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Abstract: Marketing of agricultural products starts with the planning of 
production on the farm and ends with the sale of food or other goods to 
manufacturers or consumers. Overall, marketing is a main part of 
successful agriculture but its significance is usually underestimated, 
particularly in developing countries. In Turkey, annual variations in grain 
production are reasonable and result primarily from changes in yields. 
Yield variation attend a time trend, commonly taken to be the result of 
climatic fluctuations and technology. Hence grain growers and the 
government frequently need to estimate grain yields to make decisions 
about the future. In this study, production amounts of grain species 
(wheat, rice and rye) are analyzed by using time series analysis including 
the Box-Jenkins method, the Exponential Smoothing method and the 
Regression method for the years 1991-2012. Each time point in the series 
represents the annual amounts of grain species in tonnes. After the data are 
stationary, Seasonal Autoregressive Integrated Moving Average models 
(ARIMA(0,0,1)(1,0,0)3) production of wheat, Power model production of 
rice and Holt Exponential model of rye were defined as the fitting models 
for this data. The forecasts are proposed for the years 2013 and 2014, while 
the increase and decrease in products are determined via the predicted 
values of grain production by examining changes in recent years. 
 
Keywords: Time Series, Box Jenkins Models, Prediction, Marketing of 
Grain Products 

 

Introduction 

The agriculture sector is an important element of 
economic development in general. Economic and social 
development of a country that aims to increase agricultural 
efficiency, is affiliated with obtaining efficient yield 
values. In order to sustain human life on the volume of 
vital agricultural activities, the variation from year to year 
should be follow-up by national policies helping creation 
of detailed systematic and consistent statistics. 

Many models or forecasting methods have been 
introduced by researchers for time series prediction data; 
these include the ARIMA model, Exponential 
Smoothing Methods, Regression Models and others.  

Bornn and Zidek (2012) developed a model that 
describes and predicts its relationship to wheat yield and 
climate variables by describing the outcome of a project 
coordinated by Agriculture and Agri-foods Canada. It 
was needed as a feature of the model, as it was the ability 
to balance the effects of noisy measurements with online 
application plans in the future. The weekly rainfall data 

and number of rainy days recorded at the main Dry 
farming research station from 1958 to 1996 (39 years) 
are collected by Raorane and Kulkarni (2012). 
Regression and Correlation studies were performed to 
use yield as dependent variable and rainfall as the 
independent variable to develop yield prediction model 
for important crops and to derive information on the 
rainfall-yield relationship. Varied techniques that are 
available to estimate crop production and crop area in 
farming systems are evaluated by Fermont and Benson 
(2011). They provided a definition as well as summary 
tables from a database of estimated crop yields collated 
from a large set of field studies over the previous 
decades in Uganda. Çelik (2013) analyzed production 
amount of nutfruit species (pistachios, walnuts, 
hazelnuts, almond and chestnuts) by Box Jenkins 
methodology for the years 1936-2011. 

This study aims at estimating the average annual 
production amounts of wheat, rice and rye in the market 
of agricultural products in Turkey. According to the 
results obtained in grain production, in order to avoid 
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dependence on foreign sources, importance of measures 
to be taken is emphasized. Quantities of production of 
wheat, rice and rye are taken from the data of the office 
of agricultural crops in Turkey. Forecasts of production 
were found for the years 2013-2014 by analyzing the 
data with the help of time series analysis. 

Time Series Methods 

In the section, three different classical time series 
approaches, namely the Box-Jenkins method, the 
Exponential Smoothing method and the Regression method 
were used to the grain products data for forecasting. These 
methods and related formulas are discussed. 

Box-Jenkins Methods 

A general methodology is proposed by Box and 
Jenkins (1976) for forecasting univariate series starting 
from a model based on the Autoregressive Integrated 
models and Moving Average process (ARIMA). One of 
the most widely used techniques is the Box-Jenkins 
approach owing to its structured modelling basis and 
acceptable forecasting performance. It is rather reliable 
and relatively simple.  

Box-Jenkins models can be used to forecast many 
empirical time series, containing stationary or non-
stationary ones, with or without seasonal elements in 
theory. If the data is seasonal, then the general seasonal 
ARIMA(p,d,q)(P,D,Q)s model is described by: 
 

0,1,2k

t t k
B Z Z k

−
= =  (1) 

 
Where: 
B

k = The seasonality with the s delay operator 
Zt = The dependent variable (studied) 
 
Exponential Smoothing Methods 

Exponential smoothing can be easily generalized to 
deal with time series including trend and seasonal 
variation. Trend and seasonal terms updated via 
exponential smoothing are introduced. 

The exponential smoothing approach can be 
effectively used to forecast stochastic time series by 
referring to Bowerman et al. (2005). A time trend 
forecast with the ability to easily adjust for past errors 
is constructed and prepared follow- on forecasts by 
this approach. 

Holt’s Linear Exponential Smoothing method can be 
used to deal with non-seasonal series by introducing 
smoothing parameters. 

 Holt-Winters exponential smoothing method 
which is extended from Holt’s method can be used to 
forecast data including seasonality and trend. This 
technique has additive and multiplicative versions, 
basing on the features. 

Holt’s Method 

This method is to overcome the problem of Brown’s 
Method because it has only one smoothing constant. The 
obtained estimated linear trend values are sensible to 
random effects. Brown’s Linear Exponential 
Smoothing technique with single parameter has some 
similarities with linear moving averages technique. But 
the difference between first and second smoothing 
values is added into the first smoothing value. Holt’s 
method has two-parameters to handle data with a linear 
trend. The technique both smoothes the trend and the 
slope directly by using different smoothing constants 
and provides more flexibility in selecting the rates at 
which slopes and trend are traced. 

Consider st be the time series to be forecast. This 
technique is based on the trend of the time series and 
estimating smoothed versions of the level. The level plus 
the trend is then extrapolated forward to obtain forecast. 
The formulas governing the update of the trend and the 
level are given by: 
 

( )( )1 11t t t tl s l aα α − −= + − +  (2) 

 
( )1 1(1 )t t t ta s l aγ γ− −= − + −  (3) 

 
where, lt is the estimated level and at is the estimated 
trend of the time series. The forecast is given by: 
 

t̂ m t ts l ma+ = +  (4) 

 
The parameters α and γ are the smoothing constants. 

These parameters should be optimized for minimizing 
the sum of squared error.  

Regression Analysis 

When using regression for prediction, we are often 
considering time series data and we are aiming to 
forecast the future. 

Let be a time series yt = 1,2,…, n be to display an 
increasing, decreasing or curvilinear trend TRt. A 
common feature of time series data is a trend. Time 
series regression models are interested in the observed 
values yt, t = 1,2,…,n of the random variable Yt, t∈Z 
indexed by time to some function of time. These 
models are generally used to indicate and so remove 
the trend component TRt of a time series under the 
assumption that the general aspect of the series will 
proceed into the future. In other words, if the trend 
TRt, t = 1,2,…n, is a linear function of time, it is 
assumed that the trend will continue to be linear in the 
future over a period of time, say t = n +1, n +2,…. We 
forecast or extrapolate future trend values by this 
assumption. There are different models for trend. 
Using regression we can model and forecast the linear 
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trend in time series data by including t = 1,…,T, as a 
predictor variable: 
 

0 1ty t tβ β ε= + +  

 
and quadratic trend: 
 

2
0 1 2t

y t t tβ β β ε= + + +  

 
or cubic trend: 
 

2 3
0 1 2 3t

y t t t tβ β β β ε= + + + +  

 
The trend should not be seen as anything other 

than the accumulated effect of fluctuations in some 
cases. It is thought that the trends and fluctuations 
have different sort of effects and the time series into 
the corresponding components are decomposed in 
other cases. The series must be stationary but it need 
not be white noise to fit a standard time series model. 
So, the trends must be removed. Differences of series 
are taken to remove the trends. 

White Noise: εt’s elements have mean zero and 
variance σ2: 
 
( ) 0tE ε =  (5) 

 

( )2 2
tE ε σ=  (6) 

 
and for which the ε’s are uncorrelated across time: 
 

( ) 0t TE for t Tε ε = ≠  (7) 

 
A process satisfying (5) through (7) is described as a 

white noise process. 
Stationarity: The time series {yt,t∈Z}, with index set 

Z = {0, ±1, ±2,…}, is said to be stationary if: 
 
• E|yt|

2 <∞ for all t∈Z 
• E(yt) = m for all t∈Z and 
• γy(r,s) = γy(r + t, s + t) for all r, s, t∈Z  
 

That is, a stationary time series {yt} must have 
constant first moment, where the second moment γy(r,s) 
depends only on (s-r), not on r or s and finite variation 
features. Considering the last point, the auto covariance 
function of a stationary process is rewrited as: 
 

( ) )( , ,y s s tt Cov fo Zy ty r sγ += ∈  

 
Additionally, when xt is stationary, we must have: 

 

( ) ( )y yt tγ γ= −  

where, t = 0, γy(0) = Cov(yt, yt) is the variance of yt, so 
the autocorrelation function for a stationary time series 
{xt} is described by: 
 

( )
( )

( )0
y

y

y

t
P t

γ

γ
=  

 
Strict stationarity: If the joint distribution of 

( )
1 2
, ,...,

kt t tX X X  is the same as that of ( )
1 2

, ,...,
h h k ht t tX X X

+ + +
 

the time series {Xt, t∈Z} is said to be strict stationary. 
That is, strict stationarity means that the joint 
distribution only depends on the ‘difference’ h, not the 
time (t1,…,tk). 

Case Study  

The data set studied here is Turkey’s yearly grain 
products in the period of 1991-2012 obtained from 
Turkish Grain Board. It is a yearly time series with 22 
observations in 22 years for each products. In this 
study, the SPSS 11.5 package software is used to 
apply the methods. There are three steps in usage of 
these methods. In the first step, the types of 
components in the time series are identified. After 
that, the values of parameter are determined. Once the 
parameter values are determined, the process of 
forecasting can be carried out. Finally, forecast values 
dependent on the periods are displayed. 

In order to measure the accuracy of all models-
ARIMA model, Exponential Smoothing Method and 
Regression model- in making the forecasts, their test 
accuracy of forecasting is determined. The accuracy 
of a forecasting model is determined from the size of 
forecasting error. The best model produces the 
smallest forecasting error. The criteria chosen to 
select the best model in making the forecasts is Mean 
Squared Error (MSE). 

In this study, our aim is to fit the best models for 
grain products in Turkey. Firstly, the plot for the time 
series data of wheat is given below. 

Time series graphs for the period of 1991-2012, are 
shown in Fig. 1. It is seen more clearly that a cyclic 
pattern exists since data exhibit rises and falls that are 
not of fixed period. Since the fluctuations are not of 
fixed period, they are cyclical behavior, which is 
somewhat irregular. 

In the second stage, the partial autocorrelations and 
the autocorrelations for the time series are examined to 
provide a quantitative conclusion about its periodicity 
for the time series. It is seen more clearly if this shows 
the characteristics of a seasonal series. Figure 2 plots the 
pattern of the Autocorrelation Function (ACF) of the 
time series and Fig. 3 plots the pattern of the Partial 
Autocorrelation Function (PACF) of the time series. 
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Fig. 1. Graph of wheat production over time 

 

 
 

Fig. 2. The autocorrelation function ACF 
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Fig. 3. The partial autocorrelation function PACF 
 
Table 1. The table estimated parameters for the ARIMA models 
 Parameter Significance of  
Models estimate coefficient Box Ljung test AIC AICC 
ARIMA(0,0,1) MA(1) = 0.151 0.535 > α Q = 23.799 24.652 29.283 
   P = 0.125 > α 
ARIMA(1,0,0)(1,0,0) AR(1) = -0.337 0.163 > α Q = 12.685 20.257 24.888 
 SAR(1) = -0.529 0.025 < α P = 0.696 > α 
ARIMA(0,0,1)(1,0,0) MA(1) = 0.669 0.010 < α Q = 10.862 17.787 22.418 
 SAR(1) = -0.538 0.019< α P = 0.818 > α 
ARIMA(0,0,1)(1,0,1) MA(1) = 0.634 0.029 < α Q = 7.756 17.690 22.321 
 SAR(1) = -0.288 0.480 > α P = 0.933 > α 
 SMA(1) = 0.408 0.373 > α 
ARIMA(0,0,0)(1,0,1) SAR(1) = 0.018 0.974 > α Q = 14.613 20.470 25.101 
 SMA(1) = 0.576 0.293 > α P = 0.553 > α 
ARIMA(1,0,1)(0,0,0) AR(1) = 0.414 0.309 > α Q = 20.573 20.711 25.343 
 MA(1) = 0.987 0.799 > α P = 0.195 > α 
ARIMA(0,0,1)(0,0,1) MA(1) = 0.671 0.027 < α Q = 9.305 17.171 21.803 
 SMA(1) = 0.619 0.058 > α P = 0.900 > α 

 
According to ACF and PACF graphs, the wheat 

production series do not exceed the confidence interval. 
Hence the dependent variable is white noise. 

Various ARIMA models were tested by looking at 
ACF and PACF graphs to determine the model. Values 
for this model are given in the Table 1. 

In Table 1, although ARIMA(0,0,1)(1,0,1) and 
ARIMA(0,0,1)(0,0,1) models have smaller than AIC and 
AICC values than the other models, it is suitable to 
choose the ARIMA(0,0,1)(1,0,0) model with three 
periods as the best fitting model because of the 
parameter significance. The value of the Box-Ljung Q 

statistic is 10.862 and the p-value is 0.818, thus, we can 
not reject the null hypothesis of no autocorrelation in the 
residuals. As a result, model for wheat production is 
given below by using Equation 1: 
 

3 30.538 0.669t t t tZ Z ε ε− −= − − +  (8) 

 
Hereafter, the model for rice production is 

investigated. The plot for the time series data of rice is 
as follows. 

According to Fig. 4, there is a general upward trend 
on time series plots of rice data. 
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Fig. 4. The time series graph for data of Rice 
 

 
 

Fig. 5. The autocorrelation function ACF 
 

 
 

Fig. 6. The partial autocorrelation function PACF 
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The autocorrelation function ACF and the partial 
autocorrelation function Partial ACF are represented in 
Fig. 5 and 6. It is immediately clear from Fig. 6 that the 
errors are correlated with one another and hence not 
independent. Lags 1 is significant autocorrelations, 
implying that, in this model, when the error in 
predicting number of products increases, the increase 
tends to be followed by other increases in error and 
vice versa. It is not independent. In a situation like this 
(with positive autocorrelations), statistical regression 
models under-estimate the size of the error variance 
and tend to over-estimate the significance of the trend 
and the precision of our forecasts.  

Unit root test is done to examine the stationarity of 
the rice production series. Stationarity is a matter of 
concern in two important areas. First, stationarity of 
regressors is assumed in the deviation of standart 
inference procedures for regression models. Second, a 
crucial question in the ARIMA modeling of a single 
time series is the number of times the series needs to 
be first differenced before on ARIMA model is fit. 
Each unit root requires a differencing operation. 

The results of the unit root test using the models 
suggested by Dickey and Fuller (1981) are shown in the 
Table 2. In routine practice, three types of models are 
used while testing for unit root. 

According to Dickey and Fuller (1981) unit root test 
results obtained for each three models, the rice 
production series has a unit root. The null hypothesis of 
a unit root is not accepted in favour of the stationary 
alternative in each case if the test statistic is more 

negative than the critical value ( )ˆt
δ

. So, this series is 

taken difference in order to be stationary. 
Considering ACF and PACF (Fig. 7 and 8) graphs of 

the rice production series taken first difference, this 
series do not exceed the confidence interval. So, this 
series are stationary. 

After giving the required graphs, the parameter 
estimates of the models for rice data can be given as 
follows. 

Table 3 shows that the Power model has the smallest 
MSE (0.062) and the smallest adjusted R

2 (0.759), 
therefore, this model is chosen as the fitting model for 
rice data. This model is as follows: 

 
 0.55972.222

t
Z t=  (9) 

 
The remaining of this paper is related with 

searching the model for rye production in Turkey. The 
plot for the time series data of rye is given below. 

 
Table 2. The results of the Dickey-Fuller unit root test for the rice production. 

Significance level Model with drift and trend (ττ) Model with drift, but no trend(τµ) Model without drift, trend (τ) 
%1 -4.380 -2.539 -2.66 
%5 -3.60 -1.729 -1.950 
%10 -3.240 -1.328 -1.600 

DF statistics ( )ˆt
δ

 -1.939 0.523 2.930 

 

 
 

Fig. 7. The autocorrelation function ACF taken first difference 
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Fig. 8. The partial autocorrelation function PACF taken first difference 
 

 
 

Fig. 9. The time series graph for data of Rye 
 
Table 3. The estimated parameters for the regression models 
 Parameter Significance of  
 estimate Coefficient  Adjusted R2 Mean squared error 

β2 -0.123 0.974   
Quadratic β1  0.942 0.000  0.967 701.505 
β0  120.500 0.000   
 β3 -10.641 0.269   
Cubic β2  2.060 0.051  0.968 689.970 
β1  -0.032 0.266   
β0 142.866 0.000   
Power β1 0.559 0.000  0.769 0.062 
β0 72.222 0.000   
Holt Exponential α = 0.904 0.001 0.960 851.939 
Smoothing γ = 1.200 1.000   
ARIMA(1,1,1) AR(1) = -0.758 0.584 0.959 924.464 
 MA(1) = -0.668 0.673  
ARIMA(1,1,0) AR(1) = -0.076 0.752 0.958 890.246 
ARIMA(0,1,1) MA(1) = -0.065 0.787 0.958 891.082 
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Figure 9 shows that the trend occurs after 2009 on 
time series plots of rye data. In Turkey, rye is 
predominantly used in the industry. However, in 
recent years, as a result of changing eating habits, this 
product is started to be used in human nutrition. Also, 
production has increased due to increase in efficiency 
despite the decrease of rye planting areas in Turkey. 

It is immediately clear from Figure 10 and 11 that the 
errors are correlated with one another and hence not 
independent. As lags exceed the confidence interval, 
autocorrelations are significant. 

Unit root test is done to examine the stationarity of 
the rye production series. The results of the unit root test 

using the models suggested by Dickey and Fuller (1981) 
are shown in the Table 4. 

Since the test statistics of three models is smaller than 
the critical value, the null hypothesis of a unit root can 
not accept. So, rye production series is been stationary 
by taking difference of this series. 

Considering ACF and PACF (Fig. 12 and 13) 
graphs of the rye production series taken first 
difference, the rye series do not exceed the confidence 
interval. So, it is possible to say that this series are 
stationary. 

The information of the three different models for the 
rye data is shown in the Table 5. 

 

 
 

Fig. 10. The autocorrelation function ACF 
 

 
 

Fig. 11. The partial autocorrelation function PACF 
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Fig. 12. The autocorrelation function ACF taken first difference 

 

 
 

Fig. 13. The partial autocorrelation function PACF taken first difference 

 
Table 4. The results of the Dickey-Fuller unit root test for the rye production 

Significance level Model with drift and trend (ττ) Model with drift, but no trend (τµ) Model without drift, trend (τ) 

%1 -4.380 -2.539 -2.660 
%5 -3.600 -1.729 -1.950 
%10 -3.240 -1.328 -1.600 

DF statistics ( )ˆt
δ

 -2.386 -0.601 0.686 



Özlem Akay et al. / Journal of Mathematics and Statistics 2017, 13 (3): 220.230 
DOI: 10.3844/jmssp.2017.220.230 

 

230 

Table 5. The estimated parameters for the exponential smoothing and ARIMA models 

 Parameter Significance 
 estimate of coefficient  Adjusted R2 Mean squared error 

Holt Exponential α = 0.800 0.002 0.785 29.655 
Smoothing γ = 5.120 1.000  
Winter Exponential α = 0.900 0.00 0.820 30.395  
Smoothing γ = 2.405 1.000 
(Additive) δ = 7.310 1.000  
Model AR(1) = 0.550 0.100> α 0.485 28.007 
ARIMA(1,0,0)(0,1,1) d = 1 SMA(1) = 0.592 0.277> α  

 
Table 5 shows that although ARIMA(1,0,0)(0,1,1)3 

has the smallest MSE value of 28.007, coefficients of 
this model are not significant. Since the Holt 
Exponential model has adjusted R

2 (0.785) and the 
second smallest MSE (29.655), this model is chosen as 
the fitting model for rye data. After computing Lt = 
204.481 and bt = 4.828 values using Equation 2 and 3, 
the model for rye can be given as follows: 
 
ˆ 204.481 (4.828)t my m+ = +  (10) 

 
Conclusion 

After constructing the appropriate models 
determined by analyzing the last 22 years important 
variables of the market for agricultural products in 
Turkey, forecasts of wheat, rice and rye are found for 
the years 2013 and 2014. 

Forecasts of wheat production computed using Equation 
8 are found 17.18 and 18.98 million tons, respectively, for 
2013 and 2014. A decrease of 21% is observed in wheat 
products in comparison to the year 2012. 

Forecasts of rice production computed using 
Equation 9 are found 416.681 and 426.712 thousand 
tons, respectively, for 2013 and 2014. A decrease 28% 
is observed in rice products in comparison to 2012. 

Forecasts of rye production computed using Equation 
10 are found 334.66 and 335.627 thousand tons, 
respectively, for 2013 and 2014. A decrease of 8.5% is 
observed in rye products in comparison to 2012. 

Since decline in wheat, rye and rice production in 
Turkey is causing dependence on foreign production, 
economic and social losses will follow. Therefore, 
production amounts of wheat and rye need to be increased. 

Acknowledgment 

The author would like to thank anonymous referees 
for their helpful comments. 

Author’s Contributions 

Özlem Akay: Participated in all experiments, 
coordinated the data-analysis and contributed to the 
writing of the manuscript. 

Gökmen Bozkurt: Contributed to acquisition of data. 
Güzin Yüksel: Designed the research plan and 

organized the study. 

Ethics 

This paper is constructed based on our research and 
each step and all findings are original. 

References 

Bornn, L. and J.V. Zidek, 2012. Efficient stabilization of 
crop yield prediction in the Canadian Prairies. 
Agric. Forest Meteorol., 152: 223-232. 

 DOI: 10.1016/j.agrformet.2011.09.013 
Bowerman, B.L., R.T. O’Cannell and A.B. Koehler, 2005. 

Forecasting, time series and regression: An applied 
approach. Thomson Brooks/Cole, Belmont CA. 

Box, G.E.P. and G.M. Jenkins, 1976. Time Series Analysis: 
Forecasting and Control. 1st Edn., Holden-Day, San 
Francisco, ISBN-10: 0816211043, pp: 575. 

Çelik, Ş., 2013. Modelling of production amount of nuts 
fruit by using box-Jenkins technique. YYÜ Tar Bil 
Derg, 23: 18-30.  

Dickey, D. and W. Fuller, 1981. Likelihood Ratio 
Statistics for Autoregressive Time Series with a Unit 
Root, Econometrica, 49:1057-1072 

Fermont, A. and T. Benson, 2011. Estimating yield of 
food crops grown by smallholder farmers. 
Internetional Food Policy Research Instıtute, IFPRI 
Discussion Paper 01097. 

Raorane, A.A. and R.V. Kulkarni, 2012. Data mining: 
An effective tool for yield estimation in the 
agricultural sector. Int. J. Emerg. Trends Technol. 
Comput. Sci., 1: 75-79.  

Turkish Grain Board, www.tmo.gov.tr 


