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Introduction 

It was reported that globally, around 335 infectious 

diseases have emerged between 1940 to 2004 (Jones et al., 

2008; Morens et al., 2004; Raslan et al., 2017). The 

World Health Organization (WHO) estimates that about 

one third of annual deaths worldwide are due to 

diseases spread by infection (WHO, 2015). Pertussis 

also known as “whooping” cough or the 100-days 

cough is an acute respiratory illness that has exhibited 

cyclical outbreaks over the last century (Auger et al., 

2013). It is a highly contagious respiratory disease that 

can affect individuals of any age. Research indicates 

that infants <1 year old bear the largest disease burden 

(De Cellès et al., 2018; Fabricius et al., 2018;    

Tilahun et al., 2018). The disease is carried by a Gram-

negative bacterium known as the Bordetella pertussis. 

The bacteria travels via respiratory droplets infecting 

human hosts (Koenig et al., 2019; Mattoo and Cherry, 

2005). In the last two decades, there has been an increase 

in the incidence of the disease worldwide, with around 

16 million cases occurring per year and approximately 

200,000 deaths (Fabricius et al., 2018). 

In this study, a mathematical model for the 

transmission of pertussis is studied. The model will be 

a modification of existing models (Anderson and 

May, 1982; Fabricius et al., 2013; Hu et al., 2014; 

Suleman and Riaz, 2019; Rozhnova and Nunes, 2012). 

These existing models considered population which 

consists of all age groups, where vaccination is 

introduced as a control for the disease to individuals 

that completely have no immunity. Thus, the modified 

model includes the maternally derived immunity 

compartment (M) and the model will be in the form of 

a Maternally derived immunity Susceptible Infected 

Recovered (MSIR) model. This means that infants are 

born immune to the disease by gaining immunity from 

the mother or are given first dose of vaccine at birth. 

Thus, the model considers the transmission of the 

disease in infants as most literature have highlighted 

that the adverse effect of the disease occurs more 

within this group (Fabricius et al., 2018). The aim of 

this paper is to analyze and observe the dynamical 

behavior of pertussis model and to relate how certain 

proportions of the population behaves. 

Model Formulation 

In this section the model is formulated and analyzed. 

The total population of the model is partitioned into four 

compartments given by: 

 

( ) (t) (t) (t) (t)w wN t M S I R     (1) 

 

The total population at the time t denoted as N(t) is 

made up of four compartments namely; maternally 

derived immunity (M(t)), susceptible (S(t)), infected 

(Iw(t)) and recovered (Rw(t)) compartments respectively 

and the subscript (w) represents whooping cough. 
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Fig. 1: Flow chart of MSIR model 
 

In the model formulation, it is assumed that  is the 

proportion of immunized individuals against infection, 

 is the per capita birth rate, the rate of vaccine 

efficiency is given by , the natural mortality rate is , 

the force of infection is given by w = wcIw, which 

measures the per capita probability of acquiring the 

disease (Keeling and Rohani, 2011), the disease 

transmission rate is denoted by w, c is the contact rate 

with an infected individual and w  is the progression 

rate due to loss of immunity, w is the recovery rate and 

w is the death rate caused by disease. Figure 1 above 

represents the flow chart of the MSIR model. The 

compartmental model for the disease transmission of 

pertussis is given by a system of nonlinear ordinary 

differential equation: 
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 (2) 

 

where all the initial conditions are positive: 

 

0 00 0(0) 0, (0) 0, (0) 0, (0) 0w w w wM M S S I I R R         

 

Basic Properties of the Model 

In this next section, the basic properties of the model 

(2) is discussed. The model is shown to be positive and 

bounded in an invariant region. This analysis is very 

important when observing the dynamical behaviour of a 

disease model because it shows whether the model is 

epidemiologically appropriate and mathematically well-

posed, that is the model and its predictions are certain 

(Mattoo and Cherry, 2005). 

Positivity of Solution 

Theorem 1 

Let  be a positive invariant region and also 

suppose {(M(0) > 0, S(0) > 0, Iw  0, Rw  0)}, then 

all the solution set (M(t), S(t), Iw(t), Rw(t))>0 of the 

model (2) are positive for subsequent time (t)       

(Van Boven et al., 2002). 

Proof 

Given the equation from the susceptible compartment 

of the model (2): 
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The third equation in the model (2) is also 

considered: 
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It can also be shown for other compartments of the 

model (2) and as such the solution is positive for all t > 

0. This completes the proof. 

The Positive Invariant Region 

This is the region that shows that the solution is 

bounded. The total population size for this model given 

by Equation (1) is differentiated and substituting 

respective expressions of, 
 d M S

dt


 (Li and Guo, 2017), 

wdI

dt
 and wdR

dt
 yields: 
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The positive invariant region is obtained considering 

the following theorem (Bolarin and Omotola, 2016). 

Theorem 2 

The solutions of the model (2) are feasible for t > 0 if 

they enter the invariant region . 

Proof 

Suppose  = (M, S, Iw, Rw) = 4R
 be any solution of 

the model (2) with non-zero initial conditions and there 

is no death due to disease (w = 0), such that (3) can be 

written as: 

 

dN
N

dt

dN
N

dt





  

  

 (4) 

 

Solving (4) using the integrating factor yields: 

 

( ) tN t ce 




   

 

Given the initial condition t = 0 and N(0) = N0, then 

the solution becomes: 

 

0

tN N e 

 

  
   

 
 

 

Such that when t, N



 . 

Thus, the feasible solution set of the model (2) is 

epidemiologically meaningful and bounded in the 

domain: 

 

  4, , , : , , , 0; .w w w wM S I R R M S I R N




 
     

 
 

 

Stability Analysis 

The stability analysis of the basic model (2) is to 

examine the behavior of the model having obtained the 

equilibrium points. This investigation establishes 

whether the equilibrium points are either asymptotically 

stable or unstable. 

Pertussis Disease-Free Equilibrium (PDFE)  

To obtain the disease-free equilibrium points in 

infectious disease modeling that is the state where there 

is no disease (pertussis) at the onset in the system, which 

implies that infected and recovered populations are zero 

(Iw, Rw = 0). The steady state of differential Equations (2) 

is obtained and the PDFE is given by (5), where  = (1-

), thus: 

 

 
 

( )
, , , , ,0,0 .f f f f f

w wE M S I R
   

    

    
      

 (5) 

 

Basic Reproduction Number 

The basic reproduction number of the basic model (2) 

denoted 0 is the average number of secondary 

infections produced by an index case of wholly 

susceptible population (Diekmann and Heesterbeek, 

2000). It plays a critical role as a threshold parameter. 

The basic reproduction number 0 = (FV-1), where  is 

the spectral radius, F = [wcS] and V = [w + w + ]. 

Thus 0 is given by: 

 

 

  
0

( )
.

w

w w

c    

     

  
 

  
 (6) 

 

When 0 < 1, it means that the probability of new 

cases of disease to persist in the population is 

insufficient for an outbreak to occur. If 0 > 1, then the 

disease will become endemic causing a drastic decline in 

the population of the susceptible (Burrell et al., 2016). 

Thus, the higher the value of 0, the higher 

treatment coverage is required to eliminate the disease. 

From Equation (6), the behavior of 0 in relation to the 

transmission rate (w) is observed when the contact rate 

(c) of the model is varied. Figure 2a reveals that when 

the contact rate of the disease in the population is high, 

the emergence of secondary infection increases and can 

become endemic. When the transmission of the disease 

is increased, as long as contact rate to the disease is 

kept minimal, the outbreak of the disease in the 

population is controlled and will not be endemic as 

observed in Fig. 2b. 

Local Stability of the Pertussis Disease-Free 

Equilibrium (Ef)  

To establish the local stability of the PDFE, the 

Jacobian of the model is considered. The characteristic 

equation is then derived from the Jacobian and thus the 

result of the eigenvalue is obtained. 

Theorem 3 

The PDFE of basic model (2) is locally 

asymptotically stable if 0 <1. 
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(a) 

 

 
(b) 

 
Fig. 2: The effect of contact rate, transmission rate and vaccine efficiency on the behavior of the basic reproduction number. (a) Variation of 

transmission rate at different values of contact rate (c = 0.01, 0.03, 0.05 and 0.07). (b) Variation of the vaccine efficiency at a fixed 

contact rate (c = 0.01) with different of transmission rates (w = 1.205, 1.225, 1.245 and 1.265) (Hu et al., 2014) 

 

Proof 

To establish the local stability of the system, the 

Jacobian of the basic model (2) is evaluated at PDFE 

which is given by: 
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The characteristic equation of (7) is given by: 
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It is clear from (8) that: 

 

 

 

1

2

3

4

,

,

,

.

w

w w wcS

 

  

  

    

 

  



  

   

 

 

The analysis shows that all eigenvalues 1, 2, 3, 4 
are negative provided , w, w, c, w,  and w are 
greater than zero. Therefore, considering the principle of 
linearized stability (Keeling and Rohani, 2011), the 
PDFE is asymptotically stable. 

Pertussis Endemic Equilibrium (PEE) 

The pertussis endemic equilibrium (PEE) is an 

equilibrium point that indicates that the disease will 

persist at steady state that is when Iw  0. The PEE for 

the model (2) is given by  , , ,e e e e e

w wE M S I R : 
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where, Z = (w + w + ). It should be noted that the 

endemic equilibrium can only be feasible if 0 >1, 

which implies persistence of the disease. 

Local stability of the pertussis endemic equilibrium 

(Ee). 

Theorem 4 

The endemic equilibrium of the system (2) is locally 

asymptotically stable when 0 >1. 

Proof 

The Jacobian matrix is given by: 
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From (10), the characteristic equation written as: 
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where, A1, A2, A3 in (11) are the coefficients of 3, 2,   

and A4 the constant term are given by: 
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Considering the Routh-Hurwitz criterion, for 0 >1, 

the endemic equilibrium (Ee) is asymptotically stable if: 
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Numerical Simulation  

In this section, the numerical simulation of the model 

(2) is carried out to demonstrate its asymptotic behavior. 

The initial condition of the state variables is given by 

M(t0) = 0.304, S(t0) = 0.604 and Iw(t0) = Rw(t0) = 0 at the 

disease-free state and Iw(t0) = 0.4, Rw(t0) = 0.3 at an 

endemic state from the initial time t0 to the unit time (tfl 

= 60 days) (Edwards, 2005; Wang et al., 2019). Figure 3 

gives a time series graph which illustrates the behavior 

of population with respect to time. 
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(b) 

 
Fig. 3: Time series plot at (a) pertussis disease-free and (b) endemic state 
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(c) 

 
Fig. 4: Effects of varying the immunity waning parameter (w = 0.06, 0.106, 0.306, 0.506) the pertussis disease-free state; (a) 

Susceptible; (b) Infected; (c) Recovered 
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(c) 

 
Fig 5: Effects of varying the immunity waning parameter (w = 0.06, 0.106, 0.306, 0.506) on the population at an endemic state; (a) 

Susceptible; (b) Infected; (c) Recovered 

 

The time series plot in Fig. 3b shows a difference in the 

steepness of the infected population as compared to Fig. 3a. 

However, none of the states exhibits total extinction of the 

disease. The maternally derived population decreases and 

moves to the susceptible compartment. The next 

illustration, Fig. 4 shows the behavior of each population 

with variation in some parameters that affect the system. 

The numerical simulation in Fig. 4a shows a decrease in 

the susceptible population. This indicates that as a result 

of immunity waning, the individuals in this group move 

to the infected population. 

However, not all individuals are affected with the 

disease as the point of equilibrium shows that certain 

proportion of the individuals are not infected. In Fig. 4b, 

the simulation reveals that with an increase in the 

immunity waning parameter w the spread of infection 

increases in the population. Although the population 

does not go extinct, it approaches the equilibrium state at 

different population sizes. 

The recovered population as observed in Fig. 4c tends to 

vary in sizes in a descending order and thus individuals 

become susceptible again which makes them prone to 

infection. The characteristic of population as observed in 

Fig. 5a and 5c in an endemic state is similar to the case of 

the disease free with variation in the immunity waning 

parameter, but the size of infected individual varies. Figure 

5b shows that at all stages of the immunity waning, the 

infection spread is quite high and still does not go extinct. 

Discussion 

In this study, an MSIR model was used to study the 

transmission dynamics of Pertussis disease in infants. 

The model was divided into the total population of four 

compartments; maternally derived immunity, susceptible, 

infected and recovered. From the analysis, it was seen that 

the model exists in an invariant region making it 

epidemiologically appropriate and mathematically well-

posed. The behavior of 0 was observed, where it showed 

that an increase in the contact rate will lead to the 

emergence of secondary infection and this can become 

endemic. The local stability of the model was derived 

using the Jacobian and Routh-Hurtwiz criterion for both 

disease-free and endemic states respectively the result 

showed that the disease-free and endemic equilibrium 

are both asymptotically stable. Also from Theorems 3 

and 4, the behavior of the basic reproduction was used to 

establish the stability of the system, which showed that 

when 0 < 1 the PDEF is stable and when 0 > 1 the 

PEE is stable, otherwise unstable. 

Numerical simulations were conducted and the 

behavior of the individuals in various compartments was 

observed. The result shows that when there is variation in 

the immunity waning parameter the infected population in 

the endemic state seems quite high. However, for both 

cases of PDFE and PEE, the population of the infected 

individuals never goes extinct. Biologically, it means the 

disease might persist if adequate measures are not put in 

place. Furthermore, it will be appropriate to investigate the 

dynamical behavior of model (2) with the inclusion of 

vaccine as a treatment. This further investigation might 

give an insight why there is reemergence of the disease 

despite pertussis being a vaccine preventable disease.  
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