

 © 2020 Phanindra Prasad Bhandari, Shree Ram Khadka, Stefan Ruzika and Luca E. Schäfer. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Mathematics and Statistics

Original Research Paper

Lexicographically Maximum Dynamic Flow with Vertex

Capacities

1Phanindra Prasad Bhandari, 1Shree Ram Khadka, 2Stefan Ruzika and 2Luca E. Schäfer

1Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
2Department of Mathematics, Technische Universitat Kaiserslautern, P.O. Box 3049, 67663 Kaiserslautern, Germany

Article history

Received: 11-06-2020

Revised: 29-06-2020

Accepted: 23-07-2020

Corresponding Author:

Shree Ram Khadka

Central Department of

Mathematics, Tribhuvan

University, Kirtipur,

Kathmandu, Nepal
Email: shreeramkhadka@gmail.com

Abstract: We consider an evacuation planning problem in the sense of

computing a feasible dynamic flow lexicographically maximizing the

amount of flow entering a set of terminals with respect to a given

prioritization and given vertex capacities. We propose a polynomial time

algorithm for the static version of the problem and a pseudo-polynomial

time algorithm for the dynamic case. We show that by neglecting the vertex

capacities, the dynamic version can be solved in polynomial time by using

temporally repeated flows.

Keywords: Evacuation Planning, Disaster Management, Lexicographically

Maximum Flows, Dynamic Flows, Vertex Capacities

Introduction

Mathematical optimization provides important tools

for modeling, preparing and managing evacuation

tasks, (Borrmann et al., 2012; Göttlich et al., 2011;

Hamacher et al., 2011). The maximum flow evacuation

planning problem asks for a flow which sends a

maximum number of evacuees from a disastrous zone

(source) to a safe zone (sink) within a given time

horizon. In practical applications there might be

relatively safe places apart from the sink. Hence, sending

as many of the remaining evacuees as possible to these

prioritized spots is desired. However, these spots might

be constrained to some given vertex capacities, which

restrict the amount of flow that can enter these vertices

within the given time horizon.

Since the introduction of the maximum flow problem by

(Ford and Fulkerson, 1956), the problem and its

applications have been extensively studied in the literature,

(Borradaile et al., 2017; Cherkassky and Goldberg, 1997;

Goldberg and Tarjan, 1988). The lexicographically

maximum flow problem has been investigated as a variant

of the classical maximum flow problem, (Megiddo,

1974; 1977; Minieka, 1973). The authors showed that

this problem can be solved in polynomial time. Dynamic

extensions of these problems often provide important

features for modeling real-world applications, e.g., in

evacuation scenarios. Many dynamic network flow

problems have been investigated in the context of

evacuation planning problems, (Dhamala, 2015; Hamacher

and Tjandra, 2001; Khadka and Bhandari, 2017;

Pyakurel et al., 2017; Rebennack et al., 2010). To solve

the maximum dynamic flow problem, a pseudo-

polynomial time algorithm based on the construction of a

time-expanded graph and a polynomial time algorithm

based on temporally repeated flows with transit times on

the arcs treated as cost coefficients have been

investigated by (Ford and Fulkerson, 1958; 1962).

Hoppe and Tardos (1994; 2000) study

lexicographically maximum dynamic flows. They

developed a polynomial time algorithm based on

temporally repeated flows that lexicographically

maximizes the flow leaving the terminals of an

ordered terminal set consisting of sources and sinks.

This is equivalent to lexicographically minimizing the

flow entering the sinks in the given order.

In this study, we consider a maximum flow

evacuation planning problem with a prioritized terminal

set with fixed vertex capacities for each of these vertices.

We aim to lexicographically maximize the amount of

flow entering the vertices in the terminal set within a

given time horizon with respect to the prioritization and

the holding capacities. This problem is motivated by the

situation encountered in evacuation scenarios: As many

evacuees as possible are to be sent to safety. However, if

sending evacuees to safety is not possible within a given

time horizon, it is desirable to send as many evacuees to

shelters of limited capacity, which are located within the

evacuation zone. In contrast to the above mentioned

models, we assume that the terminals have a fixed vertex

capacity delimiting the amount of flow that can enter a

vertex within a given time horizon. We provide a

Phanindra Prasad Bhandari et al. / Journal of Mathematics and Statistics 2020, Volume 16: 142.147

DOI: 10.3844/jmssp.2020.142.147

143

polynomial time algorithm for the static version of the

problem and a pseudo-polynomial time algorithm for the

dynamic case based on the construction of a time-

expanded network. We show how to modify the

lexicographically maximum dynamic flow algorithm

(Hoppe and Tardos, 1994; 2000) to solve our problem in

the case of neglecting the vertex capacities. The optimal

routes identified by the procedure we propose in this

study allows to send more evacuees out from risk zone to

relatively safe places, besides maximum evacuees to the

safe zone(sink), at least for some time during the period

of response in emergency mitigation.
The remainder of this paper is structured as follows.

At first, we formally introduce the maximum flow
evacuation planning problem. Then we consider the
problem in static and dynamic versions one after another,
respectively. Finally, we conclude the paper with some
further research objectives.

Problem Formulation

Let G = (V, A) denote a directed graph with vertex

set V and arc set A. Both, the set of vertices and the set

of arcs are assumed to be finite and we set n := |V| and

m := |A|. We denote the source and the sink vertex by s

and d, respectively. We assume that the graph G does

not contain parallel arcs nor loops. Further, we assume

that there are no arcs entering s and leaving t,

respectively. By  (v) and  +(v) we denote the set of

arcs entering and leaving vertex v  V, respectively.

We assume a lower and upper arc capacity function l,

u: A 
0
:=  {0} to be given, which bounds the

number of flow units on each arc at each time step from

below and from above. Most of the time, we set l(a) = 0

for all a  A. Further, a transit time function t: A 
0

specifies the time needed by a flow unit to traverse an

arc. We assume a terminal set S  V with S :=

{v1,…,vk} prioritized from higher to lower priority, i.e.,

1 2 kv v v , to be given, where v1 = d. Further, we

define a vertex capacity function k: S 
0
delimiting

the total number of flow units, which may be held in

each of the vertices v  S. We set k(d) =  and k(v) to

be finite for all vS \{d}. In the following, we

assume a time horizon T  to be given and treat time in

a discrete manner, i.e., T := {0, 1,…,T}. Summing it up,

we denote byN = (G, l, u,, T, k) a dynamic network. If

we aim to refer to a static network without transit times,

we just write N = (G, l, u, k).

To this end, nonnegative flow variables f: A T 

0
 specify the flow over time in the network N . More

precisely, f(a, t) equals the number of flow units entering

arc a at time step t. Further, flow that enters arc a at time

t, reaches the end of arc a at time t + (a). The number of

flow units entering arc a at time step t are assumed to be

bounded by the capacity of an arc, i.e., 0  f (a, t)  u(a)

for all a  A and for all tT . Moreover, f (a, t) has to

be equal to zero for all t > T-(a) and for all a  A. The

excess of a vertex v  V at time tT is defined as:

   
 

 

 
 0 0

, : , , .

t a t

f

a v a v

ex v t f a f a



  

 
 



  

    

Consequently, we need to ensure that exf (v, T)  k(v)

for all vS .

The objective function of the maximum flow

evacuation planning problem asks to lexicographically

maximize the vector (exf (v1, T),…, exf (vk, T))⊤ such that

exf (vi)  k(vi) for i = 1,…,k. Note that k(v1) = k(d) = 

and
iv S for i = 1,…,k.

Static Version

LetN = (G, l, u, k) be a static network without

transit times. Further, let S = {v1,…,vk} with d =

1 ... kv v prioritized from higher to lower priority.

Moreover, we assume that l(a) = 0 for all a  A. The

goal is to compute a lexicographically maximum flow

inN satisfying the arc capacities for all arcs and the

vertex capacities for all vS . This is achieved by

iterative maximum flow computations in a transformed

network as described in the following. First, the

network N with vertex capacities is transformed into a

network N without vertex capacities. We introduce

an artificial vertex
iv for each vertex

iv S . We call

the artificial vertex
1 :v d  the supersink. Then, the

vertices vi and
iv are connected by an artificial arc

 ,i iv v with  ,i iu v v = k(vi). Moreover, each vertex

iv is linked to the supersink d by introducing an

artificial arc  ,iv d  having zero arc capacity. Only the

artificial arc (d, d) gets infinite arc capacity. Further,

every arc (original and artificial) gets a lower arc

capacity of zero, i.e., l(a) = 0 for all a. Doing this, the

network N = (G, l, u, k) is transformed into the

network N = (G, l, u) with G = (V , A), Fig. 1.

Algorithm 1 works as follows. Since v1 = d is the

vertex with the highest priority, a maximum flow from

source s to sink d is computed by applying a maximum

flow algorithm in the transformed network N . Next,

lower and upper capacities are updated in the following

manner: The lower capacities are set to zero, whereas the

upper capacities remain the same; only the arc (d, d)

gets a lower and upper capacity equal to the value of the

previously computed maximum flow from s to d. Next,

we aim to maximize the flow from s to the vertex

iv with the next highest priority.

Phanindra Prasad Bhandari et al. / Journal of Mathematics and Statistics 2020, Volume 16: 142.147

DOI: 10.3844/jmssp.2020.142.147

144

Fig. 1: Network N withS = {d, r, q}, where the numbers on the arcs refer to the arc capacities and the numbers in parenthesis

above and below the vertices refer to the vertex capacities (left). Transformed network N (right).

Algorithm 1 A lexicographic maximum static flow

algorithm

Input: A static network N = (G, l, u, k), S =

{v1,…,vk}  V with d =
1 kv v , l(a) = 0 for all a  A

Output: A lexicographically maximum flow satisfying

the vertex capacities for all vertices inS

 1: d  super sink, V  V {d}, A  A{(v1, d)}

with u(v1, d) = 

 2: Compute maximum s-d-flow in G and let f * be the

optimal value

 3: l(v1, d)  f * and u(v1, d)  f *

 4: for i = 2,…,k do

 5:       , , , ,i i i iV V v A A v v v d      

 6:      , , , 0i i i i iu v v k v l v v  

 7:  ,iu v d   and  , 0il v d  

 8: Compute maximum s-d-flow inN and let f *

be the optimal value

 9: Let f *  ,iv d  be the flow value on

arc  ,iv d  w.r.t. f *

 10:    *, ,i iu v d f v d    and    *, ,i il v d f v d   

This is achieved by setting  ,iu v d  to infinity and

again computing a maximum flow from s to d with

lower and upper arc capacities. Note that we do not

have to find a feasible flow in the transformed

network, since the maximum flow computed in the

previous iteration is already a feasible flow in the

modified network. Further, note that due to the lower

and upper capacities on (d, d), it is ensured that the

previously computed maximum flow value from s to

d remains the same. This procedure of computing

maximum s-vi-flows based on previously computed

flows is iteratively repeated for all vertices iv S .

Theorem 2.1

Given a network N = (G, l, u, k), source s and

terminal set S = {v1,…,vk}  V with d = 1 kv v

and l(a) = 0 for all a  A. Then, Algorithm 1

computes a lexicographical maximum flow in N in

polynomial time.

Proof

Obviously, the maximum flow value f * from s to d

(see line 2) is equal to the maximum flow value in the

original network N from s to d. Let vj be the vertex

with the next highest priority. One can see that the

maximum s-d-flow remains feasible when setting u(v1,

d) and l(v1, d) to be equal to f * and introducing arc

 ,jv d  with  ,ju v d  = . If we compute again a

maximum s-d-flow, then the flow value on arc (v1, d)

is equal to the maximum s-d-flow computed in the

previous iteration, whereas the flow value on arc

 ,jv d  is equal to the maximal possible flow that can

be sent to jv among all maximal s-d-flows. Repeating

this argument, we get a lexicographical maximum s-vi-

flow for all vi S . The polynomial running time

follows from the fact that at most k  n maximum flow

problems are to be solved, which can be done in

polynomial time.

Dynamic Version

Time-Expanded Network

Let N = (G, l, u, , T, k) be a dynamic network.

Again, let S = {v1,…,vk} with
1 kv v be

prioritized from higher to lower priority and l(a) = 0

for all a  A. Further, without loss of generality we

assume that vertices in S have no outgoing arcs. We

transform the dynamic network N into a time-

expanded network T
N = (VT, AT, l, u) in the

following way:

 VT := {vt | t = 0,1,…,T},

 AT := {(vt, wt) | (v = w t = t +1)  ((v, w)  A

(v, w) = t-t)},

 l(a) = 0 for all a  AT,

 u(vt, wt) = u(v, w) for all (v, w)  A and u(vt, vt+1) =

 for all v  V.

5

2
(5)

(6)

s q d

s q d d

q

3

p r

3

4 5

1

()


3 3

4 5

5

2 5
r p r

0

1

0
6

Phanindra Prasad Bhandari et al. / Journal of Mathematics and Statistics 2020, Volume 16: 142.147

DOI: 10.3844/jmssp.2020.142.147

145

Algorithm 2 A discrete dynamic lexicographic

maximum flow algorithm

Input: A dynamic networkN = (G, l, u, , T, k), S =

{v1,…,vk} with d =
1 kv v , l(a) = 0 for all a  A

Output: A discrete dynamic lexicographically maximum

flow satisfying the vertex capacities for all vertices in S

1: Create the time-expanded network as described above

2: for all v S do

3: VT  VT  {v}, AT  AT  {(vT, v)} ▷ v :=
Tv

4: u(vT, v)  k(vi), l(vT, v)  0

5: Compute a static maximum s0-d-flow and let f * be

the optimal value

6: l(dT, d)  f * and u(dT, d)  f *

7: for i = 2,…,k do

8: AT  AT    ,iv d 

9:  ,iu v d    ,  ,il v d    0

10: Compute a maximum s0-d-flow and let f * be the

optimal value

11: Let f *  ,iv d  be the flow value on arc  ,iv d 

w.r.t. f *

12:  ,iu v d    f *  ,iv d  and  ,il v d    f *  ,iv d 

Next, as described in the static version, we introduce

a vertex :
T

i i
v v  for all

Ti
v with vi S . We connect

vertices
Ti

v and
iv by arcs with upper capacity k(vi) for

all vi S (and zero transit time, since
Ti

v and
iv are on

the same time level). Obviously, a static maximum s0-d-

flow, i.e., a s0- 1v -flow, in the time-expanded network

corresponds to a discrete dynamic s-d-flow inN . After

computing the static maximum s0-d-flow, we set l(dT,

d) as well as u(dT, d) to the value of the maximum s0-

d-flow. Afterwards, we introduce an arc from
iv to d of

infinite capacity, where vi is the vertex with the next

highest priority. Then, we compute again a static

maximum s0-d-flow in the time-expanded network. This

procedure is iteratively repeated (similar to Algorithm 1)

such that we obtain a discrete dynamic lexicographically

maximum flow, see Algorithm 2.

Corollary 3.1

Given a networkN = (G, l, u, , T, k), source s and

terminal set S = {v1,…,vk}  V with d =
1 kv v and

l(a) = 0 for all a  A. Then, Algorithm 2 computes a

discrete dynamic lexicographical maximum flow in

N in pseudo-polynomial time.

Proof

The correctness follows from Theorem 2.1. The

pseudo-polynomial running time follows from the fact

that the size of the time-expanded graph is pseudo-

polynomial in the input size.

Temporally Repeated Flows

An optimal solution to minimum cost circulation,

flow problem obtained by interpreting transit times as

cost coefficients for each arc a  A, can be transformed

into a maximal discrete dynamic flow for single-source-

single-sink case using the notion of Temporally

Repeated Flows (TRFs) (Ford and Fulkerson, 1958).

This technique computes feasible optimal flow for v1 = d

as sink for the problem. However, while considering

remaining vertices vi S as the sink, flow computed by

TRFs may exceed fixed vertex capacities. Moreover,

TRFs may not induce optimal flows for these vertices as

sinks due to non-uniqueness of path decomposition

carried out for TRFs. These hurdles occur due to the

fixed vertex capacities at intermediate vertices. In the

following we consider the problem on network without

vertex capacities.

Let N = (G, l, u,, T) be a dynamic network without

vertex capacities. Let S = {v1,…,vk} be a terminal set

with
1 kv v prioritized from higher to lower priority

and l(a) = 0 for all a  A. We aim to solve our problem

in polynomial time without vertex capacities by using

the lexicographically maximum dynamic flow algorithm

proposed in (Hoppe and Tardos, 2000). Their algorithm

is summarized in Algorithm 3. Note that 1i

i

g N refers to

the residual dynamic network with respect to flow gi+1

with vertex set V and arc set Ai.

Algorithm 3 lexicographically maximizes the amount

of flow leaving the terminals in S in the given order,

i.e., the algorithm lexicographically maximizes the

vector (-exf (v1, T), …, -exf (vk, T)⊤. However, we aim at

lexicographically maximizing (exf (v1, T), …, exf (vk, T)⊤.

Therefore, we adapt our problem in the following way

such that we can use Algorithm 3 to solve it:

1) V  V   iv , A  A    ,i iv v for all vi  S

2)  ,i iu v v   and  ,i iv v   0

3)  1 ,..., ,kv v s S with  S S \{s} and 
S {s}

4) Take the inverse network of N , i.e., inv
N , where

all arcs are reversed

5) Apply Algorithm 3 on inv
N

Algorithm 3 Lexicographically maximum dynamic flow

algorithm (Hoppe and Tardos, 2000)

Input: A dynamic network N = (G, u, , T), S =

{v1,…,vk} =  S S with 1 kv v , where 
S and


S refer to the sources and sinks of S , respectively

Output: A lexicographically maximum dynamic flow

Phanindra Prasad Bhandari et al. / Journal of Mathematics and Statistics 2020, Volume 16: 142.147

DOI: 10.3844/jmssp.2020.142.147

146

1: V  V  {s*} ▷ Introduce super

source s*

2: Ak+1  A{(s*, s) | s  *
S }, u(s*, s) , t(s*, s)  0

3: gk+1  0 ▷ zero flow

4: 1 0k   ▷ path decomposition

5: for i = k,…,1 do

6: Ai  Ai+1

7: if vi  
S then

8: Ai  Ai  {(vi, s*)}, u(vi, s*)  , t(vi, s*) 

- (T +1)

9: f i  min cost circulation in 1i

i

g N with t as

arc costs

10: if vi  
S then

11: Ai  Ai \ {(s*, vi)}

12: f i  min. cost max. s*-vi-flow in 1i

i

g N with 

as arc costs

13: gi  gi+1 + f i

14: Pi  path decomposition of f i

15: i i+1  Pi

16: return 1

This procedure yields a dynamic flow in inv
N

lexicographically maximizing the amount of flow

leaving the terminals in S in the given order. By

translating the obtained dynamic flow back to the

network N , we obtain the desired dynamic flow

lexicographically maximizing the amount of flow

entering the terminals in the given order. The correctness

of the procedure follows immediately from the

correctness of the lexicographically maximum dynamic

flow algorithm, see Hoppe and Tardos (2000). Since the

overhead of this procedure is determined by the

computation of the k minimum cost flows, the

polynomial runtime follows.

Conclusion

In this article, we have introduced a maximum flow

evacuation planning problem, where one aims to

lexicographically maximize the amount of flow entering

the vertices of a given prioritized terminal set with

respect to vertex capacities. We showed how to solve

this problem in polynomial time for the static case and in

pseudo-polynomial time for the dynamic case in the

time-expanded network. By neglecting the vertex

capacities, we provided a procedure to solve that

problem in polynomial time in a dynamic network. This

work identifies optimal routes to the prioritized vertices

besides the safe zone (sink). This allows to send more

evacuees out from the disastrous zone (source) to the

relatively safe places at least for some time during the

period of response in emergency mitigation.

The main shortcoming of this work is one cannot

repeatedly send the evacuees at those vertices where

vertex capacity is fixed. In the future, it would be

interesting to see how to solve that problem in the

dynamic case by using temporally repeated flows and

satisfying given vertex capacities.

Acknowledgment

First author would like to thank University Grants

Commission, Nepal for PhD Fellowship Award 2016.

First and second authors are also grateful to GraThO

project between TU Kaiserslautern, Germany; TU, Nepal

and MSU, Philippines supported by DAAD for

providing a suitable atmosphere to conduct this research

work. This work was partially supported by the

Bundesministerium fur Bildung und Forschung (BMBF)

under Grant No. 13N14561. Authors are grateful to

anonymous referees for their insightful comments that

significantly improved the paper.

Author’s Contributions

Phanindra Prasad Bhandari: Prepared the initial

manuscript with solution in static and dynamic over the

time expanded graph.

Shree Ram Khadka: Initiated the problem,

developed the model and polished.

Stefan Ruzika: Improved the model and solution

procedure and polished.

Luca E. Schäfer: Contributed in dynamic case with

temporally repeated approach and improved the manuscript.

Ethics

There is no non-ethical issues involved in the article.

It is original and contains unpublished materials.

References

Borradaile, G., Klein, P. N., Mozes, S., Nussbaum, Y., &

Wulff-Nilsen, C. (2017). Multiple-source multiple-

sink maximum flow in directed planar graphs in

near-linear time. SIAM Journal on Computing,

46(4), 1280-1303.

Borrmann, A., Kneidl, A., Köster, G., Ruzika, S., &

Thiemann, M. (2012). Bidirectional coupling of

macroscopic and microscopic pedestrian evacuation

models. Safety science, 50(8), 1695-1703.

Cherkassky, B. V., & Goldberg, A. V. (1997). On

implementing the push-relabel method for the

maximum flow problem. Algorithmica, 19(4),

390-410.

Dhamala, T. N. (2015). A survey on models and

algorithms for discrete evacuation planning network

problems. Journal of Industrial & Management

Optimization, 11(1), 265.

Phanindra Prasad Bhandari et al. / Journal of Mathematics and Statistics 2020, Volume 16: 142.147

DOI: 10.3844/jmssp.2020.142.147

147

Ford, L. R., & Fulkerson, D. R. (1956). «Maximal Flow

through a Network», Canadian Journal of

Mathematics.
Ford, L. R., & Fulkerson, D. R. (1958). Constructing

maximal dynamic flows from static flows.
Operations research, 6(3), 419-433.

Ford, L. R., & Fulkerson, D. R. (1962). Flows in

networks princeton university press. Princeton, New

Jersey, 276, 22.
Goldberg, A. V., & Tarjan, R. E. (1988). A new

approach to the maximum-flow problem. Journal of
the ACM (JACM), 35(4), 921-940.

Göttlich, S., Kühn, S., Ohst, J. P., Ruzika, S., &

Thiemann, M. (2011). Evacuation dynamics

influenced by spreading hazardous material.

Networks & Heterogeneous Media, 6(3), 443.

Hamacher, H. W., Heller, S., Klein, W., Köster, G., &

Ruzika, S. (2011). A sandwich approach for evacuation

time bounds. In Pedestrian and Evacuation Dynamics

(pp. 503-513). Springer, Boston, MA.

Hamacher, H. W., & Tjandra, S. A. (2001). Mathematical

modelling of evacuation problems: A state of art.

Hoppe, B., & Tardos, É. (1994, January). Polynomial

Time Algorithms for Some Evacuation Problems. In

SODA (Vol. 94, pp. 433-441).

Hoppe, B., & Tardos, É. (2000). The quickest

transshipment problem. Mathematics of Operations

Research, 25(1), 36-62.

Khadka, S. R., & Bhandari, P. P. (2017). Dynamic

network contraflow evacuation planning problem

with continuous time approach. International Journal

of Operations Research, 14(1), 27-34.

Megiddo, N. (1974). Optimal flows in networks with

multiple sources and sinks. Mathematical

Programming, 7(1), 97-107.

Megiddo, N. (1977). A good algorithm for

lexicographically optimal flows in multi-terminal

networks. American Mathematical Society, 83(3).

Minieka, E. (1973). Maximal, lexicographic and

dynamic network flows. Operations Research,

21(2):517–527.

Pyakurel, U., Dhamala, T. N., & Dempe, S. (2017).

Efficient continuous contraflow algorithms for

evacuation planning problems. Annals of Operations

Research, 254(1-2), 335-364.

Rebennack, S., Arulselvan, A., Elefteriadou, L., &

Pardalos, P. M. (2010). Complexity analysis for

maximum flow problems with arc reversals. Journal

of Combinatorial Optimization, 19(2), 200-216.

