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Abstract: We study the estimation of the mean θ of a multivariate 

Gaussian random variable X∼Np(θ,σ2
Ip) in ℜp

, σ2
 is unknown and 

estimated by the chi-square variable S
2∼σ2χn

2
. In this work we are 

interested in studying bounds and limits of risk ratios of shrinkage 

estimators to the maximum likelihood estimator X, when n and p tend to 

infinity. We recall that the risk ratios of shrinkage estimators to the 

maximum likelihood estimator has a lower bound Bm, when n and p 

tend to infinity. We show that if the shrinkage function ψ(S
2
,||X

2
||) 

satisfies some conditions, the risk ratios of shrinkage estimators (1-

ψ(S
2
,||X

2
||)S

2
/||X

2
||)X, which did not inevitably minimax, to attain the 

limiting lower bound Bm which is strictly lower than 1. 

 

Keywords: James-Stein Estimator, Non-Central Chi-Square Distribution, 

Quadratic Risk, Shrinkage Estimator 

 

Introduction 

The estimation by shrinkage estimators of the mean 

θ  of a multivariate normal distribution ( )pp IN 2,σθ  in 

pℜ  has experienced many developments since the 

papers of (Stein 1956; James and Stein 1961; Stein 

1981). In these works one estimates the mean θ by 

shrinkage estimators deduced from the empirical mean 

estimator, which are better in quadratic loss than the 

empirical mean estimator. 

More precisely, if X represents an observation or a 

sample of a multivariate normal distribution ( )pp IN 2,σθ , 

the aim is to estimate θ  by an estimator δ relatively at 

the quadratic loss function: 

 

( ) 2
,

p
L θδθδ −=  

 

where ||.||p is the usual norm in pℜ . To this loss function 

we associate the risk function: 

 

( ) ( )( ), , .R E Lθδ θ δ θ=  

James and Stein (1961) introduced a class of James-

Stein estimators improving the maximum likelihood 

estimator X=0δ , when the dimension of the space 

parameters 3≥p , noted: 

 

( )
( )

2

2

2
1 ; 1,...,

2 || ||

JS

j j

p S
X j p

n X
δ

 −
= − =  + 

 (1.1) 

 

where 2

n

22 ~ χσS  is the estimate of 2σ . 

Baranchik (1964) proposed the positive-part of 

James-Stein estimator dominating the James-Stein 

estimator when 3≥p , noted: 

 

( )
( )

2

2

2
max 0, 1 ; 1,...,

2 || ||

JS

j

p S
X j p

n X
δ +

  −
= − =    +  

 (1.2) 

 

Casella and Hwang (1982) studied the case where 2σ  

is known ( 12 =σ ) and showed that if 

( )
2|| ||

lim 0p c
p

θ
+∞ = >

����
, then: 
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( )
( )

( )
( )

, ,
lim lim .

, , 1

JS JS

p p

R R c

R X R X c

δ θ δ θ

θ θ

+

+∞ +∞= =
+

���� ����
 

 

Thus, they showed the stability of the dominating 

of James-Stein estimator and its positive-part, to the 

maximum likelihood estimator, when the dimension 

of space parameter p tends to infinity, in the case 

where 2σ  is known. 

Li (1995) has considered the following model: 

 

( ) ( ) mjniNy jij ,...,1,,...,1,,~,
2

j

2 ==σθσθ  

 

where, 
jijyE θ=)(  for the group j and 2)var( σ=ijy  is 

unknown. He studied the shrinkage estimators 

( )tmδδδ ,...,1=  where: 

 

( ) ( )
2

2 2

2
1 ,j j

S
S T y y y

T
δ ϕ

 
= − − + 
 

 

 

with: 

 

,)(

,)(

1

22

1 1

22

∑

∑∑

=

= =

−=

−=

m

j

j

n

i

m

j

jij

yynT

yyS
 

 

and: 

 

11 , .

mn

jij
ji

j

yy

y y
n m

=== =
∑∑

 

 

The James-Stein estimators are written in this case: 

 

( )1 ,...,
t

JS JS JS

mδ δ δ=  

 

where: 

 

( )
( ) ( )

2

2

3
1 , 1,...,

2

JS

j j

m S
y y y j m

N T
δ

 −
= − − + =  + 

 

 

with ( )1N n m= − . 

In this case, it is clear that the maximum likelihood 

estimator is 
jy=0δ . 

Li (1995) has given a lower bound for the ratio 

( )
( )θδ

θδ
,

,
0R

R , which allows him to conclude that: 

( )
( )

( )
( )

n
q

q

R

R

R

R JS

m

JS

m 200 ,

,
lim

,

,
lim

σθδ
θδ

θδ
θδ

+
==

+

∞+∞+

 

 

provided that qm
m

j

jm =−∑
=

∞+
1

2)(lim θθ  exists. 

Benmansour and Hamdaoui (2011) interested the 

case where 2σ  is unknown. The authors showed that 

if ( )
2

2

|| ||
lim 0p c

p

θ
σ+∞ = >

����

, then the risk ratio of James-

Stein estimator JSδ  to the maximum likelihood 

estimator X, tends to 

2

2

1

c
n

c

+
+
+

 when p tends to infinity 

and n is fixed. Under the same condition 

namely ( )
2

2

|| ||
lim 0

p
c

p

θ
σ+∞ = >

����

, they showed that the risk 

ratio of James-Stein estimator 
JSδ  to the maximum 

likelihood estimator X, tends to the value 
1

c

c+
 when n 

and p tend simultaneously to infinity. They also found 

the same results for the positive-part of James-Stein 

estimator 
+JSδ . 

Hamdaoui and Benmansour (2015) studied the 

behavior of risk ratios of the general class of shrinkage 

estimator proposed by Benmansour and Mourid (2007), 

given by ( )2 2

, , ,
,|| ||JS JS

JS

l l
l S X X

δ ψ δ
δ δ δ ψ= = + , in the case 

where 2σ  is unknown. Then, they showed that 

if ( )
2

2

| | | |
lim 0p c

p

θ
σ+∞ = >

����

, the risk ratio of shrinkage 

estimator 
, ,

JS
l δ ψ

δ , tends to a value less than 1, when n and 

p tend simultaneously to infinity and provided that the 

function ψ satisfies certain conditions. 

In this study we adopt the same model ( )2~ ,
p p

X N Iθ σ  

and independently of the observation X, we observe 
2

n

22 ~ χσS  an estimator of 2σ . Note that ( ) 2, σθ pXR =  

is the risk of the maximum likelihood estimator. We 

generalize the results given by Casella and Hwang 

(1982), Benmansour and Hamdaoui (2011) and 

Hamdaoui and Benmansour (2015), by studying the 

class of shrinkage estimators 

( )
2

2 2

2
1 ,|| ||

|| ||

S
S X X

X
δ ψ

 
= − 
 

, which is containing the 

estimators JSδ  and +JSδ . Then we show that if 

( )
2

2

|| ||
lim 0

p
c

p

θ
σ+∞ = >

����

 and the shrinkage function ψ 

satisfies some conditions different from the ones 

given in Hamdaoui and Benmansour (2015), the risk 

ratio of the estimator δ to the maximum likelihood 

estimator X, tends to the value 
1

c

c+
when n and p tend 

simultaneously to infinity. 
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In the following we denote the general form of 

shrinkage estimator as follows: 

 

( )( )2 21 ,|| ||S X Xδ ϕ= −  (1.3) 

 

In Section 1, we recall some results obtained in 

Hamdaoui and Benmansour (2015). The authors 

showed, that under the condition ( )
2

2

|| ||
lim 0p c

p

θ
σ+∞ = >

����
, 

the risk ratio of the shrinkage estimator δ given in 

(1.3), to the maximum likelihood estimator X, has a 

lower bound 
c

c
Bm +

=
1

, when n and p tend to infinity. 

The second result indicates that under the same 

condition ( )
2

2

|| ||
lim 0p c

p

θ
σ+∞ = >

����

, the risk ratio of James-

Stein estimator JSδ  given in (1.1), to the maximum 

likelihood estimator X, tends to the value 
1

c

c+
when n 

and p tend simultaneously to infinity. 

In Section 2, we give the main results of this paper. 

We considered the general class of shrinkage estimators 

( )
2

2 2

2
1 ,|| ||

|| ||

S
S X X

X
δ ψ

 
= − 
 

, which did not inevitably 

minimax and we show that, if the shrinkage function ψ 

satisfies certain conditions which is different from the 

ones given in Hamdaoui and Benmansour (2015), the 

risk ratio of δ to the maximum likelihood estimator, to 

attain the limiting lower bound 
mB  provided that 

2

2

|| ||
limp c

p

θ
σ+∞ =

����
. 

In the end we graph the corresponding risks ratios for 

the estimators: James-Stein JSδ , its positive-part +JSδ  

and estimators defined in selected examples for divers 

values of n and p. 

Preliminaries 

We recall that if X is a multivariate Gaussian random 

( )pp IN 2,σθ  in 
pℜ  then ( )λχ

σ
2

p2

2

~
X  where ( )2

pχ λ  

denotes the non-central chi-square distribution with p 

degrees of freedom and non-centrality parameter 
2

2

|| ||

2

θ
λ

σ
= . 

We recall the following lemma given in Fourdrinier 

et al. (2008), that we will use often in our proofs. 

Lemma 2.1 

Let ( )pp INX 2,~ σθ  with pℜ∈θ . Then, for any 

3p ≥ , we have: 

2 2

1 1 1

|| || 2 2
E E

X p Kσ
  

=    − +   
 (2.1) 

 
And for any 5p ≥ , we have: 
 

( ) ( )( )42

1 1 1

2 2 4 2|| ||
E E

p K p KX σ

   
  =     − + − +  

 (2.2) 

 

where, ~K













2

2

2σ
θ

P
 being the Poisson’s distribution of 

parameter 
2

2

|| ||

2

θ
σ

. 

Theorem 2.2 (Hamdaoui and Benmansour, 2015) 

The risk of estimator given in (1.3) is: 
 

( ) ( ){ }2 2 2 2

2 2, 2 2K p K K p KR E K pδ θ σ ϕ χ ϕ χ+ += − − +  

 

where, ( )2 2 2 2

2,K n p Kϕ ϕ σ χ σ χ +=  and ~K













2

2

2σ
θ

P . 

Furthermore: 
 

( ) ( ), pR Bδ θ θ≥  

 
with: 
 

( ) ( )2
2

2 .
2 2

p

p
B E p E

p K
θ σ

  −  
= − −  

− +   
 

 

Note that 
2

2

|| ||

2
P

θ
σ

 
 
 

 being the Poisson’s distribution 

of parameter 
2

2

|| ||

2

θ
σ

. 

We set: ( )
( )

( ),

p

p

B
b

R X

θ
θ

θ
= . It is clear that 

if
2

2

|| ||
limp c

p

θ
σ+∞ =

����
, then: 

 

( )lim
1

p p m

c
b B

c
θ+∞ = =

+
����

 (2.3) 

 

In the particular case where ( )
2

2 2

2
,|| ||

|| ||

S
S X d

X
ϕ = , we 

have 
2

2
1

|| ||
d

S
d X

X
δ

 
= − 
 

, hence: 

 

( ) ( )2 2 1
( , ) 2 2 2 .

2 2
dR E p n d n d p E

p K
δ θ σ

    = + + − −    − +   
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For 
2

2

p
d

n

−
=

+
, we obtain the James-Stein estimator 

(defined in (1.1)) which minimizes the risk of δd; whose 

quadratic risk is: 

 

( ) ( )22 1
, 2

2 2 2

JS n
R E p p E

n p K
δ θ σ

   
= − −  

+ − +   
. 

 

Proposition 2.3 (Hamdaoui and Benmansour 

(2015)) 

Let δ is given in (1.3), if 
2

2

|| ||
limp c

p

θ
σ+∞ =

����
, then: 

 

( )
( ),

,
lim

, 1
n p

R c

R X c

δ θ
θ+∞ ≥

+
����

 (2.4) 

 

( )
( ),

,
lim

, 1

JS

n p

R c

R X c

δ θ

θ+∞ =
+

����
 (2.5) 

 

Main Results 

Limit of Risk Ratios of Shrinkage Estimators 

We now rewrite the estimator in (1.3) by letting: 

 

( ) ( )
2

2 2 2 2

2
,|| || ,|| ||

|| ||

S
S X S X

X
ϕ ψ=  

 
is given by: 
 

( )
2

2 2

2
1 ,|| || , 1,....

|| ||
j j

S
S X X j p

X
δ ψ

 
= − = 
 

 (3.1) 

 

Theorem 3.1 

Assume that 
jδ  is given in (3.1), such that 5≥p  and 

ψ  satisfies: 
 

• 
( )2 2

,|| ||

2

S X

p

ψ

−
 converge in probability to 

1

2n +
 when 

p →+∞ . 

 

• ( ) ( )
2 2

2
,|| ||

2

S X
g S

p

ψ
≤

−
a.s; where: 

 

( )( ) ( )

1
2 2

2 1

1
0

y

y
E g S O for some

n
γ

+

+

   = >     
 

 

If 
2

2

|| ||
limp c

p

θ
σ+∞ =

����

, then: 

( )
( ),

,
lim

, 1
n p

R c

R X c

δ θ
θ+∞ =

+
����

. 

 

Proof: 
 

( ) ( )

( )

( ) ( )

( )( ) .2

,

,

1

1

2

1

2

1

2









−−+









−+=









−+−=









−=

∑

∑

∑

∑

=

=

=

=

p

J

j

JS

j

JS

jj

p

J

JS

jj

JS

p

J

J

JS

j

JS

jJ

p

J

JJ

E

ER

E

ER

θδδδ

δδθδ

θδδδ

θδθδ

 

 
We write: 

 

( ) ( ), ,JS

JS R Rδ θ δ θ∆ = −  

 

then: 

 

( )

( )( ) ,2
1

1

2









−−+









−=∆

∑

∑

=

=

p

J

j

JS

j

JS

jj

p

J

JS

jjJS

E

E

θδδδ

δδ
 

 
thus: 
 

1 22

JS

pσ
∆

= ∆ + ∆  

 
where: 
 

( )2

1 2
1

1 p
JS

j j

J

E
p

δ δ
σ =

 
∆ = − 

 
∑  (3.2) 

 
and: 
 

( )( )2 2
1

2 p
JS JS

j j j j

J

E
p

δ δ δ θ
σ =

 
∆ = − − 

 
∑  (3.3) 

 

( )

( )

( ) ( ) ( )

2

1 2
1

2
2 2

22 2

22
1

2
2 222 2

22

1

1 2
,

2

,2 1

2 2

p
JS

j j

J

p

J

J

E
p

p S
E S X X

p n X

S X Sp
E

p n p X

δ δ
σ

ψ
σ

ψ

σ

=

=

 
•∆ = − 

 

  −    = −    +    

  
−   = −  + −    

∑

∑

 (3.4) 

 
We write: 

 

( )2 2,|| ||

2
p

S X

p

ψ
ψ =

−
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and let ε > 0. Then we have: 
 

( )

( )

( )

( ) ( )

( ) ( )

2

2

2

2

2

1 2

2
22

2 1

2

2
22

2 1

2

22 2

22 1

2

22 22

22 1

2

2

1

2

1

2

2

2 1

2

p

p

p

p

p

n

p

n

n

p

n

p

p

S
I

n X

E

S
I

n X

Sp
E I

p X

Sp
E I

p n X

ψ ε

ψ ε

ψ ε

ψ ε

σ

ψ

ψ

ε
σ

ψ
σ

 
 − ≤
 + 

 
 − >
 + 

 
 − ≤
 + 

 
 − >
 + 

−
•∆ =

 
  −  + 
 

×  
  + −  +  
 

 
−  

≤  
  


−  + − + 

.


 
 
  

 

 
We set: 

 

( ) ( ) ( )
2

22 2

1 2 2 1

2

2
,

|| ||
p

n

Sp
n p E I

p X ψ ε
α ε

σ  
 ≤
 + 

 
−  

=  
  

 

 
and: 

 

( ) ( ) ( )
2

22 22

2 2 2 1

2

2 1
,

2 || ||
p

p

n

Sp
n p E I

p n X ψ ε
α ε ψ

σ  
 >
 + 

 
−   = −  +   

. 

 

Using Schwarz’s inequality, we have: 

 

( ) ( ) ( )22 2 2

1/ 2 1/ 2

1 2 2

2 1
,

|| || 2
p

Sp
n p E P

p X n
α ε ψ ε

σ

    −   • ≤ − ≤      +     

. 

 

From the independence of 
2

X  and 2S  and that 

( )( ) ( )( )2

1 1

2 4
P

E
p pχ λ

 
  ≤
  − −
 

 (See formula 2.2 of Lemma 

2.1), we deduce that: 

 

( ) ( ) ( )( )( )
( )( )

( ) ( )( )( )
( )( )

.
42

6422

2

1

42

6422
,

2

2

2/1

2

1

−−
+++−

≤











≤−

+
×

−−
+++−

≤

pp

nnnn

p

p

n
P

pp

nnnn

p

p
pn

p

ε

εψ

εα

 

 

For ε sufficiently small, it is clear that ( ) 0,1 =pnα , 

hence ( ), 1lim , 0n p n pα+∞ ≤
����

. 

Now, we show that ( ), 2lim , 0n p n pα+∞ ≤
����

, indeed: 

 

( ) ( )

( )

( )

( )
( ) ( )

( )
( )

( )

( )

2

2

2

2

2 2

2
22

2 1

2

2

2

2
2

2 2

2 2 1

2

22 2

22 2 1

2

2

2

2

2
,

1

2 || ||

2 2

1

|| ||2

2 2 1

|| ||2

2 2

p

p

p

p

n

n

n

p
n p

p

S
E I

n X

p

p

S
E g S I

Xn

Sp
E I

p Xn

p
E g

p

ψ ε

ψ ε

ψ ε

α
σ

ψ

σ

σ

σ

 
 − >
 + 

 
 − >
 + 

 
 − >
 + 

−
• =

 
  × −  +   

−
≤

    × +  +   

 
−  

≤  
+   

−
+ ( ) ( )

2

2
2

2

2 1

2
|| ||

p
n

S
S I

X ψ ε
 
 − >
 + 

 
 
 
  

 (3.5) 

 
The inequality (3.5) according to the second 

condition and the following inequality: for any ℜ∈ba, , 

.2 22 baab +≤−   

We set: 
 

( ) ( )
( )

( )
2

2
2 2

21 22 2 1

2

2 1
,

|| ||2 p
n

Sp
n p E I

p Xn ψ ε
α

σ  
 − >
 + 

 
−  

=  
+   

 

 

and: 

 

( ) ( ) ( ) ( )
2

2
2 2

2 2

22 2 2 1

2

2
,

|| ||
p

n

Sp
n p E g S I

p X ψ ε
α

σ  
 − >
 + 

 −  
=  

  

. 

 

From Schwarz’s inequality, we have: 

 

( ) ( )
( )

( )

( )
( )

( )( )( )
( )( )

.
2

1

42

642

2

12

2

1

2

12
,

2

2/1

2

2

2

2/1

4

42
2/1

22

2

21











>−

+−−
+++

×

+

−
≤











>−

+

























×

+

−
≤•

εψ

εψ

σ
α

p

p

n
P

pp

nnnn

np

p

n
P

X

S
E

np

p
pn

 

 

Thus, it is clear that ( ), 21lim , 0n p n pα+∞ ≤
����

, because ψp 

converge in probability to 
1

2n +
. 

From Holder’s inequality, we have: 
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( ) ( )

( )( )
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γ
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γ
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γ

γγ
γ

γ
γ

γ
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γ
γ

γ
γ
γ
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γ

εψ
γ
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γ
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γ

σ

σ

σ
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α

p

p
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The last inequality follows from the independence of 
2

X  and 2S . 

As: 
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From Stirling’s formula which expresses that in the 

neighborhood of ∞+ , we have: 
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in the neighborhood of ∞+  and: 
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in the neighborhood of ∞+ . 

For p sufficiently large, we have: 
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As ( )( ) ( )
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From (3.3) and by using Schwarz’s inequality we 

have: 
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Then ,

2 0n p→+∞∆ → . Thus, from formula (2.5) of 

Proposition 2.3, we have: 
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Hence by using the formula (2.4) of Proposition 2.3, 

we obtain: 
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Example 3.2 

Assume the estimator given in (3.1), such that: 
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To show that the function ( )22

1 , XSψ , satisfies the 

conditions of Theorem 3.1, we used the following lemma. 

Lemma 3.3 

For any a > 0, we have: 
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and using the formula (1.2) in Benmansour and 

Hamdaoui (2011), we have: 
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Now, we show that ( )22

1 , XSψ  satisfies conditions of 

Theorem 3.1. 

Indeed: 
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The above equality according of formula (1.2) in 

Benmansour and Hamdaoui (2011). From lemma 3.3, 

we have: 
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On the one hand, we have: 
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By using lemma 3.1 of Li (1995), we have: 
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On the other hand, we have: 
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Using lemma 3.1 of Li (1995), we have: 

 

( )
2

2

2

2 2 2

|| ||
22 1

1.
1 || || 1 1

2

p

pp K c
E

c
p K p

θ
σ

θ
σ σ σ

→+∞

  − + + +
≥ → = 

+ + + + + 
 

 

 
Thus: 

 
2

2

|| ||
lim 1.

|| || 1
p

X
E

X
+∞

 
= 

+ 
����  

 
Let 0 >a and using Markov’s inequality, we have: 
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Therefore, the function ψ1 satisfies the first condition 

of Theorem 3.1. 

For the second condition it suffices to take 
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Remark 3.4 

• It is obvious that the James-Stein estimator δJS 

satisfies the conditions of Theorem 3.1, so we 

give another proof that the James-Stein estimator 

δJS
 dominating the maximum likelihood estimator 

X, even if the dimension of parameter space p and 

the sample size n tend to infinity 

• We also note that any shrinkage estimator 

dominating the James-Stein estimator dominates the 

maximum likelihood estimator even if the 

dimension of parameter space p and the sample size 

n tend to infinity 

 

The following Proposition gives the same results of 

Theorem 3.1 with different conditions on ψ. 

Proposition 3.5 

Assume that 
jδ  is given in (3.1) and that ψ satisfies: 
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We write: 

 

( ) ( ), ,JS

JS R Rδ θ δ θ∆ = −  
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then: 
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where ∆1 and ∆2 are given in (3.2) and (3.3). 

From formula (3.4) and the independence of 
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The last inequality comes from the fact that the 

covariance of two functions, one increasing and the other 

decreasing is non-positive. 
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where, M is a positive constant. 

Thus, it is clear that , 1lim 0n p +∞∆ =
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To show that , 2lim 0n p +∞∆ =
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 using the Schwarz’s 

inequality, we have: 
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then ,

2
0

n p→+∞∆ → . Thus, from formula (2.5) of 

Proposition 2.3, we have: 
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Hence by using the formula (2.4) of Proposition 2.3, we 

obtain: 
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Example 3.6 

Assume the estimator given in (3.1), such that: 
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It is clear that the function 
2ψ satisfies conditions of 

Proposition 3.5, it suffices to take: 
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Simulations 

We recall the forms of estimators given in Example 

3.2, i.e.  

 

( ) ,
12

2
,

2

2

22

1

++
−

=
X

X

n

p
XSψ  

 

and 

 

( ) X
X

S

n

p
XS















++
−

−=
12

2
1,

2

2
22

1ψδ
 

 

And in the Example 3.6, i.e.: 
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of which we illustrate graphically their risks ratios as 

well as those of James-Stein and the positive-part of 

James-Stein denoted respectively: 
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for various values of n and p. 
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Fig. 1. Graph of risk ratios 
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Fig. 2. Graph of risk ratios 
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Fig. 3.  Graph of risk ratios 
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Fig. 4. Graph of risk ratios 
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Conclusion 

In context of the study of asymptotic behavior of the 

risk ratios of shrinkage estimators of the mean θ of a 

multivariate Gaussian random ( )pp INX 2,~ σθ  in 
pℜ , 

Casella and Hwang (1982) showed that if 

2|| ||
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����
 then the ratios 
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 tend to 
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, thus the James-Stein 

estimator JSδ  and the positive-part of James-Stein 

estimator JSδ + , which are minimax estimators, 

dominating the maximum likelihood estimator X if the 

dimension of parameter space p tends to infinity. In 

our work by taking the same model, namely 

( )pp INX 2,~ σθ  with 2σ  is unknown and estimated 

by the statistic 2

n

22 ~ χσS  independent of X, we 

showed that for the shrinkage estimators of the form 
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S
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, which did not inevitably 

minimax, we obtain the same ratio 
1

c

c+
constant 

which is less than 1, when n and p tend 

simultaneously to infinity without assuming any order 

relation or functional relation between n and p, 

provided 
2

2

|| ||
lim

p
c

p

θ
σ+∞ =

����
. 

An idea would be to see whether one can obtain 

similar results of the asymptotic behaviour of risk ratios 

in the general case of the symmetrical spherical models, 

for general classes of shrinkage estimators. Expanding 



Abdenour Hamdaoui and Nadia Mezouar / Journal of Mathematics and Statistics 2017, 13 (2): 77.87 

DOI: 10.3844/jmssp.2017.77.87 

 

87 

our work to minimax estimators proposed by Maruyama 

(2014) is also an idea that we currently explore. 
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