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Abstract: We consider an evacuation planning problem in the sense of 

computing a feasible dynamic flow lexicographically maximizing the 

amount of flow entering a set of terminals with respect to a given 

prioritization and given vertex capacities. We propose a polynomial time 

algorithm for the static version of the problem and a pseudo-polynomial 

time algorithm for the dynamic case. We show that by neglecting the vertex 

capacities, the dynamic version can be solved in polynomial time by using 

temporally repeated flows. 
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Introduction 

Mathematical optimization provides important tools 

for modeling, preparing and managing evacuation 

tasks, (Borrmann et al., 2012; Göttlich et al., 2011; 

Hamacher et al., 2011). The maximum flow evacuation 

planning problem asks for a flow which sends a 

maximum number of evacuees from a disastrous zone 

(source) to a safe zone (sink) within a given time 

horizon. In practical applications there might be 

relatively safe places apart from the sink. Hence, sending 

as many of the remaining evacuees as possible to these 

prioritized spots is desired. However, these spots might 

be constrained to some given vertex capacities, which 

restrict the amount of flow that can enter these vertices 

within the given time horizon. 

Since the introduction of the maximum flow problem by 

(Ford and Fulkerson, 1956), the problem and its 

applications have been extensively studied in the literature, 

(Borradaile et al., 2017; Cherkassky and Goldberg, 1997; 

Goldberg and Tarjan, 1988). The lexicographically 

maximum flow problem has been investigated as a variant 

of the classical maximum flow problem, (Megiddo, 

1974; 1977; Minieka, 1973). The authors showed that 

this problem can be solved in polynomial time. Dynamic 

extensions of these problems often provide important 

features for modeling real-world applications, e.g., in 

evacuation scenarios. Many dynamic network flow 

problems have been investigated in the context of 

evacuation planning problems, (Dhamala, 2015; Hamacher 

and Tjandra, 2001; Khadka and Bhandari, 2017;   

Pyakurel et al., 2017; Rebennack et al., 2010). To solve 

the maximum dynamic flow problem, a pseudo-

polynomial time algorithm based on the construction of a 

time-expanded graph and a polynomial time algorithm 

based on temporally repeated flows with transit times on 

the arcs treated as cost coefficients have been 

investigated by (Ford and Fulkerson, 1958; 1962).    

Hoppe and Tardos (1994; 2000) study 

lexicographically maximum dynamic flows. They 

developed a polynomial time algorithm based on 

temporally repeated flows that lexicographically 

maximizes the flow leaving the terminals of an 

ordered terminal set consisting of sources and sinks. 

This is equivalent to lexicographically minimizing the 

flow entering the sinks in the given order. 

In this study, we consider a maximum flow 

evacuation planning problem with a prioritized terminal 

set with fixed vertex capacities for each of these vertices. 

We aim to lexicographically maximize the amount of 

flow entering the vertices in the terminal set within a 

given time horizon with respect to the prioritization and 

the holding capacities. This problem is motivated by the 

situation encountered in evacuation scenarios: As many 

evacuees as possible are to be sent to safety. However, if 

sending evacuees to safety is not possible within a given 

time horizon, it is desirable to send as many evacuees to 

shelters of limited capacity, which are located within the 

evacuation zone. In contrast to the above mentioned 

models, we assume that the terminals have a fixed vertex 

capacity delimiting the amount of flow that can enter a 

vertex within a given time horizon. We provide a 
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polynomial time algorithm for the static version of the 

problem and a pseudo-polynomial time algorithm for the 

dynamic case based on the construction of a time-

expanded network. We show how to modify the 

lexicographically maximum dynamic flow algorithm 

(Hoppe and Tardos, 1994; 2000) to solve our problem in 

the case of neglecting the vertex capacities. The optimal 

routes identified by the procedure we propose in this 

study allows to send more evacuees out from risk zone to 

relatively safe places, besides maximum evacuees to the 

safe zone(sink), at least for some time during the period 

of response in emergency mitigation. 
The remainder of this paper is structured as follows. 

At first, we formally introduce the maximum flow 
evacuation planning problem. Then we consider the 
problem in static and dynamic versions one after another, 
respectively. Finally, we conclude the paper with some 
further research objectives. 

Problem Formulation 

Let G = (V, A) denote a directed graph with vertex 

set V and arc set A. Both, the set of vertices and the set 

of arcs are assumed to be finite and we set n := |V| and 

m := |A|. We denote the source and the sink vertex by s 

and d, respectively. We assume that the graph G does 

not contain parallel arcs nor loops. Further, we assume 

that there are no arcs entering s and leaving t, 

respectively. By  (v) and  +(v) we denote the set of 

arcs entering and leaving vertex v  V, respectively. 

We assume a lower and upper arc capacity function l, 

u: A 
0
:=  {0} to be given, which bounds the 

number of flow units on each arc at each time step from 

below and from above. Most of the time, we set l(a) = 0 

for all a  A. Further, a transit time function t: A  
0
 

specifies the time needed by a flow unit to traverse an 

arc. We assume a terminal set S  V with S := 

{v1,…,vk} prioritized from higher to lower priority, i.e., 

1 2 kv v v , to be given, where v1 = d. Further, we 

define a vertex capacity function k: S 
0
delimiting 

the total number of flow units, which may be held in 

each of the vertices v  S. We set k(d) =  and k(v) to 

be finite for all vS \{d}. In the following, we 

assume a time horizon T  to be given and treat time in 

a discrete manner, i.e., T := {0, 1,…,T}. Summing it up, 

we denote byN = (G, l, u,, T, k) a dynamic network. If 

we aim to refer to a static network without transit times, 

we just write N = (G, l, u, k). 

To this end, nonnegative flow variables f: A T  

0
 specify the flow over time in the network N . More 

precisely, f(a, t) equals the number of flow units entering 

arc a at time step t. Further, flow that enters arc a at time 

t, reaches the end of arc a at time t + (a). The number of 

flow units entering arc a at time step t are assumed to be 

bounded by the capacity of an arc, i.e., 0  f (a, t)  u(a) 

for all a  A and for all tT . Moreover, f (a, t) has to 

be equal to zero for all t > T-(a) and for all a  A. The 

excess of a vertex v  V at time tT is defined as: 
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Consequently, we need to ensure that exf (v, T)  k(v) 

for all vS . 

The objective function of the maximum flow 

evacuation planning problem asks to lexicographically 

maximize the vector (exf (v1, T),…, exf (vk, T))⊤ such that 

exf (vi)  k(vi) for i = 1,…,k. Note that k(v1) = k(d) =  

and 
iv S for i = 1,…,k. 

Static Version 

LetN = (G, l, u, k) be a static network without 

transit times. Further, let S = {v1,…,vk} with d = 

1 ... kv v  prioritized from higher to lower priority. 

Moreover, we assume that l(a) = 0 for all a  A. The 

goal is to compute a lexicographically maximum flow 

inN satisfying the arc capacities for all arcs and the 

vertex capacities for all vS . This is achieved by 

iterative maximum flow computations in a transformed 

network as described in the following. First, the 

network N with vertex capacities is transformed into a 

network N without vertex capacities. We introduce 

an artificial vertex 
iv for each vertex

iv S . We call 

the artificial vertex 
1 :v d   the supersink. Then, the 

vertices vi and 
iv are connected by an artificial arc 

 ,i iv v  with  ,i iu v v = k(vi). Moreover, each vertex 

iv is linked to the supersink d by introducing an 

artificial arc  ,iv d   having zero arc capacity. Only the 

artificial arc (d, d) gets infinite arc capacity. Further, 

every arc (original and artificial) gets a lower arc 

capacity of zero, i.e., l(a) = 0 for all a. Doing this, the 

network N = (G, l, u, k) is transformed into the 

network N = (G, l, u) with G = (V , A), Fig. 1. 

Algorithm 1 works as follows. Since v1 = d is the 

vertex with the highest priority, a maximum flow from 

source s to sink d is computed by applying a maximum 

flow algorithm in the transformed network N . Next, 

lower and upper capacities are updated in the following 

manner: The lower capacities are set to zero, whereas the 

upper capacities remain the same; only the arc (d, d) 

gets a lower and upper capacity equal to the value of the 

previously computed maximum flow from s to d. Next, 

we aim to maximize the flow from s to the vertex 

iv with the next highest priority.   
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Fig. 1: Network N withS = {d, r, q}, where the numbers on the arcs refer to the arc capacities and the numbers in parenthesis 

above and below the vertices refer to the vertex capacities (left). Transformed network N  (right). 

 

Algorithm 1 A lexicographic maximum static flow 

algorithm 

Input: A static network N = (G, l, u, k), S = 

{v1,…,vk}  V with d = 
1 kv v , l(a) = 0 for all a  A 

Output: A lexicographically maximum flow satisfying 

the vertex capacities for all vertices inS  

 1: d  super sink, V  V {d}, A  A{(v1, d)} 

with u(v1, d) =  

 2: Compute maximum s-d-flow in G and let f * be the 

optimal value 

 3: l(v1, d)  f * and u(v1, d)  f * 

 4: for i = 2,…,k do 

 5:        , , , ,i i i iV V v A A v v v d        

 6:       , , , 0i i i i iu v v k v l v v    

 7:   ,iu v d   and  , 0il v d    

 8:  Compute maximum s-d-flow inN and let f * 

be the optimal value 

 9:  Let f *  ,iv d  be the flow value on 

arc  ,iv d  w.r.t. f * 

 10:     *, ,i iu v d f v d     and    *, ,i il v d f v d     

 

This is achieved by setting  ,iu v d   to infinity and 

again computing a maximum flow from s to d with 

lower and upper arc capacities. Note that we do not 

have to find a feasible flow in the transformed 

network, since the maximum flow computed in the 

previous iteration is already a feasible flow in the 

modified network. Further, note that due to the lower 

and upper capacities on (d, d), it is ensured that the 

previously computed maximum flow value from s to 

d remains the same. This procedure of computing 

maximum s-vi-flows based on previously computed 

flows is iteratively repeated for all vertices iv S . 

Theorem 2.1 

Given a network N = (G, l, u, k), source s and 

terminal set S = {v1,…,vk}  V with d = 1 kv v  

and l(a) = 0 for all a  A. Then, Algorithm 1 

computes a lexicographical maximum flow in N in 

polynomial time. 

Proof 

Obviously, the maximum flow value f * from s to d 

(see line 2) is equal to the maximum flow value in the 

original network N from s to d. Let vj be the vertex 

with the next highest priority. One can see that the 

maximum s-d-flow remains feasible when setting u(v1, 

d) and l(v1, d) to be equal to f * and introducing arc 

 ,jv d  with  ,ju v d  = . If we compute again a 

maximum s-d-flow, then the flow value on arc (v1, d) 

is equal to the maximum s-d-flow computed in the 

previous iteration, whereas the flow value on arc 

 ,jv d  is equal to the maximal possible flow that can 

be sent to jv among all maximal s-d-flows. Repeating 

this argument, we get a lexicographical maximum s-vi-

flow for all vi S . The polynomial running time 

follows from the fact that at most k  n maximum flow 

problems are to be solved, which can be done in 

polynomial time. 

Dynamic Version 

Time-Expanded Network 

Let N = (G, l, u, , T, k) be a dynamic network. 

Again, let S = {v1,…,vk} with 
1 kv v  be 

prioritized from higher to lower priority and l(a) = 0 

for all a  A. Further, without loss of generality we 

assume that vertices in S have no outgoing arcs. We 

transform the dynamic network N  into a time-

expanded network T
N = (VT, AT, l, u) in the 

following way: 

 

 VT := {vt | t = 0,1,…,T}, 

 AT := {(vt, wt) | (v = w t = t +1)  ((v, w)  A 

(v, w) = t-t)}, 

 l(a) = 0 for all a  AT, 

 u(vt, wt) = u(v, w) for all (v, w)  A and u(vt, vt+1) = 

 for all v  V. 
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Algorithm 2 A discrete dynamic lexicographic 

maximum flow algorithm 

Input: A dynamic networkN = (G, l, u, , T, k), S = 

{v1,…,vk} with d = 
1 kv v , l(a) = 0 for all a  A 

Output: A discrete dynamic lexicographically maximum 

flow satisfying the vertex capacities for all vertices in S  

1: Create the time-expanded network as described above 

2: for all v S  do 

3: VT  VT  {v}, AT  AT  {(vT, v)} ▷ v := 
Tv  

4: u(vT, v)  k(vi), l(vT, v)  0 

5: Compute a static maximum s0-d-flow and let f * be 

the optimal value 

6: l(dT, d)  f * and u(dT, d)  f * 

7: for i = 2,…,k do 

8:  AT  AT    ,iv d   

9:   ,iu v d     ,  ,il v d    0 

10:  Compute a maximum s0-d-flow and let f * be the 

optimal value 

11:  Let f *  ,iv d  be the flow value on arc  ,iv d   

w.r.t. f * 

12:   ,iu v d    f *  ,iv d  and  ,il v d     f *  ,iv d   

Next, as described in the static version, we introduce 

a vertex :
T

i i
v v  for all 

Ti
v  with vi S . We connect 

vertices 
Ti

v and 
iv by arcs with upper capacity k(vi) for 

all vi S (and zero transit time, since 
Ti

v  and 
iv are on 

the same time level). Obviously, a static maximum s0-d-

flow, i.e., a s0- 1v -flow, in the time-expanded network 

corresponds to a discrete dynamic s-d-flow inN . After 

computing the static maximum s0-d-flow, we set l(dT, 

d) as well as u(dT, d) to the value of the maximum s0-

d-flow. Afterwards, we introduce an arc from 
iv to d of 

infinite capacity, where vi is the vertex with the next 

highest priority. Then, we compute again a static 

maximum s0-d-flow in the time-expanded network. This 

procedure is iteratively repeated (similar to Algorithm 1) 

such that we obtain a discrete dynamic lexicographically 

maximum flow, see Algorithm 2. 

Corollary 3.1 

Given a networkN = (G, l, u, , T, k), source s and 

terminal set S = {v1,…,vk}  V with d = 
1 kv v  and 

l(a) = 0 for all a  A. Then, Algorithm 2 computes a 

discrete dynamic lexicographical maximum flow in 

N in pseudo-polynomial time. 

Proof 

The correctness follows from Theorem 2.1. The 

pseudo-polynomial running time follows from the fact 

that the size of the time-expanded graph is pseudo-

polynomial in the input size. 

Temporally Repeated Flows 

An optimal solution to minimum cost circulation, 

flow problem obtained by interpreting transit times as 

cost coefficients for each arc a  A, can be transformed 

into a maximal discrete dynamic flow for single-source-

single-sink case using the notion of Temporally 

Repeated Flows (TRFs) (Ford and Fulkerson, 1958). 

This technique computes feasible optimal flow for v1 = d 

as sink for the problem. However, while considering 

remaining vertices vi S as the sink, flow computed by 

TRFs may exceed fixed vertex capacities. Moreover, 

TRFs may not induce optimal flows for these vertices as 

sinks due to non-uniqueness of path decomposition 

carried out for TRFs. These hurdles occur due to the 

fixed vertex capacities at intermediate vertices. In the 

following we consider the problem on network without 

vertex capacities. 

Let N = (G, l, u,, T) be a dynamic network without 

vertex capacities. Let S = {v1,…,vk} be a terminal set 

with 
1 kv v  prioritized from higher to lower priority 

and l(a) = 0 for all a  A. We aim to solve our problem 

in polynomial time without vertex capacities by using 

the lexicographically maximum dynamic flow algorithm 

proposed in (Hoppe and Tardos, 2000). Their algorithm 

is summarized in Algorithm 3. Note that 1i

i

g N refers to 

the residual dynamic network with respect to flow gi+1 

with vertex set V and arc set Ai. 

Algorithm 3 lexicographically maximizes the amount 

of flow leaving the terminals in S in the given order, 

i.e., the algorithm lexicographically maximizes the 

vector (-exf (v1, T), …, -exf (vk, T)⊤. However, we aim at 

lexicographically maximizing (exf (v1, T), …, exf (vk, T)⊤. 

Therefore, we adapt our problem in the following way 

such that we can use Algorithm 3 to solve it: 

 

1) V  V   iv , A  A    ,i iv v for all vi  S  

2)  ,i iu v v   and  ,i iv v    0 

3)   1 ,..., ,kv v s S  with  S S \{s} and 
S {s} 

4) Take the inverse network of N , i.e., inv
N , where 

all arcs are reversed 

5) Apply Algorithm 3 on inv
N  

 

Algorithm 3 Lexicographically maximum dynamic flow 

algorithm (Hoppe and Tardos, 2000) 

Input: A dynamic network N  = (G, u, , T), S = 

{v1,…,vk} =  S S  with 1 kv v , where 
S  and 


S  refer to the sources and sinks of S , respectively 

Output: A lexicographically maximum dynamic flow 
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1: V  V  {s*} ▷ Introduce super 

source s* 

2: Ak+1  A{(s*, s) | s  *
S }, u(s*, s) , t(s*, s)  0 

3: gk+1  0 ▷ zero flow 

4: 1    0k    ▷ path decomposition 

5: for i = k,…,1 do 

6:  Ai  Ai+1 

7:  if vi  
S then 

8:  Ai  Ai  {(vi, s*)}, u(vi, s*)  , t(vi, s*)  

- (T +1) 

9:  f i  min cost circulation in 1i

i

g N  with t as 

arc costs 

10:  if vi  
S then 

11:  Ai  Ai \ {(s*, vi)} 

12:  f i  min. cost max. s*-vi-flow in 1i

i

g N with  

as arc costs 

13:  gi  gi+1 + f i 

14:  Pi  path decomposition of f i 

15:  i  i+1  Pi 

16: return 1 
 

This procedure yields a dynamic flow in inv
N  

lexicographically maximizing the amount of flow 

leaving the terminals in S  in the given order. By 

translating the obtained dynamic flow back to the 

network N , we obtain the desired dynamic flow 

lexicographically maximizing the amount of flow 

entering the terminals in the given order. The correctness 

of the procedure follows immediately from the 

correctness of the lexicographically maximum dynamic 

flow algorithm, see Hoppe and Tardos (2000). Since the 

overhead of this procedure is determined by the 

computation of the k minimum cost flows, the 

polynomial runtime follows. 

Conclusion 

In this article, we have introduced a maximum flow 

evacuation planning problem, where one aims to 

lexicographically maximize the amount of flow entering 

the vertices of a given prioritized terminal set with 

respect to vertex capacities. We showed how to solve 

this problem in polynomial time for the static case and in 

pseudo-polynomial time for the dynamic case in the 

time-expanded network. By neglecting the vertex 

capacities, we provided a procedure to solve that 

problem in polynomial time in a dynamic network. This 

work identifies optimal routes to the prioritized vertices 

besides the safe zone (sink). This allows to send more 

evacuees out from the disastrous zone (source) to the 

relatively safe places at least for some time during the 

period of response in emergency mitigation. 

The main shortcoming of this work is one cannot 

repeatedly send the evacuees at those vertices where 

vertex capacity is fixed. In the future, it would be 

interesting to see how to solve that problem in the 

dynamic case by using temporally repeated flows and 

satisfying given vertex capacities. 
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