3 −

*
hS

hS
−

*
hE vI hS

hE
*
vI *

hS

−
*

*
h h

h h

I E

I E
] +

𝑐2𝜔( hR −
*
hR )( hS −

*
hS )

hS
−

𝑐4(𝜇𝑣+𝑐𝛼)( vS −
*
vS )

2

vS
+

𝑐4𝛽𝑣𝑏
*
hI *

vS

hK m
  

[2−

*
vS

vS
−

*
vI 𝐼ℎ vS

vI
*
hI *

vS

] −

(

𝑐4(𝜇ℎ+𝜌ℎ)(𝜇ℎ+𝛾𝜅+𝛿)𝐾
2

(𝜇ℎ(𝜇ℎ+𝛼+𝜔))[𝑅𝑜
2(𝛼)−1]

𝑏𝛽ℎ𝐾[𝜇ℎ(𝜇ℎ+𝛾𝜅+𝛿)(𝜇ℎ+𝜔)+𝜔𝜌ℎ(𝜇ℎ+𝛿)]

+𝛬ℎ𝑏
2𝛽ℎ𝛽𝑣(𝜇ℎ+𝜔)𝜌ℎ

)  (90) 

 

where, 𝐾 = (𝜇𝑣 + 𝑐𝛼)(𝐾ℎ +𝑚). 

The term 

*
1 ( )h hc R R  *( )h hS S

hS
is non-positive 

because 𝑆ℎ decreases monotonically *
hS and 𝑅ℎ increases 

monotonically to *
hR . The expression in Eq is, therefore, 

negative if ℜ𝑜
2(𝛼) > 1. 

Hence, the endemic equilibrium is globally 

asymptotically stable in 𝛺, if ℜ𝑜
2(𝛼) > 1. 

Parameter Estimation 

 The main tool for estimating the parameters of the 

model given in Eq. (91), is the use of demographic 

estimates and implementation of the least-square method 

approach in Python, using the daily confirmed cases in 

Ghana, obtained from WHO from 2004-2017.  

Demographic Estimates 

Here, pre-estimating some demographic parameters 

such as 𝛬ℎ  and 𝜇ℎ  using information obtained from 
(FactBook, 2019; WHO, 2019b). 

The total population of Ghana as of 2016 was given as 

28,207,000 and the life expectancy at birth was given as 

64 years (WHO, 2019b). 

Hence, the estimated daily natural death 𝜇ℎ  rate is 

given as:  

 

𝜇ℎ =
1

64 × 365
= 0.000042808219  

 

We assume that the 𝑏𝑖𝑟𝑡ℎ𝑟𝑎𝑡𝑒 = 𝑑𝑒𝑎𝑡ℎ𝑟𝑎𝑡𝑒 = 𝜇ℎ . 

The carrying capacity for humans 𝐾ℎ is given as  

 

𝐾ℎ =
𝛬ℎ
𝜇ℎ

 

 

So the recruitment rate is given by:  

 

𝛬ℎ = 𝐾ℎ × 𝜇ℎ 

 

Therefore, the estimated daily recruitment rate for 

humans is computed as: 
 
𝛬ℎ = 𝐾ℎ × 𝜇ℎ = 28000000 × 0.000042808219.≈ 1200 

 
The life expectancy for mosquitoes to live is 30 days 

(WHO, 2018). Hence, the estimated death rate for 

mosquitoes was given as: 

 

𝜇𝑣 =
1

30
= 0.03 

 

The remaining parameters 𝛬𝑣 , 𝑏, 𝛽ℎ , 𝛽𝑣 , 𝛾, 𝛼,𝜔, 𝛿  and 

𝑚  were obtained by fitting the model solution to the 

observed infection data.  

Ghana Malaria Infection Data Sets and the Curve 

Fitting Process 

The data for confirmed cases of malaria from Ghana 

obtained from WHO ranges from the year 2004 to the year 

2017 and is shown in Table 3.  

The data points in Table 3 is graphically represented 

in Fig. 2. 
 

Table 3: Yearly Confirmed cases of malaria in Ghana from 2004-17 

Years Confirmed cases 

2004 475441 
2005 655093 

2006 472255 
2007 476484 
2008 1094483 
2009 1104370 
2010 1071637 
2011 1041260 
2012 3755166 
2013 1639451 
2014 3415912 
2015 4319919 
2016 4535167 
2017 4348694 
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Fig. 2: Plot of average daily cases of malaria from the world 

health organization 
 

 
 
Fig. 3: Model in Eq. (4) fitted to the data in Table 1 
 
Table 4: Parameters obtained from the best fit and demographics 

 Units  

Parameters (day-1) Values Sources 

𝛬ℎ day-1 2367 (WHO) 

𝛬𝑣 day-1 11007.6970 Estimated from data 

𝛽ℎ day-1 0.61844195 Estimated from data 

𝛽𝑣 day-1 0.62695935 Estimated from data 

𝜇ℎ day-1 
1

(64×365)
 (fact book) and (WHO) 

𝛿 day-1 0.00900000 Estimated from data 

𝛾 day-1 [0.1, 0.2] Per-capita treatment rate 

𝛼 day-1 [0.05, 0.8] Per-capita prevention rate 
𝜇𝑣 day-1 0.03 Estimated from data 

𝜔 day-1 0.00100000 Estimated from data  
𝑏 day-1 0.79276092 Estimated from data 

𝑐 day-1 [0,1] Constant of proportionality 
𝑚 day-1 3 Assumed 

𝜌ℎ day-1 0.07142857 Estimated from data 

 

Figure 2 the blue stars represent the data points. The 

least square best fit is shown in Fig. 3. 

A plot of the daily infection is shown with a 

representation of the data in Fig. 2 fit for the model is done 

using an implementation of the least square's curve fit 

approach in Python to estimate a new set of values of 

parameters at a given bound. The estimated values of 

parameters obtained from the demographic point of view 

were maintained. The best-fit diagram is given in Fig. 3. 

Figure 3 The blue star represents the data while the red 

solid colored curve represents the curve of best fit to the data. 

The parameters obtained from the best fit and the 

demographics are given in Table 4. 

Optimal Control Formulation  

In this section, we formulate the strategy for 
effective control of malaria transmission as an optimal 
control problem. We then use pontryagin's maximum 
principle to determine an optimal combination of the 
prevention and treatment efforts needed to reduce the 
transmission. Numerical simulations will then be 
performed to determine the evolution of the disease, 
over a finite time horizon. 

Let 𝑢1(𝑡) represent the rate of prevention and 𝑢2(𝑡) 
the rate at which infected individuals get treatment.  

Replacing 𝛼  and 𝛾  in the model Eq. (4) with the 

controls 𝑢1(𝑡) and 𝑢2(𝑡) respectively, gives: 
 

{
 
 
 
 

 
 
 
 𝑆̀ℎ = 𝛬ℎ −

𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− 𝜇ℎ𝑆ℎ − 𝑢1(𝑡)𝑆ℎ + 𝜔𝑅ℎ

𝐸̀ℎ =
𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ

𝐼ℎ = 𝜌ℎ𝐸ℎ − 𝜇ℎ𝐼ℎ − 𝜅𝑢2(𝑡)𝐼ℎ − 𝛿𝐼ℎ
𝑅̀ℎ = 𝜅𝑢2(𝑡)𝐼ℎ − 𝜇ℎ𝑅ℎ − 𝜔𝑅ℎ + 𝑢1(𝑡)𝑆ℎ

𝑆̀𝑣 = 𝛬𝑣 −
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝑢1(𝑡)𝑐)𝑆𝑣

𝐼𝑣 =
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝑢1(𝑡)𝑐)𝐼𝑣

 (91) 

 

We define our objective functional as 

 

𝐽(𝑢1, 𝑢2) = 𝐼ℎ(𝑇) + 𝐼𝑣(𝑇) +
1

2
∫ (𝐵1𝑢1

2+ 𝐵2𝑢2
2)

𝑇

0
𝑑𝑡 (92) 

 

With 𝑢1, 𝑢2 ∈ 𝑈, the set of admissible controls of the 

Lebesgue measure is defined as:  

 
𝑈 = {𝑢1(𝑡), 𝑢2(𝑡) ∈ 𝐿

′(0,𝑇) ∨ 0 ≤ 𝑢𝑖 ≤ 1} 
 

The terms 
1

2
𝐵1𝑢1

2 and 
1

2
𝐵2𝑢2

2, (𝐵1, 𝐵2 > 0) 

gives the cost associated with implementing prevention 

and treatment. The choice of the quadratic cost for the 

controls indicates that the cost of applying the controls is 

nonlinear. The interval [0, 𝑇] is the time horizon and 𝑇 is 

the terminal time. 

Also, 𝐼ℎ(𝑇) and 𝐼𝑣(𝑇)represent the number of infected 

humans and vectors respectively, at the end of the 

terminal time. 

The maximum values for 𝑢1  and 𝑢2  are denoted by 

𝑢1 max and 𝑢2 max  respectively.  

The optimal control pair * *
1 2   is given by: 

 

𝐽 ( * *
1 2  ) = 𝑚𝑖𝑛

𝑢1,𝑢2
{𝐽(𝑢1 , 𝑢2): (𝑢1 , 𝑢2) ∈ 𝑈)} (93) 

 

Existence of the Optimal Control Pair 

The necessary condition for the existence of the optimal 

control pair proposed by Fleming and Rishel (2012); Panetta 

and Fister (2000); Yusuf and Benyah (2012) is established 

in this section. According to Fleming and Rishel (2012), the 
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existence of an optimal control pair  * *
1 2   is guaranteed 

by the compactness of the states and the convexity of the 

problem. Therefore, the essential requirement cited in 

Yusuf and Benyah (2012) is given by: 
 
1. The set of all solutions to system (91) with 

corresponding admissible control functions in 𝑈  is 

non-empty 

2. The state system can be written as a linear function of 

the control variables 𝑢𝑖
′′𝑠, with coefficients depending 

on time and the state variables 

3. The integrand of 𝐽(𝑢1, 𝑢2) is convex on 𝑈 and is 
bounded above by: 

  
𝐵1‖(𝑢1 , 𝑢2)‖

2− 𝐵2 
 
where: 
 

𝐵1 ,  𝐵2 > 0 
 

First Order Necessary Condition 

 In this section, we establish conditions that would 

help us solve our objective function. Using 

Pontryagin's Maximum Principles, the necessary 

conditions are derived using the following theorem by 

Panetta and Fister (2000).  

Theorem 5. Suppose  1 2

* *,   is an optimal control 

pair, with corresponding optimal states, * * * * * *

h h h h v vS E I R S I  that 

minimizes the objective functional in Eq. 92, then there 

exists a co-state variables 1 6

* *,...,   such that the following 

necessary conditions are satisfied. 

State equations:  

 
𝑑𝑆ℎ
𝑑𝑡

=
𝜕𝐻

𝜕𝜆1
, ⋯ ,

𝑑𝐼𝑣
𝑑𝑡

=
𝜕𝐻

𝜕𝜆6
 

 
where: 
 
𝑑𝑆ℎ

𝑑𝑡
= 𝛬ℎ −

𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− 𝜇ℎ𝑆ℎ − 𝑢1(𝑡)𝑆ℎ +𝜔𝑅ℎ

𝐸ℎ

𝑑𝑡
=

𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
−

(𝜇ℎ + 𝜌ℎ)𝐸ℎ
𝑑𝐼ℎ

𝑑𝑡
= 𝜌ℎ𝐸ℎ − 𝜇ℎ𝐼ℎ − 𝜅𝑢2(𝑡)𝐼ℎ − 𝛿𝐼ℎ

𝑑𝑅ℎ

𝑑𝑡
=

𝜅𝑢2(𝑡)𝐼ℎ − 𝜇ℎ𝑅ℎ −𝜔𝑅ℎ + 𝑢1(𝑡)𝑆ℎ
𝑑𝑆𝑣

𝑑𝑡
= 𝛬𝑣 −

𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
−

(𝜇𝑣 + 𝑢1(𝑡)𝑐)𝑆𝑣
𝑑𝐼𝑣

𝑑𝑡
=

𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝑢1(𝑡)𝑐)𝐼𝑣 (94) 

 
With initial conditions: 

 
𝑆ℎ(0) > 0,𝐸ℎ(0) > 0, 𝐼ℎ(0) > 0, 𝑅ℎ(0)

0, 𝑆𝑣(0) > 0, 𝐼𝑣(0) > 0
 

 

Co-state equations: 

 
𝑑𝜆1
𝑑𝑡

=
−𝜕𝐻

𝜕𝑆ℎ
, ⋯ ,

𝑑𝜆6
𝑑𝑡

=
−𝜕𝐻

𝜕𝐼𝑣
 

 
Given by: 

𝑑𝜆1
𝑑𝑡

= − [(
−𝛽ℎ𝑏𝐼𝑣
𝐾ℎ +𝑚

− 𝜇ℎ − 𝑢1(𝑡))𝜆1 +
𝛽ℎ𝑏𝐼𝑣𝜆2
𝐾ℎ +𝑚

+𝑢1(𝑡)𝜆4], 

𝑑𝜆2
𝑑𝑡

= −[−(𝜇ℎ𝜌ℎ)𝜆2 + 𝜌ℎ𝜆3] 

𝑑𝜆3
𝑑𝑡

= −
𝑑𝜆4
𝑑𝑡

= −[𝜔𝜆1 − (𝜔 + 𝜇ℎ)𝜆4] 

𝑑𝜆5
𝑑𝑡

= −[(
−𝛽𝑣𝑏𝐼ℎ
𝐾ℎ +𝑚

− (𝜇𝑣 + 𝑢1(𝑡)𝑐))𝜆5 +
𝛽𝑣𝑏𝐼ℎ𝜆6
𝐾ℎ +𝑚

] 

𝑑𝜆6

𝑑𝑡
= − [

−𝛽ℎ𝑏𝑆ℎ𝜆1

𝐾ℎ+𝑚
+
𝛽ℎ𝑏𝑆ℎ𝜆2

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝑢1(𝑡)𝑐)𝜆6] (95) 

 

With the transversality condition: 

 
𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆4(𝑇) 𝜆5(𝑇) = 0,  and 

𝜆3(𝑇) 𝜆6(𝑇) = 1,  
 (96) 

 

Optimality conditions: 

 
𝜕𝐻

𝜕𝑢1
= 𝐵1𝑢1 + (𝜆4 − 𝜆1)𝑆ℎ − (𝜆5𝑆𝑣 + 𝜆6𝐼𝑣)𝑐 = 0

𝜕𝐻

𝜕𝑢2
= 𝐵2𝑢2+ (𝜆4− 𝜆3)𝐼ℎ = 0

  (97) 

 

where, 𝐻 is the Hamiltonian of the system given by: 

 

𝐻 =
1

2
(𝐵1𝑢1

2+𝐵2𝑢2
2) + 𝜆1 [𝛬ℎ −

𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− 𝜇ℎ𝑆ℎ − 𝑢1(𝑡)𝑆ℎ +

𝜔𝑅ℎ] + 𝜆2 [
𝛽ℎ𝑏𝐼𝑣𝑆ℎ

𝐾ℎ+𝑚
− (𝜇ℎ + 𝜌ℎ)𝐸ℎ] + 𝜆3[𝜌ℎ𝐸ℎ − 𝜇ℎ𝐼ℎ −

𝑢2(𝑡)𝐼ℎ − 𝛿𝐼ℎ] + 𝜆4[𝑢2(𝑡)𝐼ℎ − 𝜇ℎ𝑅ℎ − 𝜔𝑅ℎ + 𝑢1(𝑡)𝑆ℎ] +

𝜆5 [𝛬𝑣 −
𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 + 𝑢1(𝑡)𝑐)𝑆𝑣] + 𝜆6 [

𝛽𝑣𝑏𝐼ℎ𝑆𝑣

𝐾ℎ+𝑚
− (𝜇𝑣 +

𝑢1(𝑡)𝑐)𝐼𝑣]  

 

Solving Eqs. 95-97 and for 𝑢1  and 𝑢2  gives 

respectively, the optimal controls: 

 

     1 4 5 6 3 4

1 2

1 2

* * * *
h v v h* *

S S I c I

B B

     
 

   
   (98) 

 

Since the controls are bounded, that is, 0 ≤ 𝜇1 ≤
𝜇1𝑚𝑎𝑥 , 0 ≤ 𝜇2 ≤ 𝜇2𝑚𝑎𝑥  the optimal controls in (98) are 

replaced by: 

  

𝜇1
∗ = 𝑚𝑖𝑛

{
 
 

 
 

𝑚𝑎𝑥{0,
(𝜆1− 𝜆4)

*
hS + ( *

5
*
vS + 𝜆6

*
vI ) 𝑐

𝐵1
}

}
 
 

 
 

 

*
2 = 𝑚𝑖𝑛{𝑚𝑎𝑥 {0,

(𝜆3−𝜆4)
*
hI

𝐵2
}} (99) 
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Numerical Solution of the Optimality System 

 The two-point boundary-value problem given in 

Eqs. (94-97), was solved using the forward-backward 

sweep method, developed by (Lenhart and Workman, 2007).  

 The values of the constants 𝐵1 ,  𝐵2 > 0  in the 

integrand are chosen first, to balance the units in the 

objective functional. Secondly, varying the constants 

during numerical simulations, show the effects of 

emphasizing one control over the other.  

The procedure outlined below was implemented in 

Octave, a MATLAB-like public domain software. Choose 

an initial guess for *
1

*
2 and. 

Solve the state Eq. (94), with the given initial 

conditions forward in time and solve the costate Eq. (94). 

With the given transversality conditions backward in 

time, Update the expression for *
1

*
2 and in Eq. (99). 

with the new values of the state and the costate variables. 

Repeat steps (2-4) until convergence criteria are met. 

Simulations on the Effect of Weight 𝐵1 ,  𝐵2 on 

Infected Human Populations 

We investigate how different weight combinations 

affect the infected human populations.  

We consider three cases: (a) 𝐵1 < 𝐵2 , (b) 𝐵1 = 𝐵2  

and (c) 𝐵1 > 𝐵2 .  

The numerical values of 𝐵1  and 𝐵2  used in our 

simulations were selected from the set 

{400000,800000} . These values were chosen first, to 

balance the units in the objective function and secondly, 

to investigate the effects on the infected human 

populations, by putting different weights on each control.  

The plots in Figs. 4a-c, show the infected human 

populations, when (Figs. 4a-c) respectively.  

Figure 4, different combination of the weights reduces 

the human population respectively. 

The plots in Fig. (5a-c) shows prevention functions, 

when; (Figs. 5a-c) respectively. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
Fig. 4: Infected human populations when; (a) B1 < B2; 

  (b) B1 = B2; (c) B1 > B2 

 

 
(a) 
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(b) 

 

 
(c) 

 

Fig. 5: Prevention functions when (5a) B1 < B2 , (b) B1 = B2 
and (c) B1 > B2 

 

 
(a) 

 
(b) 

 

 
(c) 

 
Fig. 6: Treatment functions when (6a) B1 < B2, (6b) B1 < B2 

and (6c) B1 < B2 

 

 
 

Fig. 7: Infected vector populations with 𝑢1𝑚𝑎𝑥 =
0.5,𝑢2𝑚𝑎𝑥 = 0.2 
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Figure 5 giving equal weights, 𝐵1 = − 𝐵2  reduces 

the vector population than giving different combination 

of the weights. 

The plots in Figs. 6a-c shows treatment functions, 

when respectively. 

Figure 6, giving more weights to 𝐵1  reduces the 

treatment function than giving equal or more weight to 𝐵2 . 

Materials and Methods 

The yearly malaria transmission data for Ghana, 

from 2004-17, obtained from WHO, was used to obtain 

a least-squares estimate of the parameters for the 

model. To determine an optimal combination of 

prevention and treatment, we formulated an optimal 

control problem. Pontryagin's maximum principle was 

used to obtain the first-order necessary conditions. A 

forward-backward sweep method was then used to 

solve the optimality system. 

Numerical Simulations 

The following simulations were performed using optimal 

control functions 𝜇1
∗(𝑡) and 𝜇2

∗(𝑡), with parameter values: 

𝑢1𝑚𝑎𝑥 = 0.5, so that 𝑢1𝑚𝑎𝑥𝑆ℎ represents a maximum of 

50%  of the susceptible population using adequate 

prevention methods. 𝑢2𝑚𝑎𝑥 = 0.2 , corresponds to a 

treatment period of about 1 0.2⁄ = 5  days and weights 

𝐵1 = 𝐵2 = 400000.  

Simulations on the Effect of 𝑐  on Infected Vector 

Population 

We investigate the effect of the parameter 𝑐 on the 

vector population using increasing values of 𝑐 =
0.0,0.1,0.2 , with the following fixed values of 

𝑢1𝑚𝑎𝑥 , 𝑢2𝑚𝑎𝑥 and 𝜅.  

 

 
(a) 

 
(b) 

 

Fig. 8: Optimal Function with 𝑢1𝑚𝑎𝑥 = 0.5,𝑢2𝑚𝑎𝑥 = 0.2; (a) 

Optimal control function 𝑢1(𝑡); (b) Optimal control 

function 𝑢2(𝑡) 

 

 
 
Fig. 9: Infected human populations with differential 

treatment regimes 
 

𝑢1𝑚𝑎𝑥 = 0.5, so that 𝑢1𝑚𝑎𝑥𝑆ℎ represents a maximum 

of 50% the susceptible population using adequate 

prevention methods. 

Let 𝜅 = 1 , so that 𝛾 × (𝜅𝐼ℎ) = 𝛾𝐼ℎ , gives the best 

scenario for treatment availability. 

 Figure 7 shows a plot of the infected vector 

populations, with 𝑐 = 0.0,0.10,0.20 respectively. 

Figure 7, we notice a dramatic reduction in the infected 

vector population, with increasing values of 𝑐.  
The corresponding optimal control functions are 

displayed in Fig. 8a-b.  

The control functions prevention 𝜇1and treatment 𝜇2 
in Fig. 8 starts from maximum 0.5 and 0.2 respectively 

and decreases gradually as infected population also 
decreases in Fig. 7. 
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Simulations with Differential Treatment 𝛾(𝜅𝐼ℎ) 
Regimes 

We investigate the effects on the total infected human 

populations when effective treatment is only available to a 

proportion 0 ≤ 𝜅 ≤ 1 of the infected population in Fig. 9. 

This scenario happens for a variety of reasons including, lack 

of medical facilities in some communities, as well as 

affordability for the cost of treatment. The labels “𝑝25𝐼ℎ", 

“𝑝50𝐼ℎ " and “𝑝𝐼ℎ" in Fig. 9 represents respectively, the 
effect on the total infected human populations, when 25, 20 

and 100% of the infected population receive treatment. 

Figure 9 shows that the total infected human 

populations decrease faster, when treatment is accessible 

to a greater proportion of those infected.  

Results and Discussion 

 A unique and novel feature of our model is the effect 
of prevention on reducing the vector population by 

increasing their death rate Eq. (1); a key strategy in 

controlling malaria. A proportion 𝑐𝛼 ; ( 0 ≤ 𝑐 ≤ 1) of the 

prevention effort 𝛼, is directed at increasing the vector 

death rate. Our simulations clearly shows that increasing 

the parameter 𝑐  reduces the vector population. 

Furthermore, increasing the prevention rate 𝛼 (= 𝜇1), has 

the dual effect of reducing the susceptible human population 

as well as increasing the vector death rate even further. 

Another unique feature of our model is our treatment 

function Eq. (2) which models the fact that only a 

proportion 𝜅, of the infected population have access to 

effective treatment. Our simulations show that increasing 

the parameter 𝜅  ensures more access treatment for 

diagnosed cases, which reduces the overall infected 

human population. The fewer the infected population, 

the less the transmission rate. In fact, every untreated 

case becomes a reservoir for mosquitoes to further 

transmit malaria. 

Conclusion 

The key to successfully containing the spread of 

malaria lies in prevention as well as effective and rapid 

treatment for those infected with the disease. The fewer 

the infected population, the less the transmission rate. 

Proper prevention efforts in contiguous communities, can 

play the role of a vaccine and therefore are essential for 

the eventual eradication of malaria. The simulations show 

that if at least, 50% of the susceptible population follows 

proper prevention protocols, the reduction in transmission 

will be remarkable. A rapid reduction in the infected 

population through effective treatment, may be achieved 

by making treatment accessible to everyone infected.  

The following recommendations are based on the 

results of our simulation, together with the maxim that the 

key to effectively controlling any infectious disease lies in 

a rapid reduction in the susceptible population, through 

appropriate prevention efforts, plus a rapid reduction in 

the infected population through effective treatment.  

Prevention methods that reduce vector populations 

include: 

 

1. Indoor spraying with residual insecticides. This is when 

the inside of house structures is prayed once or twice a 

year with insecticide spray. This activity should be 

regularly done since it reduces the proportion of the 

resident mosquitoes whether susceptible or infectious 

2. The use of insecticide-treated mosquito Nets (ITN). 
This reduces the contact rates 

3. Larval control. This activity may be implemented 
through environmental modification such as draining 
and killing or the use of larvacides 

 

Treatment strategies must include: 

1. Early diagnosis and effective treatment. Each 

untreated case becomes a reservoir for mosquitoes to 

further transmit to other susceptible 

2. The use of WHO-approved Anti-malarial medications 

including Coartem 80/480, Hydroxyl-Chloroquine and 

Fansidar (Sulfadoxine and Pyrimethamine) 
 

In order to eradicate malaria, especially in 

developing countries, where most people cannot afford 

the cost of treatment:  
 
 Malaria medication must be free, or at least, highly 

subsidized in order to ensure a rapid reduction in the 

infected population 

 The prevention methods listed above must be 

enforced in all contiguous neighborhoods 
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Appendix A 

Corollary to Gershgorin's Circle Theorem 
 
 Let 𝑀  be an 𝑛 × 𝑛  matrix with real entries 𝑚𝑖𝑗 . If the 

diagonal entries 𝑚𝑖𝑖, of 𝑀 satisfy: 
 
𝑚𝑖𝑖 ≤ 𝑟𝑖 , where 𝑟𝑖 = ∑ |𝑚𝑖𝑗|𝑗=1,𝑗≠𝑖 𝑖, 𝑗 = 1…𝑛 (100) 

 
then, all the eigenvalues of 𝑀  are negative or have 
negative real parts. 
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