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Introduction and Preliminaries 

In (Section 6.3), Pazy (1983) has analyzed semilinear 
Cauchy problems with generators of analytic strongly 
continuous semigroups by using the results from the 
theory of fractional powers of operators. Concerning 
the study of existence and uniqueness of almost 
periodic solutions of non-degenerate semilinear Cauchy 
problems, it seems that the fractional powers of 
operators has been employed for the first time by   
Bahaj and Sidki (2002) (cf. also Diagana et al. (2006) 
and El-Borai and Debbouche (2009)). 

Suppose that γ ∈ (0, 1] and A is a multivalued 
linear operator on a Banach space X satisfying the 
condition (Favini and Yagi, 1998, (P), p. 47) 
examined by Favini, Yagi: 

(P) There exist finite constants c, M > 0 and β ∈ (0, 

1] such that: 
 

( ){ } ( ): : : | | 1c c Aλ λ λ ρΨ = Ψ = ∈ ℜ ≥ − ℑ + ⊆ℂ  

 
and: 
 

( ) ( )|| : || 1 | | ,R A M
βλ λ λ−

≤ + ∈ Ψ  

 
Of concern is the following abstract Cauchy inclusion 

of first order: 

( ) ( ) ( )( ), ,u t Au t f t u t t′ ∈ + ∈ℝ  (1.1) 

 

and its fractional relaxation analogue: 

 

( ) ( ) ( )( ), , ,tD u t Au t f t u t tγ
+ ∈ + ∈ℝ  (1.2) 

 

where, ,tDγ
+ denotes the Weyl-Liouville fractional 

derivative of order γ, x0 ∈ X and f: ℝ × X → X is 

Stepanov almost periodic. 

In the present paper, we use fractional powers of 

sectorial multivalued linear operators with a view of 

establishing new structural results on the existence and 

uniqueness of almost periodic solutions of semilinear 

Cauchy inclusions (1.1) and (1.2). Our results seem to be 

new even for fractional relaxation equations with almost 

sectorial operators (Periago and Straub, 2002). 

It is worth noting that the conditions on function f(⋅,⋅) 
used in this study are weaker than those employed in 

(Bahaj and Sidki, 2002) for the Equation 1.1, resp.,    

(El-Borai and Debbouche, 2009) for the Equation 1.2, 

where the authors have looked into the following 

condition (known already from (Pazy, 1983)): 

 

The function f: ℝ  × [D((−A)
θ
)] → X satisfies 

that there are finite numbers L > 0 and η ∈ [0, 
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1] such that ||f(t1, x1)- f(t2, x2)|| ≤ L(|t1-t2|
η
 + 

||x1-x2||θ) for all (t1, x1), (t2, x2) in ℝ × 

[D((−A)
θ
)]; −A is the single-valued generator 

of an exponentially decaying C0-semigroup. 
 

In this case, the mild solutions constructed for (1.1) 

and (1.2) are Hölder continuous, which are no longer 

true in our approach (without going into further details, 

we want only to observe here that the structural results 

from (Bahaj and Sidki, 2002; El-Borai and Debbouche, 

2009) can be reconsidered for degenerate semigroups of 

operators). It is clear that the condition (F) implies the 

validity of usually considered Lipschitz type condition 

(4.2) used below and that the validity of (4.2) or its 

generalization (4.1) used below does not imply the 

validity of condition (F). Furthermore, we consider the 

case in which the function f(⋅,⋅) is not uniformly almost 

periodic but only Stepanov almost periodic. 

The organization of paper can be brifley described as 
follows. In section 2, we recall the basic facts about 
almost periodic functions and Stepanov almost periodic 
functions that will be necessary for our further work. The 
main aim of section 3 is to remind us of some 
elementary definitions and results from the theory of 
multivalued linear operators in Banach spaces; fractional 
powers and interpolation spaces of multivalued linear 
operators are examined in a separate subsection. Our 
main results and contributions are given in Section 4, 
which are divided into two separate subsections. In 
Subsection 4.1, we investigate the almost periodic 
solutions of abstract Cauchy inclusion (1.1), while in 
Subsection 4.2 we investigate the almost periodic 
solutions of abstract Cauchy inclusion (1.2). 

We use the standard notation throughout the paper. 

By X and Y we denote two Banach spaces over the field 

of complex numbers. The symbol L(X, Y) stands for the 

space consisting of all continuous linear mappings from 

X into Y; L(X) ≡ L(X,X) and ||⋅|| stands for the norm of 

X. Denote by Cb( ℝ : X) the vector space consisted of all 

bounded continuous functions from ℝ  into X; the sup-

norm turns this space into one of Banach's. The Gamma 

function is denoted by Γ(⋅) and the principal branch is 

always used to take the powers. Define gα(t):= 

t
α−1

/Γ(α), t > 0 (α>0). 

Fractional calculus and fractional differential equations 

have gained much attention recently due to their numerous 

applications (Bazhlekova, 2001; Diethelm, 2010; Kostić, 

2011; 2015; Prüss, 1993; Samko et al., 1993; von Wahl, 

1972). We need to recall some basic facts about the 

Wright functions, which are known to play an important 

role in fractional calculus. Let γ ∈ (0, 1). Then the 

Wright function Φγ(⋅) is defined by the formula: 
 

( ) ( )
( )0

: ,
! 1

n

n

z
z z

n n
γ γ γ

∞

=

−
Φ = ∈

Γ − −∑ ℂ  

Let us recall that Φγ(⋅) is an R entire function, as well 

as that Φγ(t) ≥ 0, t ≥0, ( ) ( )
( )0

1
, 1

1

r
r

t t dt r
r

γ γ

∞ Γ +
Φ = > −

Γ +∫  and 

( ) ( )
0

zte t dt E zγ γ

∞ − Φ = −∫ , z ∈ℂ , where Eγ(⋅) denotes the 

Mittag-Leffer function. For further information 

concerning the Mittag-Leffer and Wright functions, the 

reader may consult the doctoral dissertation of 

Bazhlekova (2001) and references cited therein. 

The Weyl-Liouville fractional derivative ( ),tD u tγ
+  of 

order γ is defined for those continuous functions u:ℝ→ 

X such that 1

t

t g γ−−∞∫֏ (t-s)u(s) ds, t ∈ℝ is a well-

defined continuously differentiable mapping, by: 
 

( ) ( ) ( ), 1: ,
t

t

d
D u t g t s u s ds t

dt

γ
γ+ −−∞

= − ∈∫ ℝ  

 

Set ( ),tD u tγ
+ := −(d/dt)u(t). For more details about the 

Weyl-Liouville fractional derivatives, we refer the reader 

to the paper by Mu et al. (2017). 

Almost Periodic Functions and Stepanov 

Almost Periodic Functions 

It is well known that the class of almost periodic 

function was introduced by Bohr in 1925 and later 

generalized by many other mathematicians (for further 

information, the reader may consult the monographs 

(Diagana, 2013; N'Guérékata, 2001; Hino et al., 2002; 

Levitan and Zhikov, 1982)). Let I = ℝ  or I = [0, ∞) and 

let f: I → X be continuous and let ϵ > 0. Then we say that 

a number τ > 0 is an ϵ-period for f(⋅) iff ||f(t + τ)-f(t)|| ≤ ϵ, 

t ∈ I. The set constituted of all ϵ-periods for f(⋅) is 

denoted by ϑ(f, ϵ). We say that f(⋅) is almost periodic, 

a.p. for short, iff for each ϵ > 0 the set ϑ(f, ϵ) is relatively 

dense in I, which means that there exists l > 0 such that 

any subinterval of I of length l meets ϑ(f, ϵ). The space 

of all almost periodic functions from the interval I into X 

will be denoted by AP(I: X). 

Let 1 ≤ p < ∞. Then we say that a function p

loc
f L∈ (I: 

X) is Stepanov p-bounded, S
p
-bounded shortly, iff: 

 

( )( )
1/

1

|| || : sup || ||p

p
t

p

S t
t I

f f s ds
+

∈
= < ∞∫  

 
Endowed by the above norm, the space 

( ):p

SL I X consisting of all S
p
-bounded functions becomes 

a Banach space. A function ( ):p

Sf L I X∈  is said to be 

Stepanov p-almost periodic, Sp-almost periodic shortly, 

iff the function f̂ : I → L
p
([0, 1]: X), defined by: 

 

( )( ) ( ) [ ]ˆ : , , 0,1f t s f t s t I s= + ∈ ∈  
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is almost periodic (cf. the monograph by Amerio and 

Prouse (1971) for more details on the subject). We use 

the symbol APS
p
(I: X) to denote the vector space 

consisting of all Stepanov p-almost periodic functions. 

Let us recall that if f(⋅) is an almost periodic function, 

then f(⋅) is also Sp-almost periodic for 1≤ p < 1. The 

converse statement is not true, however. 

Assume that f: I × Y → X. Define f̂ : I × Y → L
p
([0, 

1]: X) by f̂ (t, y):= f(t + ⋅, y), t > 0, y ∈ Y. 

We need to recall the following definitions (Zhang, 

2001; Long and Ding, 2011; Kostić, 2017c): 

Definition 2.1 

Suppose that 1 ≤ p < 1: 

 

• A function f: I × Y → X is said to be almost periodic 

iff f(⋅,⋅) is bounded, continuous as well as for every ϵ 

> 0 and every compact K ⊆ Y there exists l(ϵ, K) > 0 

such that every subinterval J ⊆ I of length l(ϵ, K) 

contains a number τ with the property that ||f(t + τ, 

y)−f(t, y)|| ≤ ϵ for all t ∈ I, y ∈ K. The collection of 

such functions will be denoted by AP(I × Y: X) 

• A function f: I ×Y → X is called Stepanov p-almost 

periodic, S
p
-almost periodic shortly, iff f̂ : I × Y → 

L
p
([0, 1]: X) is almost periodic. The collection of 

such functions will be denoted by APS
p
(I × Y: X) 

 

It is well known that (Zhang, 2001) if f ∈ AP(I × Y: 

X) and h ∈ AP(I: Y), then the mapping t f֏ (t, h(t)), t ∈ 

I belongs to the space AP(I: X). 

For more details about Stepanov p-almost periodic 

functions depending on two parameters, we refer the 

reader to (Kostić, 2017c). 

Multivalued Linear Operators 

One of the most important monographs on abstract 

degenerate differential equations with integer order 

derivatives was written by Favini and Yagi (1998). In 

this monograph, the authors obey the multivalued 

linear operators approach to degenerate differential 

equations. The main aim of this section is to present a 

brief overview of definitions and results from this 

theory (cf. the monograph (Cross, 1998) by Cross for 

more details on the subject). 

A multivalued map (multimap) A: X → P(Y) is said to 

be a Multivalued Linear Operator (MLO) iff the 

following holds: 

 

• D(A) := {x ∈ X: Ax ≠ 0/ } is a linear submanifold of X 

• Ax + Ay ⊆ A(x + y), x, y ∈ D(A) and λAx ⊆ 

A(λx), λ ∈ℂ , x ∈ D(A). If X = Y, then it is said that 

A is an MLO in X 

Let us recall that, for every x, y ∈ D(A) and for every 

λ, η ∈ℂ  with |λ| + |η| ≠ 0, one has λAx + ηAy = A(λx + 

ηy). If A is an MLO, then A0 is a linear sub manifold of 

Y and Ax = f + A0 for any x ∈ D(A) and f ∈ Ax. Put 

R(A):= {Ax: x ∈ D(A)}. The set A
−1

0 = {x ∈ D(A): 0 ∈ 

Ax} is called the kernel of A and it is denoted by N(A). 

The inverse A
−1

 of an MLO is defined by D(A
−1

):= R(A) 

and A
−1

y:= {x ∈ D(A): y ∈ Ax}. It can be simply proved 

that A
−1

 is an MLO in X, as well as that N(A
−1

) = A0 and 

(A
−1

)
−1

 = A. 

Assume that A, B: X → P(Y) are two MLOs. Then we 

define its sum A + B by D(A + B):= D(A)∩D(B) and (A + 

B)x:= Ax + Bx, x ∈ D(A + B). It is evident that A + B is 

likewise an MLO. 

Assume further that A: X → P(Y) and B: Y → P(Z) 

are two MLOs, where Z is likewise a complex Banach 

space. The product of operators A and B is defined by 

D(BA):= {x ∈ D(A): D(B)∩Ax ≠ 0/ } and BAx:= 

B(D(B)∩Ax). We know that BA: X → P(Z) is an MLO 

and (BA)
−1

 = A
−1

B
−1

. 

We say that an MLO operator A: X → P(Y) is closed 

iff for any sequences (xn) in D(A) and (yn) in Y such that 

yn ∈ Axn for all x ∈ℕ  we have that limn→∞ xn = x and 

limn→∞ yn = y imply x ∈ D(A) and y ∈ Ax. 

The following auxiliary lemma from integration 

theory can be found, for example, in (Kostić, 2016). 

Lemma 3.1 

Let Ω be a locally compact, separable metric space 

and let µ be a locally finite Borel measure defined on Ω. 

Assume that A: X → P(Y) is a closed MLO. Let f: Ω→ X 

and g: Ω→ Y be µ-integrable and let g(x) ∈ Af(x), x ∈ Ω. 

Then f dµ
Ω∫ ∈ D(A) and gdµ

Ω∫ ∈ A f dµ
Ω∫ . 

Let A be an MLO in X. Then the resolvent set of A, 

ρ(A) for short, is defined as the union of those complex 

numbers λ ∈ℂ  for which: 

 

• X = R(λ-A) 

• (λ-A)
−1

 is a single-valued linear continuous operator 

on X 

 

The operator ( )Aλ λ −֏  is called the resolvent of A, 

R(λ: A) ≡ (λ-A)
 −1

 (λ ∈ ρ(A)). The basic properties of 

resolvents of single-valued linear operators continue to 

hold in the multivalued linear setting (Favini and Yagi, 

1998; Kostić, 2016). 

Fractional Powers and Interpolation Spaces of 

Multivalued Linear Operators 

Let X be a Banach space and let (-∞, 0]⊆ ρ(A). 

Assume that there exist finite numbers M ≥ 1 and β ∈ (0, 

1] such that ||R(λ: A)|| ≤ M(1 + |λ|)
−β

, λ≤ 0. Then there 
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exist two positive real constants c > 0 and M1 > 0 such 

that ρ(A) contains an open region Ω = { λ ∈ℂ : |ℑλ}| ≤ 

(2M1)
−1

(c-ℜλ)
β
, ℜλ ≤ c} of complex plane around the 

half-line (-∞, 0], where the following holds: ||R(λ:A)|| = 

O((1 + |λj)
−β

), λ ∈ Ω, Designate by Γ′ the upwards 

oriented curve {ξ ± i(2M1)
 −1

 (c-ξ)
β
: -∞ < ξ ≤ c}. In, 

Favini and Yagi (1998) define the fractional power: 

 

( ) ( )11
:

2
A A d L X

i

θ θλ λ λ
π

−− −

′Γ
= − ∈∫  

 

For θ > 1-β. Put A
θ
:= (A

−θ
)

−1
 (θ > 1-β). Then the 

semigroup properties 
( )1 2

1 2A A A
θ θθ θ − +− − =  and 

( )1 2
1 2A A A

θ θθ θ +
=  hold for θ1, θ2 > 1 -β (recall that the 

fractional power A
θ
 need not be injective and that A

θ
 is 

an MLO for θ > 1-β). 

We endow the vector space D(A) by the norm 

||⋅||[D(A)]:= infy∈A. ||y||. Then (D(A), ||⋅||[D(A)] is a Banach 

space and the norm ||⋅||[D(A)] is equivalent with the 

following one ||⋅|| + ||⋅||[D(A)], (D(A
θ
), ( )D Aθ 

  
⋅ ) is a Banach 

space, as well and we have the equivalence of norms 

( )D Aθ 
  

⋅  and ( )|| ||
D Aθ 

  
⋅ + ⋅  for θ > 1-β. 

Assume that θ ∈ (0, 1). The interpolation space AX θ
 

is defined by: 

 

( ) 1

0

: : sup || ||AX x X A x xθ θ

ξ
ξ ξ ξ −

>

 = ∈ + − < ∞ 
 

 

 

When equipped with the norm: 

 

( ) 1

0

: || || sup || ||
AX

Aθ
θ

ξ
ξ ξ ξ −

>
⋅ = ⋅ + + ⋅ −⋅  

 

AX θ is a Banach space that is continuously embedded in X. 

For further information concerning interpolation 

spaces and fractional powers of multivalued linear 

operators, we refer the reader to (Favaron and Favini, 

2011; Favini and Yagi, 1998; Kostić, 2016). 

Almost Periodic Solutions of Abstract 

Semilinear Cauchy Inclusions (1.1) and (1.2) 

A composition theorem for two-parameter Stepanov 

p-almost periodic functions has been clarified in  

((Long and Ding, 2011) Theorem 2.2); cf. also (Kostić, 

2017c). The following result states that the assertion of 

(Long and Ding, 2011, Theorem 2.2) continues to hold 

for the functions defined on the real semi-axis I = [0, ∞), 

as well, with two different pivot spaces X and Y. The 

proof is very similar to that of afore-mentioned result 

and therefore omitted. 

Theorem 4.1 

Let I ∈ℝ  or I = [0, ∞). Suppose that the following 

conditions hold: 
 

• f ∈ APS
p
(I × Y: X) with p > 1; and there exist a 

number r ≥ max(p, p/p-1) and a function 

( )r

f SL L I∈ such that: 

 

( ) ( ) ( )|| , , || || || , , ,f Yf t x f t y L t x y t I x y Y− ≤ − ∈ ∈  

 

• x ∈ APS
p
(I: Y) and there exists a set E ⊆ I with m(E) 

= 0 such that K:= {x(t): t ∈ I\E} is relatively 

compact in Y; here, m(⋅) denotes the Lebesgue 

measure 

 

Then q:= pr/p + r ∈ [1, p) and f(⋅, x(⋅)) ∈ APS
q
(I: X). 

If we accept the existence of a Lipschitz constant L > 

0 such that: 

 

( ) ( )|| , , || || || , , ,Yf t x f t y L x y t I x y Y− ≤ − ∈ ∈  (4.2) 

 

then we can also consider the case in which p = 1. 

Strictly speaking, the following result holds true. 

Theorem 4.2 

Let I ∈ℝ  or I = [0, ∞). Suppose that the following 

conditions hold: 
 

• f ∈ APS
p
(I × Y: X) with p ≥ 1, L > 0 and (4.2) holds 

• x ∈ APS
p
(I: Y ) and there exists a set E ⊆ I with 

m(E) = 0 such that K = {x(t): t∈ I\E} is relatively 

compact in Y 
 

Then f(⋅, x(⋅)) ∈APS
p
(I: X): 

The following lemma can be proved in exactly the 

same way as ((Kostić, 2017a), Proposition 2.11). 

Lemma 4.1 

Suppose that 1≤ p < ∞, 1/p +1/q = 1 and (R(t))t>0 ⊆ 

L(X, Y) is a strongly continuous operator family satisfying 

that M:= ( ) [ ], 10
|| || qL k kk

R
∞

+=
⋅∑ < ∞. If :f X→ℝ  is S

p
-almost 

periodic, then the function G: Y→ℝ , given by: 
 

( ) ( ) ( ): ,
t

G t R t s f s ds t
−∞

= − ∈∫ ℝ  

 
is well-defined and almost periodic. 

Remark 4.1 

Let p > 1 and let t֏ ||R(t)||, t ∈ (0, 1] be an element 

of the space L
q
[0, 1]. Then the inequality 

( ) [ ], 10
|| || qL k kk

R
∞

+=
⋅∑ < ∞ holds provided that there exists a 
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finite number ζ < 0 such that ||R(t)|| = O(t
ζ
), t → +1 and 

ζ < (1/p)-1. 

Suppose now that the condition (P) holds and β > θ 

> 1-β. Then degenerate strongly continuous 

semigroup (T(t))t>0 ⊆ L(X) generated by A satisfies 

estimate ||T(t)|| ≤ M0e
-ct

t
β-1

; t > 0 for some finite 

constant M0 > 0 (Kostić, 2017a). 

Set: 

 

( ) ( ) ( )
0

, : , 0,T t x t s s T st x ds t x Xγν ν γ
γγ ν

∞
= Φ > ∈∫  

 
and, following Wang et al. (2012) (cf. also El-Borai and 

Debbouche (2009)): 
 

( ) ( ),1: / , 0P t T t t tγ
γ γγ= >  (4.3) 

 
In the sequel, by M > 0 we denote the finite 

generic constant whose numerical value may change 

from line to line. 

Almost Periodic Solutions of Abstract Semilinear 

Cauchy Inclusion (1.1) 

Put Y:= [D((-A)
θ
)] and ||⋅||Y:= ( )( )D A

θ −  
⋅ . In (Kostić, 

2017b), we have proved that: 

 

( ) ( ) ( )

( )

11
,
2

, , 0

tT t x e A xd
i

A x X t

θ λ

θ

λ λ λ
π

−

Γ

 − − 
 

∈ − ∈ >

∫
 (4.4) 

 

Set: 

 

( ) ( ) ( ) ( )11
: , , 0 0

2

t
T t x e A x d x X t

i

ν λ
ν λ λ λ ν

π
−

Γ
= − − ∈ > >∫  

 
Arguing as in the proof of ((Kostić, 2017b), Lemma 

2.6), we get that: 

 

( ) 1|| || , 0, 0ctT t Me t tβ ν
ν ν− − −≤ > >  (A)  

 

Applying the mean value theorem, (A) and the obvious 

equality ( )T tν′ = -Tv +1(t), t > 0, v > 0, we obtain that: 

 

( ) ( ) 2|| || , 0, 0, 0ctT t h T t Mhe t t hβ ν
ν ν ν− − −+ − ≤ > > >  (B) 

 

The following notion of a mild solution of (1.1) will 

be sufficiently good for our purposes: 

Definition 4.1 

Let f: I × Y → X and let Y be continuously embedded in 

X. By a mild solution of (1.1), we mean any Y-continuous 

function u(⋅) such that u(t) = (Λu)(t), t ∈ R, where: 

( )( ) ( ) ( )( ): , ,
t

t u t T t s f s u s ds t
−∞

Λ = − ∈∫֏ ℝ  

 

We continue by stating the following important 

lemma. 

Lemma 4.2 

Let 1 < q, q′ < ∞, 1/q +1/q′ = 1 and q′(β-θ-1) > -1. 

Assume that f̂ : I × Y → L
q
([0, 1]: X) is bounded 

continuous and u ∈C( :Yℝ ). Define: 

 

( )( ) ( ) ( )( ): , ,
t

u t T t s f s u s ds tθ−∞
Ψ = − ∈∫ ℝ  

 

Then Ψu ∈ Cb( : Xℝ ). 

Proof 

Let ( )
1

|| , ||
t

q

t
f s y

+

∫  ds ≤ M
q
 for all t ∈ℝ  and y ∈ Y. 

We will first prove the right continuity of (Ψu)(⋅). For 

this, fix a number h ∈ (0, 1]. Then a straightforward 

computation involving the Hölder inequality shows that: 

 

( )( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

0

0

1

0

1

|| ||

|| || || , ||

|| || || , ||

|| || || , ||

|| || || , ||

|| || || , ||

|| || || , ||

t

t h

h

k

k

u t h u t

T T h s T t s f s u s ds

T T h s f s u s ds

T s h T s f t s u t s ds

T s h f t s u t s ds

T s h T s f t s u t s ds

T s h T s f t s u t s d

θ θ

θ

θ θ

θ

θ θ

θ θ

−∞

+

−∞

∞

+

Ψ + − Ψ

≤ + − − −

+ + −

= + − − −

+ + − −

≤ + − − −

+ + − − −

∫

∫

∫

∫

∫

∫

( ) ( )( )

( ) ( )( )
( ) ( ) [ ]

( )( )

1

0

1/
1

0

1

, 10
1

1/

0

|| || || , ||

|| ||

|| ||

|| ,

q

k

h

q
q

k

L k k
k

q
h q

s

T s h f t s u t s ds

M T s h T s ds

M T h T

M T s h ds t

θ

θ θ

θ θ

θ

′

∞

=

′
′

∞ +

+
=

′
′

+ + − −

≤ + −

+ ⋅ + − ⋅

+ + ∈

∑

∫

∫

∑∫

∫ ℝ
 (4.5) 

 

which clearly implies that: 

 

( )( ) ( )( )

( ) ( )( )
( ) ( ) [ ]

( )( )

1/
1

0

1

, 10
1

1/
2

0

|| ||

|| ||

|| ||

||

q
q

k

L k k
k

q
h q

u t h u t

M T s h T s ds

M T h T

M T s ds

θ θ

θ θ

θ

∞

′
′

∞ +

+
=

′
′

Ψ + − Ψ

≤ + −

+ ⋅ + − ⋅

+

∫

∑∫

∫
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for any t ∈ℝ . It is clear that the third addend in the last 

expression tends to zero as h tends to zero because of (A) 

and q′(β-θ-1) > -1, which gives that ||Tθ(⋅)||
q′ ∈ L

1
[0, 1]. 

For the second addend, we can use the estimate: 
 

( ) ( )
[ ]

1

, 1
1 1

k
ck

L k kk
k k

T h T Mh eθ θ ∞

∞ ∞+ −

+
= =

⋅ + − ⋅ ≤∑ ∑∫  

 
which simply follows from (B). For the first addend, 

we can employ the dominated convergence theorem 

and (A); summa summarum, we have proved the right 

continuity of (Ψu)(⋅). The left continuity of (Ψu)(⋅) 
can be proved similarly and we only yet need to show 

the boundedness of (Ψu)(⋅). But, this is a consequence 

of the following calculus obtained with the help of 

Hölder inequality: 

 

( )( )

( ) ( )( )

( )( )
0

1/
1

0

|| ||

|| , ||

|| ||

q
k

q

k
k

u t

T s f t s u t s ds

M T s ds

θ

θ

∞

′∞ + ′

=

Ψ

≤ − −

≤

∫

∑ ∫

 

 

which is valid for any t ∈ℝ  and the estimate (A). 

Define, for every X-valued bounded continuous 

function u(⋅): 
 

( )( ) ( ) ( ) ( )( ): , ,
t

u t T t s f s A u s ds t
θ

θ
−

−∞
Φ = − − ∈∫ ℝ  

 

Since (-A)
−θ

 ∈ L(X, [D((-A)
θ
)]), we know from Lemma 

4.2 that Φ: Cb( : Xℝ ) → ( ):bC Xℝ  is well-defined as long 

as f(⋅,⋅) satisfies the conditions from Lemma 4.2. 

Let Lf (⋅) be a locally bounded non-negative function 

and let M denote the constant from (A), with v = θ. Set, 

for every n∈ℕ : 

 

( ) ( )
( ) ( ) ( )

2

1

1

1

1 1 2

2 1

: sup
n n

i i

t x x c t xn

n n
t

n n
c x x

i i f i n

i i

M M e t x

e x x L x dx dx dx

β θ

β θ−

− −− −

−∞ −∞ −∞∈

− −− −

−
= =

= −

× −

∫ ∫ ∫

∏ ∏

ℝ

⋯

⋯

 

 

Since the norm of mapping (-A)
−θ

 ∈ L(X, [D((-A)
θ
)]) 

is less or equal than 1, a simple calculation yields that: 

 

( ) ( ) ( )|| || , , : , ,n n

n b
u M u u C X nυ υ υ∞

∞
Φ − Φ ≤ − ∈ ℝ ℕ  (4.6)  

 

Now we are ready to formulate the following result. 

Theorem 4.3 

Suppose that (P) holds, β > θ > 1-β and the following 

conditions hold: 

i. f ∈ APS
p
(R × Y: X) with p > 1 and there exist a 

number r ≥ max(p, p/p-1) as well as a locally 

bounded non-negative function Lf ∈ ( )r

SL ℝ  such 

that r > p/p-1 and (4.1) holds. 

Set q:= pr/p + r and :
pr

q
pr p r

′ =
− −

. 

Assume also that: 

ii. q′(β-θ-1) > -1 

iii. Mn < 1 for some n∈ℕ  

 

Then there exists an almost periodic mild solution 

of inclusion (1.1). The uniqueness of mild solutions 

holds provided that, in addition to (i-iii), A is single-

valued and: 

 

iv. 11
1nn

M or M
∞

=
< ∞ <∑   

 

Proof 

Let us recall that the range of a Y-valued almost 

periodic function is relatively compact in Y by ((Zhang, 

2001), Theorem 2.4). Clearly, u ∈ AP(R: X) implies (-A)
θ
u 

∈ ( ):AP Yℝ ; after that, using the condition (i) and 

Theorem 4.1, we get that f(⋅,(-A)
θ
u(⋅))∈ ( ):qAPS Yℝ . Due 

to the assumption (ii), the inequality (A) and Lemma 4.1 

(see also Remark 4.1), we get that the mapping 

( )| :AP Y
Φ

ℝ
: ( ):AP Xℝ → ( ):AP Xℝ  is well-defined. Since 

(4.6) and (iii) hold, we can apply a well known extension 

of the Banach contraction principle in order to see that the 

mapping ( )| :AP Y
Φ

ℝ
: ( ):AP Xℝ  → ( ):AP Xℝ  has a fixed 

point ϕ(⋅). Observing that q′(β-1) > -1 by (ii), we can 

employ Lemma 4.1 again to conclude that the mapping 

( )
t

t T t s
−∞

−∫֏ f(s, (-A)
−θ

 ϕ(s)) ds, t ∈ℝ  is well-defined. 

Due to Lemma 3.1 and (4.4), we obtain that: 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

,

, ,

t

t

t T t s f s A s ds

A T t s f s A s ds t

θ
θ

θ θ

ϕ ϕ

ϕ

−

−∞

−

−∞

= − −

∈ − − − ∈

∫

∫ ℝ

 

 

This implies: 

 

( ) ( ) ( ) ( ) ( )( ), ,
t

A t T t s f s A s ds t
θ θϕ ϕ− −

−∞
− = − − ∈∫ ℝ  

 

Taking into account that: 

 

( ) ( ) ( ) ( ) ( ) ( )|| ||, ,
Y

A t A s t s t s
θ θϕ ϕ ϕ ϕ− −

− − − ≤ − ∈ℝ  

 

the mapping (-A)
−θϕ(⋅) is Y-continuous so that, actually, 

(-A)
−θϕ(⋅) is an almost periodic mild solution of (1.1) (by 
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almost periodicity, we mean the X-almost periodicity). 

To complete the proof of theorem, we need to show the 

uniqueness of mild solutions in the case that A = A is 

single-valued and (iv) holds. Then the fractional 

powers constructed in Subsection 3.1 coincide with 

those constructed in (Periago and Straub, 2002), so that 

the fractional powers (-A)
±θ

 are injective. Assume that 

u(⋅) is a mild solution of (1.1); hence, u(t) = 
t

T
−∞∫ (t-

s)f(s, u(s)) ds, t ∈ℝ . Then: 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

,

,

, : ,

t

t

t

u t T t s f s u s ds

A T t s f s u s ds

A T t s f s u s ds A t t

θ
θ

θ θ
θ ζ

−∞

−

−∞

− −

−∞

= −

= − −

= − − = − ∈

∫

∫

∫ ℝ

 

 

observe here that the mapping ζ(⋅) is well-defined, X-

continuous and X-bounded by Lemma 4.2 because 1/q + 

1/q′ = 1 and q ∈ (1, p). This implies: 
 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
,

,

t

t

A t u t A T t s f s u s ds

A T t s f s A s ds t

θ θ
θ

θ θ
θ

ζ

ζ

− −

−∞

− −

−∞

− = = − −

= − − − ∈

∫

∫ ℝ

 

 

By the injectivity of power (-A)
−θ

, we get that ζ(⋅) is a 

fixed point of mapping ( ): :bC XΦ ℝ → ( ):bC Xℝ . On 

the other hand, the validity of condition (iv) enables one 

to apply Weissinger's fixed point theorem ((Diethelm, 

2010), Theorem D.7) or the classical Banach contraction 

principle, showing that there exists a unique fixed point 

of Φ(⋅) in ( ):bC Xℝ . Hence, ζ(⋅) is uniquely determined 

and, because of that, u(⋅) is uniquely determined, as well. 

Assuming the Lipschitz condition (4.2) in place of 

(4.1), we can deduce the following result. 

Theorem 4.4 

Suppose that (P) holds, β > θ > 1-β and the following 

conditions hold: 

 

i. ( ):pf APS Y X∈ ×ℝ  with p > 1 and there exists a 

constant L > 0 such that (4.2) holds 

ii. 
1

p

p −
(β-θ-1) > -1 

iii.  Mn < 1 for some n ∈ℕ  

 

Then there exists an almost periodic mild solution of 

inclusion (1.1). The uniqueness of mild solutions holds 

provided that, in addition to (i-iii), A is single-valued: 

 

iv. 
1

1

1
n

n

M orM
∞

=

< ∞ <∑  

Before proceeding further, it would be worthwhile to 

mention that a direct computation shows that, in the 

concrete situation of Theorem 4.4, one has: 

 

( )1M ML cθ ββ θ −≤ Γ −  

 

where, M denotes the constant from (A), with v = θ. 

Almost Periodic Solutions of Abstract Semilinear 

Cauchy Inclusion (1.2) 

In this subsection, we examine the existence and 

uniqueness of almost periodic solutions of abstract 

fractional inclusion (1.2). We start with the observation 

that Mu et al. (2017) have investigated various types of 

(asymptotically) quasi-periodic and quasi-automorphic 

solutions of (1.2) provided that the operator A is single-

valued and generates an exponentially decaying strongly 

continuous semigroup; cf. also (El-Borai and 

Debbouche, 2009). By performing the Fourier 

transform in (Mu et al., 2017) Lemma 6], the authors 

have proposed the following notion of mild solution of 

(1.2): A continuous function :u X→ℝ  is said to be a 

mild solution of (1.2) iff: 

 

( ) ( ) ( ) ( )( )1
, ,

t

u t t s P t s f s u s ds t
γ

γ
−

−∞
= − − ∈∫ ℝ  

 
cf. (4.3). As already mentioned in (Kostić, 2017b), the 

method followed in the proof of ((Mu et al., 2017), Lemma 

6) is completely meaningful in the case that A is an MLO 

satisfying the condition (P). In our approach, we need to 

have two different pivot spaces for a reasonable definition 

of a mild solution of (1.2); see also Definition 4.1. 

Definition 4.2 

Let f: I × Y → X and let Y be continuously embedded in 

X. By a mild solution of (1.2), we mean any Y-continuous 

function u(⋅) such that u(t) = (Λγu)(t), t ∈ℝ , where: 
 

( )( ) ( ) ( ) ( )( )1
: , ,

t

t u t t s P t s f s u s ds t
γ

γ γ
−

−∞
Λ = − − ∈∫֏ ℝ  

 
Set: 

 

( ) ( )1: , 0R t t P t tγ
γ γ

−= >  

 
and: 

 

( ) ( ) ( )1

0
: , 0,R t t s s T st x ds t x Xθ γ γ

γ γ θγ
∞−= Φ > ∈∫  

 
We need to prove a few auxiliary lemmae. 

Lemma 4.3 

There exists a finite constant 0M θ
γ >  such that: 
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( ) ( ) ( ] ( )1 1, 0,1 , 1R t M t t and R t M t t
γ β θθ θ θ θ γ

γ γ γ γ
− − − −≤ ∈ ≤ ≥  (4.7) 

 

Furthermore: 

 

( ) ( ) ( ) , 0,R t x A R t x t x X
θθ

γ γ∈ − > ∈  (4.8) 

 

Proof 

By introduced definitions, we have: 

 

( ) ( ) ( ) ( ) ( )1

0
, 0,A R t x t A s s T st xds t x X

θ θγ γ
γ γγ

∞−  − = − Φ > ∈  ∫  

 

Since the power (-A)
θ
 is closed, we can apply Lemma 

3.1 and (4.4) to see that (4.8) holds good. On the other 

hand, a straightforward computation yields: 

 

( ) ( ) ( )1

0

cstR t M t e s s ds
γγ β θθ θ β θ

γ γ γ

∞− − − −≤ Φ∫  

 

for any t > 0. Since Φγ(s) ∼ (Γ(1-γ))
−1

, s → 0+, a 

Tauberian type theorem ((Arendt et al., 2001), 

Proposition 4.1.4; b) immediately implies the second 

estimate in (4.7). The first estimate in (4.7) is clear, 

since cste
γ− ≤ 1 for t, s > 0 and the integral 

( )
0

s s dsβ θ
γ

∞ −Φ∫  converges. 

Lemma 4.4 

There exists a finite constant Mγ,θ > 0 such that: 

 

( ) ( ) 2

, , 1, 0R t h R t M ht t hθ θ γ
γ γ γ θ

− −+ − ≤ ≥ >  

 

Proof 

By the mean value theorem, it suffices to show that 

( ) ( ) ( )2/d dt R t O tθ γ
γ

− − , t ≥ 1. Towards this end, observe 

that: 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

2

0

2 2 2

1
0

/ 1d dt R t x t s s T st x ds

t s s T st x ds

θ γ γ
γ γ θ

γ γ
γ θ

γ γ

γ

∞−

∞−
+

= − Φ

− Φ

∫

∫
 

 

for any t ≥ 1 and x ∈ X. Therefore, making use of the 

estimate (A) we get: 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
2

0

2
2 2 2

0

|| / || 1 xstd dt R t t s s e st ds

t s s e cst st ds

γ β θθ γ γ
γ γ

β θγ γ γ
γ

γ γ

γ

∞ − −− −

∞ − −−

≤ − Φ

+ Φ −

∫

∫
 

 

for any t ≥ 1. Now the final conclusion follows from an 

application of ((Arendt et al., 2001), Proposition 4.1.4; b). 

Lemma 4.5 

Let 1 < q, q′ < 1, 1/q +1/q′ = 1 and q′(γ(β-θ)-1) > -1. 

Assume that f̂ : I × Y → L
q
([0, 1]: X) is bounded 

continuous and ( ):u C Y∈ ℝ . Define: 

 

( )( ) ( ) ( )( ): , ,
t

u t R t s f s u s ds tθ θ
γ γ−∞

Ψ = − ∈∫ ℝ  

 

Then ( ):bu C Xθ
γΨ ∈ ℝ . 

Proof 

The proof of lemma is almost the same as that of 

Lemma 4.2 and the only thing that should be explained 

in more detail is the fact that the second addend in the 

last inequality of (4.5) tends to zero as h tends to zero. 

This is a consequence of the following computation 

involving the mean value theorem and the estimate (4.7): 

 

( ) ( ) [ ]

( )( )
( ) ( ) ( ) ( )

( )( )

1

, 1
1

1/
1 2

,

1

1/
2 1 2 11

,

1

1/

2 2

, ,

1 1

|| ||

| 2 1| 1

k

Lq k kk
k

q
k q

k
k

q
q q

k

q

q

k k

T h T

hM s ds

hM q k k

hM k hM k

θ θ

γ
γ θ

γ γ
γ θ

γ γ
γ θ γ θ

γ

∞ +

′ +
=

′∞ + ′ − −

=

′∞
′ − − + ′ − − +−

=

′∞ ∞
′ − − − −

= =

⋅ + − ⋅

≤

′= − − + + −

≤ =

∑∫

∑ ∫

∑

∑ ∑

 

 

Suppose that (4.1) holds for a.e. t > 0, with locally 

bounded non-negative function Lf (⋅). Set, for every n ∈ℕ : 

 

( )

( ) ( )

2

0

1 1 2

2 1

: sup || ||

|| ||

nt x x

n n
t

n n

i i f i n

i i

B R t x

R x x L x dx dx dx

θ
γ

θ
γ

−∞ −∞ −∞≥

−
= =

= −

× −

∫ ∫ ∫

∏ ∏

⋯

⋯

 

 

Let f(⋅,⋅) satisfy the conditions from Lemma 4.5. Define, 

for every X-valued bounded continuous function u(⋅): 
 

( )( ) ( ) ( ) ( )( ): , ,
t

u t R t s f s A u s ds t
θθ θ

γ γ
−

−∞
Φ = − − ∈∫ ℝ  

 

Then we know from Lemma 4.5 that 

( ): :bC Xθ
γΦ ℝ → ( ):bC Xℝ is well-defined. A simple 

calculation shows that: 

 

( ) ( )
( )|| || , , : ,

n n

n b

u

B u u C X n

θ θ
γ γ υ

υ υ
∞

∞

Φ − Φ

≤ − ∈ ∈ℝ ℕ

 (4.9) 

 

Keeping in mind (4.9) and the last three lemmae, we 

can repeat almost verbatim the proof of Theorem 4.3 
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(with the mapping Φ(⋅) as well as the operator families 

T(⋅) and Tθ(⋅) replaced by the mapping ( )θ
γΦ ⋅  as well as 

the operator families Rγ(⋅) and ( )Rθ
γ ⋅ , respectively) in 

order to see that the following results hold true. 

Theorem 4.5 

Suppose that (P) holds, β > θ > 1- β and the 

following conditions hold: 

 

i. ( ):pf APS Y X∈ ×ℝ  with p > 1; and there exist a 

number r > max(p, p/p-1) as well as a locally 

bounded non-negative function ( )r

f SL L∈ ℝ  such 

that r > p/p-1 and (4.1) holds. 

Set q:= pr/p + r and q′:= 
pr

pr p r− −
 

Assume also that: 

ii. q′(γ(β-θ)-1) > -1 

iii. Bn < 1 for some n ∈ℕ  

 

Then there exists an almost periodic mild solution 

of inclusion (1.1). The uniqueness of mild solutions 

holds provided that, in addition to (i-iii), A is single-

valued and: 

 

iv. 
1 nn
B

∞

=
< ∞∑  or B1 < 1 

 

Theorem 4.6 

Suppose that (P) holds, β > θ > 1-β and the following 

conditions hold: 

 

i. ( ):pf APS Y X∈ ×ℝ  with p > 1 and there exists a 

constant L > 0 such that (4.2) holds. 

ii. 
1

p

p −
(γ(β-θ) -1) > -1 

iii. Bn < 1 for some n ∈ℕ  

 

Then there exists an almost periodic mild solution of 

inclusion (1.1). The uniqueness of mild solutions holds 

provided that, in addition to (i-iii), A is single-valued and: 

 

iv. 
1 nn
B

∞

=
< ∞∑ or B1 < 1 

 

Direct computation of coefficient B1, carried out with 

the help of estimate (4.7), shows that: 

 

( )1

1 1
B M L

θ
γ γ β θ γ

 
≤ + 

−  
 

 

We close the paper by providing the following 

illustrative example. 

Example 4.1 

It is clear that our results can be applied in the 

analysis of existence and uniqueness of almost periodic 

solutions of non-degenerate semilinear problems with 

elliptic operators of order 2m in the Hölder space 

( )X Cα= Ω , where Ω is a bounded domain in n
ℝ  with 

boundary of class C
4m

, when we have the precise value of 

the exponent 1
2m

α
β = − ; for more details, see von Wahl 

(1972). Concerning degenerate differential inclusions, 

possible applications can be made in the analysis of 

existence and uniqueness of almost periodic solutions of 

the following Poisson semilinear heat equation in the 

Lebesgue space X = L
p
(Ω): 

 

( ) ( ) ( ) ( )

( ) ( )( )

, ,

, , , ,

m x t x b t x
t

f t m x t x t x

υ υ

υ

∂
  = ∆ − ∂

+ ∈ ∈ Ωℝ

 

 

where, Ω is a bounded domain in n
ℝ , b > 0, m(x) ≥ 0 

a.e. x ∈ Ω, m ∈ L
∞
(Ω), 1 < p < ∞ and the operator ∆-b 

acts on X with the Dirichlet boundary conditions. It is 

clear that Theorem 4.3 and Theorem 4.4 require the 

condition β > ½, which is slightly restrictive in 

degenerate case (in a great deal of examples from 

[(Favini and Yagi, 1998), Chapter III], the condition 

(P) holds with β = 1/2), these theorems can be applied 

by imposing the additional condition [(Favini and 

Yagi, 1998), (3.42)] on the function m(x), which leads 

us to the better exponent β = 1/(2-ρ) in (P), with 0 < ρ 

≤ 1. Under the same conditions, we can apply 

Theorem 4.5 and Theorem 4.6 in the analysis of 

existence and uniqueness of almost periodic solutions 

of the following fractional Poisson semilinear heat 

equation in the Lebesgue space L
p
(Ω): 

 

( ) ( ) ( ) ( )
( ) ( )( )

, , ,

, , , ,

tD m x t x b t x

f t m x t x t x

γ υ υ

υ

+   = ∆ − 

+ ∈ ∈ Ωℝ

 

 

Finally, we would like to propose the problem of 

transferring our main results to the case where the pivot 

space Y is no longer [D((-A)
θ
)] but the interpolation 

space 
A

X θ . 

Conclusion 

In this study, we have investigated the existence of a 

unique almost periodic solution for a class of abstract 

fractional relaxation inclusions with Weyl-Liouville 

derivatives. The analysis of existence and uniqueness of 

quasi-periodic and quasiautomorphic solutions to 
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abstract degenerate Volterra integro-differential 

equations is not well explored in the existing literature. 

We deeply believe that a bigger group of mathematicians 

will continue their scientific work within this field of 

functional analysis in the near future. 
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