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Introduction 

Recently, a new generalization of the Exponential (E) 
distribution as an alternative model to the gamma (Ga), 
Weibull (W) and Exponentiated-Exponential (EE) 
distributions was proposed by Nadarajah and Haghighi 
(2011). The Cumulative Distribution Function (CDF) of 
Nadarajah and Haghighi (NH) model the is given by: 
 

   , 1 exp 1 1G x x


      
 

 

 
and the corresponding Probability Density Function 

(PDF) is: 
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where, and  are the shape and scale parameters, 
respectively, which are both greater than zero. Clearly, 
when  = 1, we have the standard Exponential (E) model. 
Nadarajah and Haghighi (2011) pointed out that the 
density function (g(x)) has the attractive feature of 
always having zero mode. They also showed that larger 
values of  in (g (x)) will lead to faster decay of the 
upper tail. In this study, we will refer to the proposed 
distribution as the Burr X Nadarajah Haghighi 
(BXNH) model. According to Yousof et al. (2017a), 
the CDF and the PDF of the BX-G family of 
distributions can be expressed as: 
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respectively, where  >0 is the shape parameter, 

 g x and  G x denote the PDF and the CDF of the 

baseline model with parameter vector  . To this end, we 

use G,(x), G,(x) and (1) to obtain the four-parameter 

BXNH PDF (for x >0) as: 
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Fig. 1: Plots of the BXNH PDF at some parameters value 
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Fig. 2: Plots of the BXNH HRF at some parameters value 

 

The Reliability Function (RF), Hazard Rate Function 

(HRF), Reversed Hazard Rate Function (RHRF) and 

Cumulative Hazard Rate Function (CHRF) of X can be 

derived with the well-known relationships. For = 1, we 

have the Rayleigh NH (RNH) model. For = 1, we have 

the Rayleigh Exponential (RE) model. For = 1, we 

have the BX Exponential (BXE) model. Figure 1 shows 

that the new density function can take a unimodal, 

symmetric and right skewed shapes. Figure 2 shows that 

the HRF may be increasing or upside-down or 

decreasing or bathtub (U) or increasing then constant or 
constant shaped failure rate function. 

Useful Representation 

In this section, we provide a useful simple 

representation for the BXNH density function. Consider 

the following power series: 
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Applying (5) to (4) we have: 
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Applying the power series to the term: 
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Then, f (x) in (6) becomes: 
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Consider the series expansion: 
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Applying the expansion in (8) to (7) for the 

term 2 3{exp[1 ( 1) } ,x     f (x) in (7) becomes: 
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This can be written as: 
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Equation (9) show that the density of X can be 

expressed as a linear mixture representation of 

Exponentiated NH (ENH) density. So, several 

mathematical properties of the BXNH model can be 

obtained by knowing those of the ENH distribution. 

Similarly, the CDF of the BXNH model can also be 

expressed as: 

 

   , 2 2

, 0

, ,F x v x   
 

 


 



   (10) 

 

where: 

 

    
2 2

2 2 , , 1 exp 1 1x x
 

 
     
 

 


      

 

Is the CDF of the ENH density with power parameter 

 2 2 .    

Mathematical and Statistical Properties 

Moments and Moment Generating Function 

The rth ordinary moment of X is given by: 
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Setting r = 1 in (11), we have the mean of X: 
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where: 
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denotes the complementary incomplete gamma function, 
which can be evaluated in MATHEMATICA, R, etc. 
The variance Var(X), skewness Ske(X) and kurtosis 
Ku(X) measures can be calculated from the ordinary 
moments using well-known relationships (see subsection 
3.7 ).The variance (Var(X)), skewness (Ske(X)) and 
kurtosis (Ku(X)) can also be calculated from the ordinary 
moments using well-known relationships. Here, we 
provide a formulae for the moment generating function 
(MGF) MX (t) = E (etX) of X. Clearly, the MGF can be 
derived from (9) as: 
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Incomplete Moments 

The sth incomplete moment, say s (t), of X can be 

expressed from (9) as: 
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The mean deviations about the mean  

and about the median [2 = E (|XM|)] of X are given by: 
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is the median, 
1( )F  is easily calculated from (3) and 

1(t) is the first incomplete moment given by (12) with s 

= 1. The 1(t) can be derived from (12) as: 

 

   

   
 1

1

1
2 2,1

1 , ,

, 0 0 0

1, 1

1, 1 1
,

i

i

i

i t

t





 
 

  

  

   



 
  
 

 



 

  
  

 

  

 v c

 (1) 

 

and: 

 

 

   
 

 

1

1

2 1 1
2 2,1

1 , ,

, 0 0 0

1, 1

2 2 01, 1 1

( )

| .

i

i

i

and integeri t

t c





  
 

  

  

     



 
  
 

  



 
 

  
  

 

   

 v

 

 

Probability Weighted Moments (PWMs) 

The (s, r)th PWM of X following the Burr type X 

generator, say s,r, is formally defined by: 
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Then, the (s, r)th PWM of X can be expressed as: 
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Residual and Reversed Residual Life 

The nth moment of the residual life, say: 
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The Mean Residual Life (MRL) function or the life 

expectation at age t can be defined by: 
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which represents the expected additional life length for a 

unit which is alive at age t. The MRL of X can be 

obtained by setting n = 1 in the last equation. 

The nth moment of the reversed residual life, say: 
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The Mean Waiting Time (MWT) or the Mean 

Inactivity Time (MIT) which also called the mean 

reversed residual life function, is given by: 
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and it represents the waiting time elapsed since the 

failure of an item on condition had occurred in (0,t). The 

MIT of the BXNH distribution can be obtained easily by 

setting n = 1 in the above equation of An (t). 

Stress-Strength Reliability Model 

Stress-strength reliability model is the most widely 
approach used for reliability estimation. The stress-
strength reliability model is used in many applications 
of physics and engineering such as system collapse 
and strength failure. In stress strength reliability 
modeling, RX2<X1 = Pr(X2<X1) is a measure of 
reliability of the system when it is subjected to 
random stress X2 and has strength X1. 

The system only fails when the applied stress exceeds 
its strength. This means that component will be satisfied 
for X1>X2. Hence the performance of a system can be 
considered as RX2<X1 and naturally arise in electrical and 
electronic systems. The reliability, RX2<X1, can also be 
explained as the probability that the system is strong 
enough to defeat the stress imposed on it. 

Let X1 and X2 be two independent rvs with 

BXNH  1 , ,   and BXNH  2 , ,   distributions, 

respectively. The PDF of X1 and the CDF of X2 can be 

written from Equations (9) and (10), respectively, as: 
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Then, the reliability is defined by: 
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Order Statistics 

Let X1,…,Xn be a Random Sample (RS) from the 

BXNH of distribution and let X(1),…,X(n) be the 

corresponding order statistics. The PDF of ith order 

statistic, say Xi:n, can be written as: 

 

 
 

 
   1

:

0

1 ,
, 1

n i
j j i

i n

j

n if x
f x F x

jB i n i


 



 
   

   
  (13) 

 

where, B(.,.) is the beta function. Using (3), (4), (9) and 

(10) in equation (13) we get: 

 

     
1

, 2 2

, 0

, , ,
j i

f x F x x


 

 



     
 

    

 

Where: 

   

  

   
 

,

0

2 1 2 3

! ! 2 3 2 2

1
1 1 .

m

m

j i
m

m





   


   

   
     

 




 



  

    





 

 

The PDF of Xi:n can be expressed as: 
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Then, the density function of the BXNH order 

statistics is a mixture of ENH density. Based on (14), the 

moments of Xi:n can be expressed as: 
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Numerical Analysis for the E(X); Var(X), 

Ske(X) and Ku(X) Measures 

Numerical analysis for the E(X), Var(X), Ske(X) and 

Ku(X) are calculated in Table 1 using (10) and well-

known relationships for some selected values of 

parameter ,   and using the R software. Based on Table 

1 we note that: 

 

1. The skewness of the BXNH distribution is always 

positive 

2. The kurtosis of the BXNH distribution can be only 

more than 3 

3. The parameter  has a xed e⁄ect on the Ske(X) and 

Ku(X) for all di⁄erent values of and : When = 5 and 

= 0:25; Ske(X) = 0:7646761 and Ku(X) = 3:892269 

for any value of the parameter  . when = 2 and = 

0:15; Ske(X) = 1:799314 and Ku(X) = 8:140326 for 

any value of the parameter  . 

4. The mean of the BXNH distribution increases 

as increases 

5. The mean of the proposed model decreases as and 

 increases 

 
Maximum Likelihood Estimation 

Let x1,…,xn be a rs from BXNH distribution with 

parameter vector  =  , ,


   . The log-likelihood 

function for,  say ( ), is given by: 
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Table 1: E(X), Var(X), Ske(X) and Ku(X) of the BXNH distribution 

      E(X)  Var(X)  Ske(X)  Ku(X) 

0.001  0.25 0.5 0.0289654 0.3563506  34.5865  1566.503 

0.01   0.2859682 3.474523 10.92097 158.4655 

0.1   2.544613 27.62755 3.412509 17.8054 

0.5   8.812294 68.26591 1.511783 5.728996 

1   13.12034 79.13151 1.110063 4.475175 

2   17.95289 80.92004 0.8832963 4.014145 

5   24.49028 74.37878 0.7646761 3.892269 

10   29.2648 67.32041 0.749148 3.926701 

0.5 0.1 0.5 304.8507 433498 5.533706 55.54326 

 0.15  41.42335 3283.812 2.899656 15.58616 

 0.2  15.8246 295.9851 1.980476 8.291567 

 0.25  8.812294 68.26591 1.511783 5.728996 

 0.3  5.872409 24.87189 1.226266 4.523618 

 0.35  4.32819 11.73789 1.033561 3.85533 

 0.4  3.397696 6.514068 0.8945249 3.443576 

 0.45  2.783351 4.031865 0.7893849 3.170498 

5 0.25 0.1 122.4514 1859.47 0.7646761 3.892269 

  0.5 24.49028 74.37878 0.7646761 3.892269 

  1 12.24514 18.5947 0.7646761 3.892269 

  5 2.449028 0.7437878 0.7646761 3.892269 

  20 0.6122569 0.04648674 0.7646761 3.892269 

  50 0.2449028 0.007437878 0.7646761 3.892269 

2 0.15 1 50.34097 1536.089 1.799314 8.140326 

  10 5.034097 15.36089 1.799314 8.140325 

  30 1.678032 1.706766 1.799314 8.140325 

  100 0.5034097 0.153609 1.799313 8.140325 
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(  ) can be maximized either by using the deferent 

programs like R (optima function), SAS (PROC 

NLMIXED) or by solving the nonlinear likelihood 

equations obtained by differentiating (14). The score 

vector elements, U( ) =
( ) ( ) ( )

, ,

T
l l l   

 
     

  
are 

easily to be derived. 

Simulation Studies 

In this section, we simulate the BXNH model by 

taking n = 20, 50, 150, 500 and 1000. For each sample 

size (n), we evaluate the ML Estimations (MLEs) of the 

parameters. Then, we repeat the process 1000 times (i.e. 

N = 1000) and compute the averages of the estimates 

(AEs) and the Mean Squared Errors (MSEs). Table 2 

gives all numerical results of the simulation experiments. 

The numerical results in Table 2 indicate that the 

MSEs and the bias of  ,   and   decay towards zero 

when n increases for all settings of ,   and  as 

expected under the asymptotic theory or large sample 

theory. The AEs of the parameters tend to be closer to 

the true parameter values I:  = 2.5,  = 1.5 and  = 2.0; II: 

 = 1.5,  = 2.5 and  = 1.5 when n increases. These results 

support that the asymptotic normal model provides good 

approximation to the finite sample model of the MLEs. 

Data Analysis 

In this section, we present an application based on the 
real data set to show the flexibility of the BXNH 
distribution. First, we compare BXNH with the RNH, 
the odd Lindley NH distribution (OLNH) (Yousof et al., 
2017b), Proportional Reversed Hazard Rate (PRHRNH) 
(new), exponentiated Weibull NH (New), the Gamma-NH 
(GNH) (Ortega et al., 2015), Marshall-Olin NH (MONH) 
(Lemont et al., 2016), exponentiated NH (ENH) 
(Lemonte, 2013), beta-NH (BNH) (Dias et al., 2018), the 
standard NH distributions. Other useful extension of the 
NH model such as the Topps-Leone NH distribution 
(Yousof et al., 2017b) and extended exponentiated NH 
model (Alizadeh et al., 2018). 
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Table 2: AEs and MSE for N = 1000 

N   AE MSE   AE MSE 

 I    II 

20   2.864044 0.2047603   1.5872651 0.2913098 

    1.3611143 0.8063241   2.8140401 0.3550603 

    1.7934323 0.1981093   1.8054763 0.6151902 

50   2.6351883 0.1895662   1.5767954 0.2024421 

   1.4522802 0.3918004   2.7051811 0.2628198 

    1.8702466 0.1210564   1.7271091 0.4545328 

150    2.5603383 0.1119021   1.5652243 0.1299292

    1.4922332 0.0931274   2.6124758 0.2028198 

   1.9609656 0.1054192   1.6099811 0.3013233 

500   2.5244465 0.0551823   1.5003211 0.0913652 

   1.5004343 0.0576872    2.5105512 0.0832017 

   1.9745479 0.0305103   1.5311971 0.1023321 

1000    2.5003231 0.0004291    1.5000112 0.0011432 

   1.5004411 0.0060651   2.5005491 0.0065762 

   2.0041123 0.0012018   1.5003243 0.0055492 

 
Table 3: Estimates of the competitive models fitted to the Choulakian and Stephens data 

Model  Estimates (SD) 

NH (, ) 0.841 0.1094 

 (0.259)  (0.059) 

RNH (, , ) 0.125  6.28 
 (0.012)  (2.919) 

BXNH (, , ) 0.446 0.232 0.408 

 (0.147) (0.087)  (0.478) 

OLNH (, , ) 0.7293 0.2519 1.8065 
 (0.6059)  (0.052)  (3.355) 

PRHRNH (, , ) 0.364 1.714 0.031 

 (0.068)  (1.191)  (0.031) 

GNH (a, , )  0.7286 1.9299 0.0242 
 (0.1385)  (1.7591)  (0.0312) 

MONH (a, , ) 23.77 0.0011 0.2660 

 (5.5053) (0.0003) (0.0895) 

ENH (a, , ) 0.7289 1.7126 0.0309 
 (0.1404) (1.2607) (0.0330) 

BNH (a, b, , ) 0.8381 316.0285 0.6396 0.0003 

 (0.1215) (4.2194) (0.8227) (0.0004) 

EWNH (, a, , ) 2.7591 0.3989 0.4732 0.6129 

 (1.742) (0.167) (0.158) (0.959) 

 

The model selection is applied using the estimated 

log-likelihood    , Kolmogorov-Smirnov (K-S) 

statistics, Akaike information criterion (AIC), Consistent 

Akaike information criteria (CAIC), Bayesian 

information criterion (BIC), and Hannan-Quinn 

information criterion (HQIC). AIC, CAIC, BIC and HQIC: 
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where, n(p) is the number of the estimated model 

parameters and n is sample size. In general, the smaller 

values of AIC, CAIC, BIC, HQIC and K-S indicate to the 

better t to the data set and the biggest log-likelihood and 

p values of p values of the K-S statistics is chosen. 

Second, Total Time on Test (TTT) plot is given for the 

used data set. Finally, we present the estimated PDF, 

estimated CDF, estimated HRF, P-P and Kaplan-Meier 

survival plots of the BXNH for the used data set (the 

exceedances of flood peaks data). 

The used data corresponds to the exceedances of food 

peaks (in m3/s) of the Wheaton River near Carcross in 

Yukon Territory, Canada. These data consist of 72 

exceedances for the years 1958 1984, rounded to one 

decimal place (see Choulakian and Stephens (2001)).
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Table 4: Statistics of the competitive models fitted to the Choulakian and Stephens data 

 Model Loglike AIC CAIC BIC HQIC K-S(p-value) 

BXNH(, , ) -250.438 506.88 507.23 513.71 509.6 0.0980 (-0.50) 

RNH(, ) -251.722 507.44 507.62 513.99 509.7 0.10629 (0.3901) 

NH(, ) -251.9874 507.97 508.15 512.53 509.79 0.12444 (-0.2148) 

OLNH(,, ) -250.589 507.18 507.53 514.01 509.9 0.1009 (-0.4565) 

PRHRNH(, , ) -300.83 607.66 608.02 614.49 610.38 0.24985 (0.00025) 

GNH(, , ) -250.917 507.834 508.187 514.66 510.55 0.1065 (-0.388) 

MONH(, , ) - 51.087 508.175 508.53 515.005 510.894 0.1074 (-0.3771) 

EWNH(,, , ) -250.032 508.064 508.66 517.17 511.69 0.0974 (-0.5) 

ENH(, , ) -250.925 507.849 508.202 514.679 510.57 0.1067 (-0.3859) 

BNH(,b, , ) -251.356 510.713 511.31 519.82 514.34 0.1044 (-0.4127) 

 

 
 

 

 

Fig. 3: TTT plot of the exceedances of flood peaks data 
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Fig. 4: Estimated PDF, CDF, HRF, P-P, Kaplan-Meier survival plots of the BXNH for the exceedances of flood peaks data 

 

This data also have been applied by Lemonte (2013) for 

the ENH distribution. In the applications, the 

information about the hazard shape can help in 

selecting a particular model. For this aim, an important 

tool called the TTT plot (see Aarset (1987)) is useful. 

The TTT plot for the exceedances of flood peaks data 

in Fig. 3 denotes that the failure rate function of these 

data is a bathtub-shaped (U) function. 

All results of this application are listed in Table 3 

and 4. These results show that the OLNH distribution 

has the lowest values for AIC, CAIC, BIC, HQIC and K-

S values and also has the biggest estimated log-likelihood 

and p-value for the K-S statistics among all the fitted 

models. Thus, it could be chosen as the best model under 

these criteria and compared to the other fitted models. 

Based on the estimated values of parameters given in 

Table 3 we note that the E(X) = 12:03718; Var(X) = 

155.4608, Ske(X) = 1.741001 and Ku(X) = 6.801245. 

Finally, we plot estimated functions for the density, 

CDF, P-P, Kaplan-Meier survival plots of the BXNH for 

the exceedances of flood peaks data in Fig. 4. Clearly, the 

BXNH distribution provides a closer fit to the empirical 

PDF and CDF. Also, from these figures, we get a bathtub-

shaped (U-shaped) for the estimated HRF for the 

exceedances of flood peaks data, which is coincide with 

the TTT plot given is Fig. 3. 

Conclusion 

In this article, a new three-parameter version of the 

Nadarajah Highlight (NH) model is introduced and 

studied. The new density can be expressed as a straight-

forward linear mixture of exponentiated Nadarajah 

Haghighi (ENH) density. It was shown that failure rate 
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function of the new model can be increasing, upside-

down, decreasing, bathtub, increasing then constant and 

constant. Some of its statistical properties including the 

ordinary moments, incomplete moments, moment 

generating function, probability weighted moments, 

order statistics, moment of residual life and reversed 

residual life have been derived. Measures of variance, 

skewness and kurtosis were given by a numerical 

analysis. A Monte Carlo simulation study is conducted 

to assess the performance of the maximum likelihood 

method. The flexibility of the new model is illustrated by 

a real data set. We hope that the new distribution attract 

wider applications in areas such as economics (income 

inequality), survival and lifetime data analysis, hydrology, 

engineering, meteorology and others. 
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