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Abstract: In this study, a mathematical model of the rotation effect on 

Shear Horizontally wave (SH-wave) propagation in a piezoelectric semi-

space covered by a semiconductor film is investigated. The semiconducting 

layer is rotating with a constant angular velocity and the interface between 

the piezoelectric substrate and the semiconductor layer is imperfectly 

bonded. Furthermore, the surfaces of the bilayer system assumed free of 

traction and electrically shorted or open. The governing equations of the 

dynamical displacement and electrical potential function under the effect of 

rotation are driven by solving the coupled electromechanical field equations 

of the piezoelectric half-space and the semiconductor film. In addition, the 

exact frequency equations of SH waves are derived. Next, the numerical 

examples are considered to clarify the effects of rotation and electromagnetic 

boundary conditions for the different values of the film thickness and wave 

number on the dispersion behaviors. Finally, the effect of rotation on the 

frequency equation is investigated in detail for piezoelectric material PZT-5H 

and the semiconductor silicon. The obtained results provide a predictable and 

theoretical basis for applications of piezoelectric and semiconductor 

structures to surface acoustic wave equipments. 

 

Keywords: SH-Waves, Effect of Rotation, Piezoelectric Materials, 

Semiconductor, Frequency Equation 
 

Introduction 

Piezoelectric ceramic has been effectively utilized to 

make different electromechanical functional systems and 

electronic industry devices. It is widely applied in many 

technological equipments like resonators, actuators, 

resonators, filters, sensors, delay lines, oscillators and 

others Yang (2008). Both Surface Acoustic Waves 

(SAW) and Bulk Acoustic Waves (BAW) have been 

applied for the acousto-electric instruments. Moreover, 

waveguide acoustic Shear Horizontal (SH) eigenmodes 

in piezoelectric layer-substrate structures have 

manifold employments in various electronic industry 

appliances, see for example, (Topolov and Bowen, 

2008; Ye, 2008; Royer and Dieulesaint, 2000; Abd-Alla, 

1999). furthermore, useful mathematical modeling about 

linear and nonlinear magnetoacoustic and thermo-

magnetoelastic equations are obtained by Abd-Alla and 

Maugin (1987; 1990a). 

A wave propagating in a piezoelectric material is 
usually followed by producing an electric charge. In 
addition, if the material is additionally semiconducting, 

then the electric charge generates currents and space 
charge arising from dissipation effect and acoustic lack 
in piezoelectric surface waves (Hutson and White, 

1962; Abd-Alla et al., 2016). The rotation effects on 
velocity wave provide information for the design of 
resonators, sensors and oscillators. Specially, velocity 
interchanges because of rotation have been applied to 
make gyroscopes (Wren and Budness, 1987;    
Tiersten et al., 1980). The problem of SH waves were 

considered in piezoelectric materials with surface layer 
covered by metal in Kielczynski et al. (1989). 
Concerning the investigation of the phenomena of the 
propagation of linear and nonlinear surface acoustic 
waves on magnetostrictive materials are considered by 
Abd-Alla and Maugin (1990b). 

Recently, the propagation methodology of SH waves 

in a two different coupled structures for examples, 

piezoelectric-piezomagnetic, piezoelectric- elastic, 

piezoelectric-semiconductor and piezoelectric- 

polymeric are considered for various hypotheses by 

many authors like, Liu et al. (2010; Son and Kang, 2011; 

Piliposian et al., 2012; Vashishth and Dahiya, 2013; 
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Zakharenko, 2013). The propagation of SH surface 

acoustic waves like the Bleustein-Gulyaev wave     

(Abd-Alla and Asker, 2016; Gua and Jin, 2015) and 

Rayleigh waves Abd-Alla and Alshaikh (2016), have 

exceptional significance for the design electronic and 

communication systems throughout the world. 

In this study, a mathematical model has been built to 

investigate the influence of the rotation on the 

propagation characteristic of SH waves. We assumed 

that SH waves are propagating in a structure which 

contain of a piezoelectric material covered by a 

semiconductor film. The governing equations of the 

displacements and electrical field are given by finding a 

solution to the associated electroacoustic field equations 

of the piezoelectric half-space carrying the 

semiconductor film. In addition, the exact dispersion 

equations are derived. Next, the numerical examples are 

given to clarify the effects of the boundary conditions for 

the different values of the film thickness and wave 

number on the dispersion behaviors. Finally, the effect of 

the rotation on the frequency equation are investigated in 

detail for PZT-5H piezoelectric crystal and 

semiconductor silicon. 

Formulation of the Problem 

Assume a piezoelectric half-space substrate which 

considered a homogeneous transversely isotropic 

whose surface is carrying a semiconductor plate of 

thickness 2 h that is supposed a non piezoelectric 

elastic material as presented in Fig. 1. We take into 

account the coordinate system ox1x2 x3 which its 

origin is considered at any point on the plane surface 

while the axis x2 is indicating vertically downward 

into the piezoelectric substrate. Therefore, the 

piezoelectric half-space is represented by x3-direction 

and the thin layer semiconductor takes the region 0≤x3 

≤-2h. Selecting x2-axis as company to the direction of 

wave propagation such that all particles on the line 

parallel to the axis x1 are evenly displaced. Thus, all 

the quantities are not dependent on the axis x3. 

Furthermore, consider the semiconductor plate of 

thickness 2 h is rotating regularly with an angular 

velocity nΩ = Ω
� �

, where n
�

 is the unit vector 

illustrating the orientation of the rotated axis. The 

dynamical equation of motion with the presence of 

rotation effect has two additional terms. The first one 

due to time-varying motion only which so-called 

centripetal acceleration and may be written as: 

( )nΩ× Ω×
� � �

, due to time-varying motion only. The other 

one is the acceleration of Coriolis that may be written 

as: 2 nΩ×
� �

, where n
�

 is the vector of mechanical 

displacement. These terms do not appear in non-

rotating media (Yang, 2008). 

 
 
Fig. 1. A piezoelectric semi-space covered with a 

semiconductor film 

 

Basic Governing Equations 

The field equations of motion in semiconductor 

elastic layer in a rotating frame of reference are given as: 

 

,

, ,

( 2 ),

, , , 1,2,3.

ij j i imn mjk n j k ijk j k

i i i i

T u u u

D qn qn J i j

ρ ε ε ε= + Ω Ω + Ω

= = =

ɺɺ ɺ

ɺ
 (1) 

 

where the electric current Ji can be written as: 

 

,,i ij j ij j ij j j jJ qn E qn E qd N N nµ µ= + − =  (2) 

 

The constitutive relations and the field equations of 

motion in a transversely isotropic piezoelectric (6 mm 

class) medium in the absence of  body forces and Gauss's 

law of electrostatics neglecting the free charge may be 

summarized as (Abd-Alla et al., 2016): 

 

, .ij ijkl kl kij k i ijk jk ij jc S e E D e S Eτ ε= − = +  (3) 

 

, , ,

1
( ),

2
ij i j j i i iS u u E ϕ= + = −  (4) 

 

, ,, 0, , 1,2,3.ij j i i iu D i jτ ρ= = =ɺɺ  (5) 

 

Equations for a Semiconductor Film 

Assume a semiconductor film of thickness 2h, which 

is considered very thin. We are concerned with a thin 

layer, as illustrated in Fig. 1. So, the components of 

stress may be taken to vanish, i.e.: 

 

2 0, 1,2,3.jT j= =  (6) 

 

Corresponding to the consolidated notation of matrix 

(Abd-Alla and Asker, 2016), where p, q as 1,2,3,.... and 

6, then the Equation 6 becomes: 
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0, 2,4,6qT q= =  (7) 

 
As well as the constitutive relations (3) may be 

written as: 
 

,r rs s kr k i is s ij jT c S e E D e S Eε= − = +  (8) 

 
Now, we write Equation 8 with another subscripts 

a,b,c and d which can take only the values 1 and 3. 

Therefore, Equation 8 may be written as: 
 

,ab abcd cd kab k i iab ab ij jT c S e E D e S Eε= − +  (9) 

 
Assume the semiconductor film with thickness 2h 

and from the Equation 4 by integrating for i = 1, 3 

regarding to x2 within the film thickness. We may get 

the following equations of motion with the effect of 

rotation in two-dimensions, the law of Gauss and 

conservation of charge: 
 

( ) ( )

( )
, 2 2 2 2

2

1

2

2

ab a h b

b ub a

T T x h T x h
h

u uρ

 + = − = − 

= −Ω − Ωɺɺ ɺ

 (10) 

 

( ) ( ), 2 2 2 2

1

2
a aD D x h D x h qn

h
 + = − = − =   (11) 

 

( ) ( ), 2 2 2 2

1

2
a aqn J J x h J x h

h
 + + = − = − ɺ  (12) 

 
where ua, Tab, Da, Ja and n are averages of the quantities 

for the film thickness. 

Propagation of SH Waves 

As it is clear in Fig. 1, we consider the propagation of 

anti-plane SAW in piezoelectric dielectric semi-space 

covered by a non-piezoelectric semiconductor thin film of 

silicon (Abd-Alla et al., 2016). Assuming the direction 

propagation is x1, then the component displacement and the 

electric potential which are effective in this case are: 
 

( )
( )

1 2 3 3 1 2

1 2

0, , , ,

, ,

p p

p

u u u u x x t

x x tϕ ϕ

= = =

=
 (13) 

 
Therefore, the corresponding components of stain 

and electric field which are non-vanishing are: 
 

13 1

3

23 2

2
,

2

p p
S E

u
S E

φ
      

= ∇ = −∇   
     

 (14) 

 
where the quantities of the substrate are denoted by the 

superscript "p" and ∇ = i1∂1 + i2∂2 is denoted to the gradient 

operator in two-dimensions. Also, the components of stress 

and electric displacements that are nontrivial are: 
 

13 1

44 3 15 15 3 11

23 2

.p p p p p p p p
T D

c u e e u
T D

φ ε φ
      

= ∇ + ∇ = ∇ −   
     

 (15) 

 
Now, the equations of motion and charge are: 

 
2 2 2 2

44 3 15 3 15 3 11
, 0p p p p p p p p p pc u e u e uφ ρ ε φ∇ + ∇ = ∇ − ∇ =ɺɺ  (16) 

 

where, ∇2
 is the two-dimensional Laplacian 2 2 2

1 2
∇ = ∂ + ∂ . 

Assuming (Abd-Alla and Asker, 2016): 
 

15
3

11

p
p p p

p

e
uψ ϕ

ε
= −  (17) 

 
then: 
 

* *

23 44 3,2 15 ,2 31 44 3,1 15 ,1

1 11 ,1 2 11 ,2

,

,

p p p p p p p p p p

p p p p p p

T c u e T c u e

D D

ψ ψ

ε ψ ε ψ

= + = +

= − = −
 (18) 

 
Which lead to write the Equation 16 as: 

 
* 2 2

44 3 3
, 0p p p p pc u uρ ψ∇ = ∇ =ɺɺ  (19) 

 
where: 
 

( ) ( ) ( ) ( )2 2

2 215 15*

44 44 44 15 15

11 44 11

1 ,

p p

p p p p p

p p p

e e
c c c k k

cε ε
 = + = + =  

 (20) 

 
The solutions of Equation 19 should satisfy: 

 

3 2
, 0,p pu xφ → →+∞  (21) 

 
which are so-called the radiation conditions. Considered 

the solutions of Equation 19 as: 
 

( ) ( ){ }
( ) ( ){ }

3 2 2 1 1

1 2 1 1

, exp exp ,

exp exp

p pu A x i x t

B x i x t

ξ ξ ω ψ

ξ ξ ω

− −

= − −
 (22) 

 

with A and B are constants should be obtained and ξ2 

must be greater than zero for decaying comportment far 

from the surface. It is easy to see that Equation 222 

already satisfies (19)2. In order Equation 221 satisfy 

Equation 191 we must have: 
 

( )* 2 2 2

44 1 2

p pc ξ ξ ρ ω− =  (23) 

 

Thus, ξ2 may be written as: 
 

2 2
2 2 2

2 1 1* 2

44

1 0
p

p

Tc v

ρ ω υ
ξ ξ ξ

 
= − = − > 

 
 (24) 
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where: 

 
2 *

2 2 44

2

1

,
p

T p

c
v

ω
υ

ξ ρ
= =  (25) 

 

For using boundary and continuity conditions, one 

may use the following: 

 

( ) ( ) ( )

( )
( )

( )

( ) ( )

15
1 2 2 2 1 1

11

*

44 2 2 2

23 1 1

15 1 1 2

2 11 1 1 2 1 2

exp exp exp ,

exp
exp ,

exp

exp exp

p
p

p

p

p

p

p p

e
B x A x i x t

Ac x
T i x t

e B x

D B x i x t

ϕ ξ ξ ξ ω
ε

ξ ξ
ξ ω

ξ ξ

ε ξ ξ ξ ω

 
 = − + − −   

 

 −
   = − −  + − 

 = − − 

 (26) 

 

First, we try to solve the problem for the part of the 

vacuum. 

Therefore, the Laplace equation must be satisfied for 

electric potential ϕ0
 in the free surface: 

 

2

2 0 0

2 2

0

0, 0, 0,

x

x xϕ ϕ

<

∇ = < → → −∞
 (27) 

 

and the solutions of the Equation 27 are given as follows: 

 

( ) ( )0

1 2 1 1exp expC x i x tϕ ξ ξ ω = −   (28) 

 

where, C is an unknown must be determined. Thus, from 

Equation 28 in the vacuum, yields: 
 

( ) ( )0

2 0 1 1 2 1 1exp expD C x i x tε ξ ξ ξ ω = − −   (29) 

 
Next, we need to find the solution of the 

semiconductor with rotation. 

In the x1 -direction, we assume that DC is a biasing 

electric field. Also, the semiconductor layer with n = 

n(x1, t) is considered as one dimension problem. Then, 

we consider: 
 

( )
( )
( )

3 1 1

1 1

1 1

exp ,

exp ,

exp

u A i x t

C i x t

n N i x t

ξ ω

ϕ ξ ω

ξ ω

 = − 

 = − 

 = − 

 (30) 

 
where, N  is unknown constant must be determined. It 

is easy to see that Equation 30 satisfies the conditions 

of the continuity for the components of the 

displacement the electric potential between the 

substrate semi-space and the layer. We utilize a prime 

to denote the dielectric and elastic constants as well as 

the mass density of the film. 

In the semiconductor layer, we used silicon that is 

considered as a cubic symmetry of crystal which does 

not have the piezoelectric coupling. Moreover, the 

stiffness elastic constants and dielectric constants are the 

same as Equation 31 in (Abd-Alla et al., 2016). 

From Equation 9 and 5, we get: 
 

[ ]

( )
( )

' ' '

13 44 13 44 3,1 44 1 1 1

' ' '

1 11 ,1 11 ,1 11 1 1 1

1 11 ,1 11 1 11 ,1

11 1 11 1 11 1

1 1

exp[ ( ),

exp ( )

exp[ .

T c S c u c i A i x t

D E i C i x t

J qn qn E qd n

qn i C qN E qd i N

i x t

ξ ξ ω

ε ε φ ε ξ ξ ω

µ φ µ

µ ξ µ ξ

ξ ω

= = = −

= = − = − −

= − + −

= − + − ×

−

 (31) 

 

Continuity Conditions and Frequency 

Equation 

According to continuity conditions of the component 

of electric potential between the piezoelectric semi-space 

and the layer of silicon and boundary condition's yields 

the flowing equations: 
 

• From the continuity Equation ϕp
 = ϕ0

 at x2 = 0 and 

using the Equation 26 and 28, we may get: 

 

15

11

,
p

p

e
B A C

ε
+ =  (32) 

 

• Substitution the Equation 311 and 262 into Equation 

10, we obtain: 
 

( ) ( )' 2 * 2 2

44 1 44 2 15 1

1

2

p pc A Ac e B A
h

ξ ξ ξ ρ ω′+ + = −Ω  (33) 

 

• Substitution the Equation 263, 29 and 31 into 

Equation 11, we get: 
 

( )' 2

11 1 11 1 0 1

1

2

pC B C qN
h

ε ξ ε ξ ε ξ+ + =  (34) 

 

• Substitution the Equation 30 and 313 into Equation 

12, we have: 
 

( )1 11 1 11 1 11 1 0qi N i qn i C qN E qd i Nω ξ µ ξ µ ξ− + − + − =  (35) 

 
The system of Equation 32-35 are linear and 

homogeneous for the constants A,B,C and N. The 

determinant of the coefficient matrix has to vanish to get 

nontrivial solutions, which imply: 

 

4,3,2,1,,0 == jiaij  (36) 

 

where: 
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( )

15
11 12 13 14

11

*
2 2 ' 2 44 2

21 44 1

15 1
22 23 24 31

' 211 1 0 1
32 33 11 1 34

2

41 42 43 11 1

2

44 1 11 1 11 1

, 1, 1, 0,

,
2

, 0, 0, 0,
2

, , ,
2 2

0, 0, ,

.

p

p

p

p

P

e
a a a a

c
a c

h

e
a a a a

h

a a a q
h h

a a a qn

a qi i q E qd

ε

ξ
ρ ω ξ

ξ

ε ξ ε ξ
ε ξ

µ ξ

ω ξ µ ξ

= = = − =

 
′= −Ω − − 

 

= − = = =

= = + = −

= = =

= − + +

 

 

The solution of Equation 36 gives a relation between 

ω and ξ1 that is so-called the frequency equation or the 

dispersion relation of the surface acoustic wave. 

Now, we obtain the frequency equation of surface 

acoustic waves in two cases depends on the boundary 

condition at the free surface as follows. 

The Open Condition at the Free Surface 

In this case the surface acoustic wave velocity υ = 

ω/ξ1, Equation 37 may be expressed as: 

 

( ) ( )2
2 *2 ' 2 *2

2 1544 1
152 * 2

44 1

2
1 1

p

T T

Kc h
K

v c v

υ ξ υ − Ω −Ω
− − − + = ′ ∈ 

 (37) 

 

where 
( )

'

0 11 1 11
1

11 11 11 11 1 11 1

2 2
1

p p p

h qn h

d i E

ε ε ξ µ
ε ε ε ξ µ υ

∈ = + + +
 + − 

 and it 

is used some dimensionless quantities as: 

 

( ) ( )'
2 15* 2 2 44

15 *

1 1 11 44

, , ,

p

T p p

ec
v K

c

ω
υ

ξ ξ ρ ε
Ω

′Ω = = = =
′

 (38) 

 

If h = 0, i.e., the semiconductor layer does not exist, 

we obtain that the velocity vB-G of Bleustein-Gulyaev 

wave (Bleustein, 1968; Gulyaev, 1969): 

 

( )
( )

4

152 *2 2

2

11 0

1
1 /

T B G
p

K
v vυ

ε ε
−

 
 = − + Ω =
 + 

 (39) 

 

If 
15

0K = , in this case, we obtain the special case 

which is known as the wave is purely elastic medium 

and it has: 

 
2 *2 ' 2

44 1

2 * 2

44 1

2
1 1 0

p

T T

c h

v c v

υ ξ υ − Ω
− − − = ′ 

 (40) 

 

From Equation 40, it is easy to calculate the wave 

velocity (Love wave (Yang, 2008)). 

In the case of the imaginary part of the complex wave 

velocity may change its sign, i.e., transition from a 

damped to a growing wave, so that: 

 

11 1

1

E
ω

υ µ
ξ

= =  (41) 

 

This means that, the surface acoustic wave is equal to 

the carrier drift velocity. 

The Short Condition at the Free Surface (at ε0 = 0) 

In this case, the electrically short condition yields: 

 

( )' 2

111 11 1

1

2

pC B qN
h

ε ξ ε ξ+ =  (42) 

 

and the frequency equation of surface acoustic waves 

may be given by: 

 

( ) ( )2
*2 ' 2 *2

2 1544 1
152 * 2

44 2

2
1 1

p

T T

Kc h
K

v c v

υ ξ υ − Ω −Ω
− − − + = ′ ∈ 

 (43) 

 

where: 

 

( )
'

11 11
2

11 11 11 1 11 1

2
1

p p

qn h

d i E

ε µ
ε ε ξ µ υ

∈ = + +
 + − 

 

 

In this case the velocity vB-G of Bleustein-Gulyaev 

wave is given by: 

 

( )4
2 2 *2 2

151T B Gv K vυ −
 = − + Ω =  

 (44) 

 

Numerical Results 

Now, we calculate the zero order of the velocity 

denoted by υ(0) when neglecting the semiconductor. 

Then the Equation 38 becomes: 

 

( ) ( )
2 2 *2*2 ' 2
0 0 244 1 15

152 * 2

44 3

2
1 1

p

T T

c h K
K

v c v

υ υξ −Ω −Ω
 − − − + =
 ′ ∈ 

 (45) 

 

where: 

 

0 11
3

11 11

1
p p

ε ε
ε ε

′
∈ = + +  

 

To get the first order of the velocity υ(1), we replace 

υ(0) into Equation 37, Yields: 
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( ) ( )
2 *2 2 *2' 2
1 1 244 1 15

152 * 2

44 4

2
1 1

p

T T

c h K
K

v c v

υ υξ −Ω −Ω 
 − − − + =  ′ ∈  

 (46) 

 

where: 

 

( )( )
0 11 1 11

4
2

11 11
11 11 1 11 0

2 2
1

p p
p

h qn h

d i E

ε ε ξ µ
ε ε ε ξ µ υ

′
∈ = + + +

 + −
 

 

 

For the PZT-5H piezoelectric materials, Abd-Alla and 

Asker (2016), with: 

 
10 2

44 11 0

12

0

3

15 0

2.3 10 / , 1700 ,

8.854 10 / ,

17.0, 7500 /

p p

p

c N m

farads m

e kg m

ε ε

ε

ρ

= × =

= ×

= =

 

 

For silicon with, Lide (2001): 

 
3 10 2

0 44 11 0
2332 / , 7.956 10 / , 11.8kg m c N mρ ε ε′ ′ ′= = × =  

 

where at 300
0
K, the mobility of electrons and holes of 

silicon is: 

 
2 21500 / sec, 480 / secn pcm V cm Vµ µ= − = −  

 

Figure 2-5 show Y(0) and Y(1) versus X, where X is 

dimensionless wave number, Y(0) and Y(1) are the 

dimensionless velocities for zero and first order, 

respectively which are defined by: 

 

( )
( )

( )
( ){ }101

0 1

Re2
, ,

B G B G

h
X Y Y

v v

υυξ
π − −

= = =  (47) 

 

where, γ is a without dimension number considered by: 

 

11 1

B G

E

v

µ
γ

−

=  (48) 

 

The phase velocity computation; at zero and first 

order; for the short and open electric cases versus 

wave number when change rotation at γ = 5 and h = 

0.005 are illustrated in Fig. 2 to 5. It is seen that Y0 

and Y1 decrease when increasing the wave number X. 

However, they increase when increasing the values of 

the rotation Ω. 

Figure 6 displays the comparison between the 

dispersion relations of zero-order Y0 versus the 

dimensionless wave number X, respectively for 

electrically open and short conditions. While, Fig. 7 

illustrates the comparison between Y1 as function of X, 

respectively for short and open electric conditions. It is 

clear that the values of Y0 and Y1 as function of X are 

greater in the short electric case than the open electric 

case when the value of rotation Ω = 10. 

 

 
 
Fig. 2. The dispersion relations of the zero-order Y0 against X 

for various values of Ω (open electric case). 

 

 
 
Fig. 3. The dispersion relations of the zero-order Y0 against X 

for various values of Ω (short electric case). 

 

 
 
Fig. 4. The dispersion relations of the zero-order Y1 against X 

for various values of Ω (open electric case) 



Fatimah Alshaikh / Journal of Mathematics and Statistics 2017, 13 (2): 98.105 

DOI: 10.3844/jmssp.2017.98.105 

 

104 

 
 
Fig. 5. The dispersion relations of the zero-order Y1 against X 

for various values of Ω (short electric case) 

 

 
 
Fig. 6. The comparison between dispersion relations of the zero-

order Y0 at Ω = 10 against X when open and short cases 

 

 
 
Fig. 7. The comparison between dispersion relations of the zero-

order Y1 at Ω = 10 against X when open and short cases 

 

Conclusion 

We show that a SH of SAW exist in a piezoelectric 

material semi-space covered by of a semiconducting 

film and we obtain a mathematical model of a system 

of equations in two dimensions for the motion of a 

thin membrane of piezoelectric semiconductors to 

describe the semiconductor film. This problem 

generalizes what is so-called Bleustein-Gulyaev wave 

in a semi-space of non-conducting piezoelectric 

ceramics. Furthermore, the influence of the rotation 

and the semi-conduction effect on the wave velocity 

causes both wave attenuation and dissipation. 
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Nomenclature 

τij is the stress tensor, 

Sij is the strain tensor, 

Di is the electric displacement vector, 

Ei is the electric field vector, 

ρ is the mass density of the piezoelectric material, 

ϕ is the electric potential, 

cijkl is the elastic constants tensor, 

eijk is the piezoelectric constants tensor, 

εij is the dielectric constants tensor, 

Nj Is the carrier density gradient, 

dij is the carrier diffusion constants tensor, 

Ei is the uniform DC electric field vector, 

q is the carrier charge, 

n is the steady state carrier density, 

n is the carrier density, 

µij is the carrier mobility tensor, 

Ji is the electric current vector, 

ui is the elastic displacement vector, 

 

 


