Original Research Paper

S-Numbers of Weighted Shift Operators on P-Summable Formal Entire Functions of M-Variables

${ }^{1}$ Nashat Faried, ${ }^{2}$ Z.A. Hassanain, ${ }^{1}$ H. Abd El Ghaffar and ${ }^{1}$ A. Lokman
${ }^{1}$ Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
${ }^{2}$ Department of Basic Sciences, El-Gazeera High Institute for Engineering and Technology, Egypt

Article history

Received: 16-12-2018
Revised: 27-04-2019
Accepted: 30-04-2019
Corresponding Author:
Hany Abd El Ghaffar El Deeb
Department of Mathematics,
Faculty of Science, Ain Shams
University, Cairo, Egypt
Email: hanihanifos@yahoo.com

Abstract

The idea of multiplying a formal Taylor power series by z to make a right shift operator on the space of all square summable sequences of real numbers was due to A.L. Shield. In this work, we consider Taylor power series in m-variables and we give upper and lower estimations of s-numbers for multiplication of m - right weighted shift operators. This allowed us to estimate upper bounds for s-numbers of infinite series of m-right weighted shift operators and give some applications.

Keywords: S-Numbers, Shift Operators, Formal Power Series

Introduction

For any bounded linear operator T from a Banach space E into a Banach space F there are associated some decreasing sequences of non negative numbers called snumbers satisfying certain conditions. Examples of snumbers are approximation, Berrnstien, Gelfand, Kolmogorov and Tichomirov numbers. Hilbert Schmidt operators are those operators whose sequences of approximation numbers are square summable (Pietsch, 1980). Compact operators are those operators whose sequence of Kolmogorov numbers converges to zero. For more details about these and other s-numbers we refer the reader to (Pietsch, 1980; 1987). Shields (1974) gave representation for weighted shift operators as formal power series in unilateral shifts and formal Laurent series in bilateral shifts. He also suggested to express functions belonging to the space $H^{2}(\beta)$ by $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ with $\|f\|^{2}=\sum_{n=0}^{\infty}|\hat{f}(n)|^{2} \beta^{2}(n)<\infty$ where $\{\beta(n)\}$ is a sequence of positive numbers with $\beta(0)=1$ and $\{\hat{f}(n)\}$ is a sequence of real numbers. In this case, to see that $\left\|z_{k}\right\|=\beta(k)$ he considered the following: $\hat{f}_{k}(n)=\delta_{n k}$, so $\left\|f_{k}(z)\right\|^{2}=\sum_{n=0}^{\infty}\left|\hat{f}_{k}(n)\right|^{2}\left\|z^{n}\right\|^{2}=\sum_{n=0}^{\infty}\left|\delta_{n k}\right|^{2}\left\|z^{n}\right\|^{2}$ $=\left\|z^{k}\right\|^{2} \beta^{2}(k)$; it is clear that $\left\{f_{k}\right\}$ is an orthogonal basis. Hedayatian (2004) defined H_{β}^{p} to be the space of all functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ equipped with the norm $\|f\|$
$=\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{p} \beta^{p}(n)\right)^{\frac{1}{p}}<\infty$ which is a generalization of the space l^{p} of all absolutely p summable sequences.

In this work, we consider the space $H_{\beta(I)}^{p}, 1 \leq p<\infty$ of formal power series $f\left(z^{I}\right)=\sum_{I} a_{I} z^{I}=$ $\sum_{i_{k}=0}^{\infty} a_{\left(i_{1}, i_{2}, \cdots, i_{m}\right)} z_{1}^{i_{1}^{i_{1}}} z_{2}^{i_{2}} \cdots z_{m}^{i_{m}} \quad$ in m-variables equipped with $\| f \left\lvert\,=\left(\sum_{I}\left|a_{I}\right|^{p} \beta^{p}(I)\right)^{\frac{1}{p}}<\infty\right.$, where $\left(a_{I}\right): \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}}_{m \text {-times }} \rightarrow \mathbb{R}$ is a family of real numbers indexed by a multi-index I and $\beta(I)=\beta_{1}\left(i_{1}\right) \beta_{2}\left(i_{2}\right) \cdots \beta_{m}\left(i_{m}\right)$, where $\beta_{j}\left(i_{j}\right), i_{j} \in \mathbb{N}^{*}=$ $\{0,1, \cdots\}, j=1,2, \cdots, m$ are positive weights such that $\beta_{j}(0)=1$ for all j. The family $\left\{z^{I}, I \in \mathbb{N}^{*}\right\}$ forms an orthogonal basis to the space $H_{\beta(I)}^{p}$. We give upper bounds for s-numbers of a series $\sum_{I} c_{J} R^{J} \quad$ (where $R^{J}=$ $\prod_{k=1}^{m} R_{k}^{j_{k}}$ and $J=\left(j_{1}, j_{2}, \cdots, j_{m}\right)$ is an index set of m natural numbers) of unilateral weighted shift operators.

Basic Definitions and Lemmas

Definition 2.1 (Pietsch, 1980)

By $L(E, F)$, we denote the space of all bounded linear operators from a normed space E into a normed space F. A map s which assigns to every operator $T \in L(E, F)$ a
unique sequence $\left\{s_{n}(T)\right\}_{n=0}^{\infty}$ is called an s-function if the following conditions are satisfied:

1. $\|T\|=s_{1}(T) \geq s_{2}(T) \geq \cdots \geq 0$ for $T \in L(E, F)$
2. $\quad s_{n}(U+V) \leq s_{n}(U)+\|V\|$ for $U, V \in L(E, F)$
3. $s_{n}(U T V) \leq\|U\| s_{n}(T)\|V\|$ for $V \in L\left(E_{0}, E\right), T \in L(E, F)$ and $U \in L\left(F, F_{0}\right)$
4. If $T \in L(E, F)$ and $\operatorname{rank} T<n$, then $s_{n}(T)=0$
5. $s_{n}\left(I_{n}\right)=1$, where I_{n} is the identity map of the space l_{2}^{n}

We call $s_{n}(T)$ the n-th s-number of the operator T.
Lemma 2.2 (Faried et al., 1993)
Let $\left\{\tau_{i}\right\}$ be a bounded family of real numbers. Then:

$$
\sup _{\operatorname{carr} \xi_{\xi}=r+1} \inf _{i \in \xi} \tau_{i}=\inf _{\operatorname{card\xi } \xi=r} \sup _{i \notin \xi} \tau_{i},
$$

where, $\operatorname{card} \xi$ is the number of elements of the subset of indices ξ.

Lemma 2.3 (Beckenbach and Bellman, 1971)
Let $x_{i j} \geq 0$ for $i=0,1,2, \cdots, n$ and $j=0,1,2, \cdots m$. If p ≥ 1, then:

$$
\left[\sum_{i=0}^{n}\left(\sum_{j=0}^{m} x_{i j}\right)^{p}\right]^{\frac{1}{p}}=\sum_{j=0}^{m}\left(\sum_{i=0}^{n} x_{i j}^{p}\right)^{\frac{1}{p}} .
$$

Definition 2.4

T By R_{j} and S_{j}, we denote the unilateral forward and backward shift operators on $H_{\beta(I)}^{p}$ defined by:

$$
R_{j} f\left(z^{I}\right)=z_{j} f\left(z^{I}\right)=\sum_{\substack{i_{k}=0 \\ k=1,2, \cdots, m}}^{\infty} a_{\left(i_{i}, i_{2}, \cdots i_{j}, \cdots i_{m}\right)} z_{1}^{i_{1}} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}+1} \cdots z_{m}^{i_{m}}
$$

and:

$$
\begin{aligned}
& S_{j} f\left(z^{I}\right)=\frac{f\left(z^{I}\right)-f(0)}{z_{j}} \\
& =\sum_{\substack{i_{k}=0 \\
k=1,2, \cdots m}}^{\infty} a_{\left(i_{1}, i_{2}, \cdots i_{j}, \cdots i_{m}\right)} z_{1}^{z_{1}} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}-1} \cdots z_{m}^{i_{m}}
\end{aligned}
$$

respectively.

Lemma 2.5

The powers R_{j}^{n} and S_{j}^{n} of the operators R_{j} and S_{j} are bounded on the space $H_{\beta(I)}^{p}$ with $\left\|R_{j}^{n}\right\|=\sup _{i_{j}} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)}$ and
$\left\|S_{j}^{n}\right\|=\sup _{i_{j}} \frac{\beta_{j}\left(i_{j}\right)}{\beta_{j}\left(i_{j}+n\right)}$ respectively provided that the righthand side exists.

Proof

Let $E_{j}=(0,0, \cdots 1,0, \cdots)\left(1\right.$ in the $j^{\text {th }}$ place). For $f\left(z^{I}\right)$ $\epsilon_{H_{p(t)}^{p}}$, we have:

$$
R_{j}^{n} f\left(z^{I}\right)=\sum_{I} a_{I} z^{I+n E_{j}}=z_{j}^{n} f\left(z^{I}\right)=\sum_{\substack{i_{i}=0 \\ k=1,2, \cdots, m}}^{\infty} a_{\left(i_{1}, i_{2}, \cdots i_{m}\right)} i_{1}^{z_{1}^{i} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}+n} \cdots z_{m}^{i_{m}},}
$$

and hence,

$$
\begin{aligned}
& \left\|R_{j}^{n}\right\|=\sup _{\left|f\left(z^{I}\right)\right| \neq 0} \frac{\left\|R_{j}^{n} f\left(z^{I}\right)\right\|}{\left\|f\left(z^{I}\right)\right\|} \\
& =\sup _{\left|f\left(z^{I}\right)\right| \neq 0} \frac{\left(\sum_{I}\left|a_{I}\right|^{p} \beta_{1}^{p}\left(i_{1}\right) \beta_{2}^{p}\left(i_{2}\right) \cdots \beta_{j}^{p}\left(i_{j}+n\right) \cdots \beta_{m}^{p}\left(i_{m}\right)\right)^{\frac{1}{p}}}{\left(\sum_{I}\left|a_{I}\right|^{p} \beta_{1}^{p}\left(i_{1}\right) \beta_{2}^{p}\left(i_{2}\right) \cdots \beta_{m}^{p}\left(i_{m}\right)\right)^{\frac{1}{p}}} \\
& \leq \sup _{i_{j}} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} .
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
& \left\|R_{j}^{n}\right\| \geq \sup _{i_{j}} \frac{\left\|R_{j}^{n}\left(z_{1}^{i_{1}} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}} \cdots z_{m}^{i_{m}}\right)\right\|}{\| z_{1}^{i_{1}^{i} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}} \cdots z_{m}^{i_{m}} \|}=\sup _{i_{j}} \frac{\left\|z_{1}^{i_{1}} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}+n} \cdots z_{m}^{i_{m}}\right\|}{\| z_{1}^{i_{1} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}} \cdots z_{m}^{i_{m}} \|}}} \begin{array}{r}
\sup _{i_{j}} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} .
\end{array} .
\end{aligned}
$$

Therefore, $\left\|R_{j}^{n}\right\|=\sup _{i_{j}} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)}$. By the same manner, we can prove that $\left\|S_{j}^{n}\right\|=\sup _{i_{j}} \frac{\beta_{j}\left(i_{j}\right)}{\beta_{j}\left(i_{j}+n\right)}$.

Lemma 2.6

The operators R^{J} and S^{J} are bounded on the space $H_{\beta(I)}^{p}$ with:

1. $\left\|R^{j}\right\|=\sup _{I} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \frac{\beta_{2}\left(i_{2}+j_{2}\right)}{\beta_{2}\left(i_{2}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}$
2. $\left\|S^{j}\right\|=\sup _{I} \frac{\beta_{1}\left(i_{1}\right)}{\beta_{1}\left(i_{1}+j_{1}\right)} \frac{\beta_{2}\left(i_{2}\right)}{\beta_{2}\left(i_{2}+j_{2}\right)} \cdots \frac{\beta_{m}\left(i_{m}\right)}{\beta_{m}\left(i_{m}+j_{m}\right)}$
provided that the right-hand side exists.

Proof

The proof is similar to that of lemma 2.5.

Main Results

Theorem 3.1

The s-numbers of the unilateral forward weighted shift operator R^{J} have the following upper and lower estimations:

$$
\begin{aligned}
& \sup _{\prod_{i=1}^{m} \operatorname{mup}_{i} \leq r+1} \sup _{\operatorname{crrd} \xi_{i}=r_{i}} \inf _{I \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} \leq s_{r}\left(R^{J}\right) \\
& \leq \inf _{\prod_{i=1}^{m} r_{i} \leq r+1} \sup _{\operatorname{card} \xi_{i}=r_{i}+1} \inf _{I \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} \text {. }
\end{aligned}
$$

Proof

Let $\xi_{1}, \xi_{2}, \cdots \xi_{m}$ be a collection of finite sets of natural numbers such that card $\xi_{i}=r_{i}$ with $\prod_{i=1}^{m} r_{i} \leq r+1$. We consider the following projections $P_{\xi_{1}}, P_{\xi_{2}}, \cdots P_{\xi_{m}}$ on the space $H_{\beta(I)}^{p}$ with $\operatorname{rank}_{\xi_{i}}=r_{i}$ such that $P_{\xi_{1}}\left(\sum_{I} a_{I} z^{I}\right)=\sum_{i_{j} \in \xi_{j}, i_{k} \in \mathbb{N}^{\top}, k \neq j} a_{I} z^{I}, j=1,2, \cdots, m$ and by $P_{\xi}=P_{\xi_{1}}, P_{\xi_{2}}, \cdots P_{\xi_{m}}$ where $\xi=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{m}\right)$ then we have $P_{\xi}\left(\sum_{I} a_{I} z^{I}\right)=\sum_{I \epsilon \xi} a_{I} z^{I}$.

Clearly $P_{\xi} S^{J} R^{J} P_{\xi}$ is the identity operator on the space $H_{\beta(I)}^{p}$ and by using Definition 2.1 part (3) and lemma 2.6, we get:

$$
\begin{aligned}
& s_{r}\left(R^{J}\right) \geq \frac{1}{\left\|S^{J}\right\|}=\frac{1}{\sup _{I \in \zeta} \frac{\beta_{1}\left(i_{1}\right)}{\beta_{1}\left(i_{1}+j_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}\right)}{\beta_{m}\left(i_{m}+j_{m}\right)}} \\
& =\inf _{I \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \frac{\beta_{2}\left(i_{2}+j_{2}\right)}{\beta_{2}\left(i_{2}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} .
\end{aligned}
$$

Since this relation is true for every $i=1,2, \cdots, m$ with card $\xi_{i}=r_{i}$, we get:

$$
s_{r}\left(R^{J}\right) \geq \sup _{\operatorname{card\xi _{1}}=r_{r}} \inf _{I \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \frac{\beta_{2}\left(i_{2}+j_{2}\right)}{\beta_{2}\left(i_{2}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}
$$

Therefore for every $\prod_{i=1}^{m} r_{i} \leq r+1$, we get:

$$
\begin{aligned}
& s_{r}\left(R^{J}\right) \\
& \geq \sup _{\prod_{i=1}^{m} \operatorname{mup}_{i} \leq r+1} \sup _{\operatorname{car} \xi_{\xi}=r_{1}} \inf _{I \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \frac{\beta_{2}\left(i_{2}+j_{2}\right)}{\beta_{2}\left(i_{2}\right)} \ldots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}
\end{aligned}
$$

On the other hand, from the definition of the snumbers, we define a finite rank operator $P_{\xi} R^{J}$ by:

$$
P_{\xi} R^{J}\left(\sum_{I} a_{I} z^{I}\right)=\sum_{I \in \xi} a_{I} z^{I+J}
$$

Since the approximation numbers are the greatest snumbers, we get:

$$
\left.=\sup _{\left\|\mid\left(z^{2}\right\rangle\right\|=0}^{\left[\sum_{\mid \varepsilon_{\xi} \xi}\left|a_{I}\right|^{p} \beta_{1}^{p}\left(i_{1}+j_{1}\right) \cdots \beta_{m}^{p}\left(i_{m}+j_{m}\right)\right]^{\frac{1}{p}}}\left[\sum_{I}\left|a_{I}\right|^{p} \beta_{1}^{p}\left(i_{1}\right) \cdots \beta_{m}^{p}\left(i_{m}\right)\right]^{\frac{1}{p}}\right]
$$

$$
\leq \sup _{I \varepsilon \xi_{\xi}} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \ldots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}\left[\frac{\left.\sum_{l \varepsilon \xi}\left|a_{I}\right|^{p} \beta_{1}^{p}\left(i_{1}\right) \cdots \beta_{m}^{p}\left(i_{m}\right)\right]^{\frac{1}{p}}}{\left[\sum_{l \epsilon \xi}\left|a_{I}\right|^{p} \beta_{1}^{p}\left(i_{1}\right) \cdots \beta_{m}^{p}\left(i_{m}\right)\right]^{\frac{1}{p}}}\right.
$$

$$
\leq \sup _{1 \varepsilon_{5}} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \ldots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} .
$$

Proceeding to infimum, we get:

$$
s_{r}\left(R^{J}\right) \leq \inf _{\operatorname{card} \xi_{i}=r_{i}} \sup _{I \notin \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} .
$$

By using lemma 2.2 we get:

$$
s_{r}\left(R^{J}\right) \leq \sup _{\operatorname{card}_{\xi_{1}}=r_{i}+1} \inf _{1 \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} .
$$

Since this relation is true for every $\prod_{i=1}^{m} r_{i} \leq r+1$, we get:

$$
s_{r}\left(R^{J}\right) \leq \inf _{\prod_{t=1}^{m} r_{i} \leq r+1} \sup _{\operatorname{card}_{\xi_{i}}=r_{i}+1} \inf _{I \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} .
$$

End of the proof.
The next proposition gives upper and lower bounds to the norm of the infinite series of unilateral weighted shift operators $\sum_{n=0}^{\infty} c_{n} R_{z}^{n}$ on the space $H_{\beta(I)}^{p}$ under the condition $\left\{c_{n}\right\}_{n=0}^{\infty} \in l_{1}$.

$$
\begin{aligned}
& s_{r}\left(R^{J}\right) \leq \alpha_{r}\left(R^{J}\right) \leq\left\|R^{J}-P_{\xi} R^{J}\right\| \\
& =\sup _{\left\|f\left(z^{2}\right)\right\|=0} \frac{\left\|\left(R^{I}-P_{\xi} R^{\prime}\right) f\left(z^{I}\right)\right\|}{\left\|f\left(z^{t}\right)\right\|} \\
& =\sup _{\left\|\mid\left(z^{\prime} \|\right)\right\|=0}\left\|\sum_{I \varepsilon \varepsilon} a_{I} z^{I+t}\right\|
\end{aligned}
$$

Proposition 3.2

For the infinite series of unilateral weighted shift operators $\sum_{n=0}^{\infty} c_{n} R_{j}^{n}$ on the space $H_{\beta(I)}^{p}$ and for every $\left\{c_{n}\right\}_{n=0}^{\infty} \in l_{1}$ and $1 \leq p<\infty$, we get:

$$
\begin{aligned}
& \sup _{i j}\left(\sum_{n=0}^{\infty}\left|c_{n}\right|^{p}\left[\frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)}\right]^{p}\right]^{\frac{1}{p}} \\
& \leq\left|\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right| \leq \sup _{i, n} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} \sum_{n=0}^{\infty}\left|c_{n}\right| .
\end{aligned}
$$

Proof

For every $f\left(z^{l}\right) \in H_{\beta(l)}^{p}$, we get:

By using Lemma 2.3, we get:

$$
\left\|\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right\| \leq \sup _{i, n} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} \sum_{n=0}^{\infty}\left|c_{n}\right| .
$$

On the other hand:

$$
\begin{aligned}
& \| \sum_{n=0}^{\infty} c_{n} R_{i}^{n} \left\lvert\, \geq \frac{\left\|\left(\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right) z^{\prime}\right\|}{\left\|z^{t}\right\|}=\right. \\
& =\frac{\left\|\sum_{m=0}^{\infty} c_{n} z^{z^{\prime}+\sum_{k}}\right\|}{\beta_{1}\left(i_{1}\right) \cdots \beta_{m}\left(i_{m}\right)} \\
& =\frac{\left(\left.\sum_{n=0}^{\infty}\left|c_{n}\right|\right|^{p} \beta_{1}^{p}\left(i_{1}\right) \cdots \beta_{j}^{p}\left(i_{i}+n\right) \cdots \beta_{m}^{p}\left(i_{m}\right)\right)}{\beta_{1}\left(i_{1}\right) \cdots \beta_{m}\left(i_{m}\right)} \\
& =\left(\sum_{n=0}^{\infty}\left|c_{n}\right|^{p}\left[\frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)}\right]^{p}\right)^{\frac{1}{n}}
\end{aligned}
$$

Therefore:

$$
\left\|\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right\| \geq \sup _{i j}\left(\sum_{n=0}^{\infty}\left|c_{n}\right|^{p}\left[\frac{\beta_{j}\left(i_{j}+n\right.}{\beta_{j}\left(i_{j}\right)}\right]^{p}\right]^{\frac{1}{p}}
$$

End of the proof.

Remark 3.3

For $p=1$ in the previous proposition, the right and left estimations coincide to get an exact estimation.

Proposition 3.4

For the unilateral forward weighted shift operator $\sum_{J} c_{J} R^{J}$ on the space $H_{\beta(I)}^{p}$ and for every $\left\{c_{J}\right\}_{J=0}^{\infty}$ satisfying $\sum_{J}\left|c_{J}\right|<\infty$ and $1 \leq p<\infty$, we get:

$$
\begin{aligned}
& \sup _{I}\left(\sum_{J}\left|c_{J}\right|^{p}\left[\frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)}\right]^{p} \cdots\left[\frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}\right]^{p}\right)^{\frac{1}{p}} \\
& \leq\left\|\sum_{J} c_{J} R^{J}\right\| \leq \sup _{l, J}^{\beta_{1}\left(i_{1}+j_{1}\right)} \frac{\beta_{1}\left(i_{1}\right)}{\beta_{m}\left(i_{m}+j_{m}\right)} \\
& \beta_{m}\left(i_{m}\right)
\end{aligned} \sum_{J}\left|c_{J}\right| .
$$

Proof

$$
\text { For every } f\left(z^{l}\right) \in H_{\beta(l)}^{p} \text {, we get: }
$$

By using Lemma 2.3, we get:

$$
\left\|\sum_{J} c_{J} R^{R}\right\| \leq \sup _{l, J} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \ldots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} \sum_{J}\left|c_{J}\right| .
$$

On the other hand:
$\left\|\sum_{J} c_{j} R^{J}\right\| \geq \frac{\left\|\left(\sum_{J} c_{s} R^{J}\right) z^{t}\right\|}{\left\|z^{I}\right\|}$
$=\frac{\left\|\sum_{J} c_{s} z^{I+J}\right\|}{\beta_{1}\left(i_{1}\right) \cdots \beta_{m}\left(i_{m}\right)}$

$$
\begin{aligned}
& =\frac{\left(\sum_{J}\left|c_{J}\right|^{p} \beta_{1}^{p}\left(i_{1}+j_{1}\right) \beta_{m}^{p}\left(i_{m}+j_{m}\right)\right)^{\frac{1}{p}}}{\beta_{1}\left(i_{1}\right) \cdots \beta_{m}\left(i_{m}\right)} \\
& =\left(\sum_{J}\left|c_{J}\right|^{p}\left[\frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)}\right]^{p} \cdots\left[\frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}\right]^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Therefore:

$$
\left\|\sum_{J} c_{J} R^{J}\right\| \geq \sup _{I}\left(\sum_{J}\left|c_{J}\right|^{p}\left[\frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)}\right]^{p} \ldots\left[\frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)}\right]^{p}\right]^{\frac{1}{p}}
$$

End of the proof.
In the following proposition, we get an upper estimation to the s-numbers of the unilateral forward shift operator of the form of an infinite series $\sum_{m=0}^{\infty} c_{m} R_{z}^{m}$ on the space $H_{\beta(I)}^{p}$.

Theorem 3.5

For the unilateral forward shift operator $\sum_{n=0}^{\infty} c_{n} R_{z}^{n}$ on the space $H_{\beta(I)}^{p}$, the s-numbers of this operator (such that $\left.\left\{c_{n}\right\}_{n=0}^{\infty} \in l^{1}\right)$ are given by:

$$
s_{r}\left(\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right) \leq \sup _{i_{j}, \operatorname{card\xi } \xi r+1} \inf _{n \in \xi} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} \sum_{n \in \xi}\left|c_{n}\right|
$$

Proof

Let ξ be a subset of the set of natural numbers \mathbb{N} with $\operatorname{card} \xi=r$:

$$
s_{r}\left(\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right) \leq\left\|\sum_{n=0}^{\infty} c_{n} R_{j}^{n}-\sum_{n \in \xi} c_{n} R_{j}^{n}\right\|=\left\|\sum_{n \in \xi} c_{n} R_{j}^{n}\right\| .
$$

From proposition 3.2, we get $s_{r}\left(\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right) \leq \sup _{i_{j}, n \notin \xi} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} \sum_{n \notin \xi}\left|c_{n}\right|$.

Since this relation is true for every set ξ with card $\xi=$ r and by using lemma 2.2 , we get:

$$
S_{r}\left(\sum_{n=0}^{\infty} c_{n} R_{j}^{n}\right) \leq \sup _{i_{j}, \operatorname{card\xi } \xi=r+1} \inf _{n \in \xi} \frac{\beta_{j}\left(i_{j}+n\right)}{\beta_{j}\left(i_{j}\right)} \sum_{n \notin \xi}\left|c_{n}\right|
$$

This completes the proof.

Theorem 3.6

For the unilateral forward weighted shift operator $\sum_{J} c_{J} R^{J}$ such that $\sum_{J} c_{J}<\infty$ on the space $H_{\beta(I)}^{p}$, the snumbers for this operator satisfy:

$$
\begin{aligned}
& s_{r}\left(\sum_{J} c_{J} R^{J}\right) \\
& \leq \inf _{\prod_{ध=1}^{m} r_{i} \leq r^{I}, \operatorname{card} \xi_{\xi}=r_{i}+1} \inf _{J \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} \sum_{J_{\mathcal{E}}}\left|c_{J}\right| .
\end{aligned}
$$

Proof

Let $\xi_{I}, i=1,2, \cdots, m$ be m subsets of the set of natural numbers \mathbb{N} with card $\xi_{i}=r_{i}$ such that $\prod_{i=1}^{m} r_{i} \leq r$. From proposition 3.4, we get:

$$
\begin{aligned}
& s_{r}\left(\sum_{J} c_{J} R^{J}\right) \leq\left\|\sum_{J} c_{J} R^{J}-\sum_{J \epsilon \xi} c_{J} R^{J}\right\|=\left\|\sum_{J \varepsilon \xi} c_{J} R^{J}\right\| \\
& \leq \sup _{I, J \notin \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} \sum_{J \notin \xi}\left|c_{J}\right| .
\end{aligned}
$$

Since this relation is true for every set ξ_{i} with card ξ_{i} $=r_{i}$ and by using lemma 2.2 , we get:

$$
s_{r}\left(\sum_{J} c_{J} R^{J}\right) \leq \sup _{I, c a r d \xi_{1}=r_{i}+1} \inf _{J \in \xi} \frac{\beta_{1}\left(i_{1}+j_{1}\right)}{\beta_{1}\left(i_{1}\right)} \cdots \frac{\beta_{m}\left(i_{m}+j_{m}\right)}{\beta_{m}\left(i_{m}\right)} \sum_{J \notin \xi}\left|c_{J}\right|
$$

Since this relation is true for every $\prod_{i=1}^{m} r_{i} \leq r$, we get:

$$
\begin{aligned}
& s_{r}\left(\sum_{J} c_{J} R^{J}\right)
\end{aligned}
$$

This completes the proof.

Some Applications on S-numbers of Some Operators

In this section, we use the formal expansion of some well known functions of more than one variable and consider it as series of forward weighted shift operators. For these series, we give upper estimations of its s-numbers.

By using the power series of three entire functions $g_{1}(x) \sum_{n=0}^{\infty} a_{n} x^{n}, g_{2}(y)=\sum_{n=0}^{\infty} b_{n} y^{n}$ and $\quad g_{3}(y)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad$ we define shift operators $R_{g_{1}} f(x, y, z)=g_{1}(x) f(x, y, z)$, $R_{g_{2}} f(x, y, z)=g_{2}(y) f(x, y, z)$ and $R_{g_{3}} f(x, y, z)=g_{3}(z) f(x, y$, $z)$ on the space $H_{\beta\left(i_{1}, i_{2}, i_{3}\right)}^{p}$.

Lemma 4.1

Let $\sum_{n=0}^{\infty} a_{n}, \sum_{n=0}^{\infty} b_{n}$ and $\sum_{n=0}^{\infty} c_{n}$ be three infinite series then we have:

$$
\sum_{n=0}^{\infty} a_{n} \sum_{n=0}^{\infty} b_{n} \sum_{n=0}^{\infty} c_{n}=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} a_{k} b_{m-k} c_{n-m}
$$

Proof:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} \sum_{n=0}^{\infty} b_{n} \sum_{n=0}^{\infty} c_{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k} \sum_{n=0}^{\infty} c_{n} \\
& =\sum_{n=0}^{\infty} A_{n} \sum_{n=0}^{\infty} c_{n} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} A_{m} c_{n-m} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} a_{k} b_{m-k} c_{n-m}
\end{aligned}
$$

Example 4.2

Considering the function $f(x, y, z)=e^{x^{2}+3 y}$ as a series of shift operators on the space $H_{\beta\left(i_{1}, i_{2}\right)}^{p}$, we have the following expansion:

$$
\begin{aligned}
& e^{x^{2}+3 y}=R_{e^{2}} R_{e^{3 y}}=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(\frac{x^{2 k}}{k!}\right)\left(\frac{3^{m-k}}{(m-k)!} y^{m-k}\right) \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{3^{m-k}}{k!(m-k)!} x^{2 k} y^{m-k} .
\end{aligned}
$$

We get:

$$
\begin{aligned}
& s_{r}\left(e^{x^{2}+3 y}\right)=s_{r}\left(\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{3^{m-k}}{k!(m-k)!} x^{2 k} y^{m-k}\right) \\
& \leq \inf _{r_{1} \leq r_{I, c a r d} \xi_{\xi}=r_{1}+1} \inf _{1, \xi} \frac{\beta_{1}\left(i_{1}+2 k\right)}{\beta_{1}\left(i_{1}\right)} \frac{\beta_{2}\left(i_{2}+m-k\right)}{\beta_{2}\left(i_{2}\right)} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{3^{m-k}}{k!(m-k)!}
\end{aligned}
$$

where, $I=\left(i_{1}, i_{2}\right)$ and $J=(2 k, m-k)$.

Example 4.3

Considering the function $f(x, y, z)=\sin x^{2} \sin 5 y \sin \frac{z}{3}$ as a series of shift operators on the space $H_{\beta\left(i_{1}, L_{2}, l_{3}\right)}^{p}$, we have the following expansion:

$$
\sin x^{2} \sin 5 y \sin \frac{z}{3} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} \frac{(-1)^{n} 5^{2(m-k)}}{3^{2(n-m)+1}(2 k+1)!(2 m-2 k+1)!(2 n-2 m+1)!} x^{4 k+2} y^{2 m-2 k+1} z^{2 n-2 m+1}
$$

we get:

$$
\begin{aligned}
& s_{r}\left(\sin x^{2} \sin 5 y \sin \frac{z}{3}\right)=s_{r}\left(\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} \frac{(-1)^{n} 5^{2(m-k)}}{3^{2(n-m)+1}(2 k+1)!(2 m-2 k+1)!(2 n-2 m+1)!} x^{4 k+2} y^{2 m-2 k+1} z^{2 n-2 m+1}\right) \\
& \leq \inf _{\prod_{i=1}^{3} \prod_{1} \leq r^{\prime} I, \text { card } \xi_{i}=r_{i}+1} \inf _{J \in \xi} \frac{\beta_{1}\left(i_{1}+4 k+2\right)}{\beta_{1}\left(i_{1}\right)} \frac{\beta_{2}\left(i_{2}+2 m-2 k+1\right)}{\beta_{2}\left(i_{2}\right)} \frac{\beta_{3}\left(i_{3}+2 n-2 m+1\right)}{\beta_{3}\left(i_{3}\right)} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} \frac{(-1)^{n} 5^{2(m-k)}}{3^{2(n-m)+1}(2 k+1)!(2 m-2 k+1)!(2 n-2 m+1)!}
\end{aligned}
$$

where, $I=\left(i_{1}, i_{2}, i_{3}\right)$ and $J=(4 k+2,2 m-2 k+1,2 n-2 m+1)$.

Example 4.4

Considering the function $f(x, y, z)=\sin \mathrm{x} \cos y e^{z}$ as a series of shift operators on the space $H_{\beta(1,2, z, k)}^{p}$, we have the following expansion:

$$
\begin{aligned}
& \sin x \cos y e^{z} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} \frac{(-1)^{m}}{(2 k+1)!(2 m-2 k)!(n-m)!} x^{2 k+1} y^{2 m-2 k} z^{n-m} .
\end{aligned}
$$

we get:

$$
\begin{aligned}
& s_{r}\left(\sin x \cos y e^{z}\right)=s_{r}\left(\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} \frac{(-1)^{m}}{(2 k+1)!(2 m-2 k)!(n-m)!} x^{2 k+1} y^{2 m-2 k} z^{n-m}\right)
\end{aligned}
$$

Aknowledgement

The authors are grateful to the editor and the referees for their helpful remarks.

Author's Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Ethics

The authors declare that there is no conflict of interests regarding the puplication of this article.

References

Beckenbach, E.F. and R. Bellman, 1971. Inequalities. 3rd Edn., Springer-Verlag.
Faried, N., Z. Abd-El Kader and A.A. Mehanna, 1993. S-numbers of polynomials of shift operators on l^{p} spaces, $1 \leq \mathrm{p}<\infty$. J. Egypt. Math. Soc., 1:31-37.

Faried, N., A. Morsy and Z.A. Hassanain, 2013. Snumbers of shift operators of formal entire functions. J. Approximat. Theory, 176: 15-22. DOI: 10.1016/j.jat.2013.09.002
Hedayatian, K., 2004. On cyclicity in the space $H^{p}(\beta)$. Taiwanese J. Math., 8: 429-442. DOI: $10.11650 / \mathrm{twjm} / 1500407663$
Pietsch, A., 1980. Operator ideals. North. Holland.
Pietsch, A., 1987. Eigenvalues and S-numbers. 1st Edn., Cambridge University Press, Cambridge, ISBN-10: 0521325323, pp: 360.
Shields, A.L., 1974. Weighted shift operators and analytic function theory. Am. Math. Society Providence, 13: 49-128.

