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Abstract: Contemporary real-time problems like CAPTCHA generation 

and optical character recognition can be solved effectively using 

correlated random fields. These random fields should be produced on a 

graph in order that problems of any dimension and shape can be handled. 

However, traditional solutions are often too slow, inaccurate or both. 

Herein, the Quick Simulation Random Field algorithm to produce 

correlated random fields on general undirected graphs is introduced. It 

differs from prior algorithms by completing the graph and setting the 

unspecified covariances to zero, which facilitates analytic study. The 

Quick Simulation Random Field graph distribution is derived within and 

the following questions are studied: (1) For which marginal pmfs and 

covariances will this algorithm work? (2) When does the marginal 

property hold, where the sub-graph distribution of an algorithm-simulated 

field matches the distribution of the algorithm-simulated field on the 

subgraph? (3) When does the permutation property hold, where the vertex 

simulation order does not affect the joint distribution? 

 

Keywords: Simulation, Correlated Random Field, Markov Random Field, 

Graph, Coupling, Permutation Property 
 

Introduction 

Correlated random fields are used in science and 
technology to model spatially distributed random 
objects. The applications of random field across the 
sciences are broad and include sequential Monte Carlo,  
computer vision, cryptography, astrophysics, rainfall, 
hydrology, analysis of gene expression time series, medical 
image processing and inverse optics and image synthesis; 
see, for example, Kouritzin (2017), Schlather et al. (2015), 
Chellappa and Jain (1993), Diaconis (2009), Vio et al. 
(2002), Leblois and Creutin (2013), Li et al. (2008), Li et al. 
(1995), Li (1995) and Winkler (2003). Furthermore, 
mathematicians often want to couple a collection of random 
variables with given distributions together on a single 
probability space while matching some constraint like 
covariances. In either situation, the complete joint 
distribution of the field may be unknown or even 
irrelevant as enough meaningful information is captured 
by marginal distributions and pairwise covariances 
between random variables. In the Gaussian case, many 
simple efficient methods, like covariance matrix 
decomposition, moving averages, Fast Fourier 
Transform (FFT), turning bands and local average 
subdivision, exist (see Shinozuka and Deodatis (1996), 

Kleiber (2016) or Blanchard et al. (2016) for example). 
However, these methods are easiest to use over a regular 
grid and many random fields are fundamentally non-
Gaussian. In the general case, probability density 
functions are usually approximated by probability mass 
functions (pmfs) if necessary and some type of Markov 
chain Monte Carlo method is used when exact field 
distributions are desired. However, these methods 
require a very large number of iterations to converge, for 
example it took 2000 iterations in the simple Hamlet 
example in Diaconis (2009), and therefore are generally 
not suitable to real time computations. On the other 
hand, there are many approximation methods, often 
based upon the FFT or spectral decomposition and 
Karhunen-Loeve expansion to approximate covariance 
structure of fields (see e.g., Vio et al. (2002)). 

To meet the diversity of problems in a variety of 
dimensions, Kouritzin et al. (2014) considered random 
fields on a general undirected graph structure and 
proposed an algorithm for producing a new class of 
discrete correlated random field on such graphs by either 
one-pass simulation or Gibbs-like resampling. The 
approach has been applied to Optical Character 
Recognition (OCR) Kouritzin et al. (2014) and the 
generation of both black-and-white Kouritzin et al. 
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(2013) and gray-level Newton and Kouritzin (2011) 
CAPTCHAs (Fig. 1 shows a new example of such a gray 
level CAPTCHA.) The class of random fields created by 
their algorithm incorporate given probability mass 
functions (pmfs) at the vertices in a graph and specified 
pairwise covariances corresponding to edges existing in 
that graph. (This is translated into a pmf for the gray 
levels of each pixel and covariances between nearby 
pixels in this CAPTCHA example.) The joint 
distribution between pairs of vertices connected by a 
specified covariance edge is known in terms of two sets 
of auxiliary parameter pmf collections that can be 
selected for generality. However, the joint subgraph 
distribution on an incomplete subgraph is unknown for 
the algorithm in Kouritzin et al. (2013). 

The starting point for the simulation consists of a 
fixed portion as well as a design portion. The fixed 
portion is an undirected graph together with the desired 
marginal vertex pmfs (the π's) and the collection of non-
zero covariances (the β's) for the graph edges. (This 
setting is general enough to handle simulation in any 
dimension for example.) The design portion consists of 
two sets of auxiliary (vertex) pmfs (the ˆ 'sπ and the 'sπɶ ) 
that can be used in place of the 'sπ in portions of the 
algorithm to do things like improve efficiency or destroy 
independence (Actually, there is a wide assortment of 
reasonable choices for the ˆ 'sπ  and the 'sπɶ  discussed in 
Kouritzin et al. (2014)). Simulating the graph then 
amounts to directing the graph in an acyclic manner, 
fixing a topological sort of the vertices and using 
Proposition 1 of Kouritzin et al. (2014), requoted as 
Proposition 1 below, recursively (See Kouritzin et al. 
(2014) for details.) Our modified algorithm, introduced 
herein, completes the graph by adding edges of zero 
covariance wherever necessary before simulation. This 
completion does not complicate nor slow the simulation 
yet allows us to derive the complete field distribution in 
closed form for all possible auxiliary pmf parameters. 
We call this completed-graph simulation algorithm and 
resulting random field the quick simulation algorithm 
and quick simulation field herein. 

This paper focuses on the constraints and properties 

of the random field generated by this quick simulation 

algorithm. Naturally, the algorithm cannot work for all 

possible parameters and might not work for others. We start 

by giving the joint (field) distribution of the random field 

generated by this algorithm (when it works). From there, we 

study regularity, meaning when the algorithms does 

provide a legitimate distribution over the whole space of 

vertices. This is equivalent to ensuring that the recursive 

formula (2.5) of Proposition 1 produces a conditional pmf 

in every iteration. It was observed in our CAPTCHA 

Kouritzin et al. (2013)  and  OCR  Kouritzin et al. (2014) 

applications that the occasional illegitimate conditional 

pmf value outside [0, 1] can be replaced with a value  

inside  without  noticeable  effect  on  the simulation. 

 
 
Fig. 1. A gray-level CAPTCHA 

 

However, it is still important to know when the only 

possible source of irregularity is numeric and not 

algorithmic. Next, we establish the marginality property 

that ensures the distribution of a random field on a 

subgraph projected from the random field constructed on 

the whole graph is the same as that for a random field 

constructed directly on this subgraph. Finally, we 

investigate the permutation property that makes sure the 

random field simulated from all topological sorts 

corresponding to the same complete undirected graph are 

the same in the sense of probability distribution. We 

establish necessary and sufficient conditions for this 

permutation property. 

Example 1 

Suppose we have the following complete undirected 

graph G with vertices v1, v2, v3, 
 

 
 

probability mass functions ( 1) (1)
i iv v

π π− =  = 0.5,i = 1,2,3 

and covariances 0.1
i jv v

β = , i = 1,2,3, j = 1,2,3, i ≠ j. Let 

us illustrate the marginality and permutation properties 

of our algorithm. 

Looking forward to (3.3), using the topological sort 

v1, v2, v3 and setting ˆ
i i iv v v

π π π= =ɶ so ( ),
2

i

i

v

i v

x
g v x =ɶ  in 

(2.2) we assign the joint probabilities as follows: 
 

1v
x  

2v
x  

3v
x  ( )

1 2 3

, ,
v v v

X X X∏  

1 1 1 0.1625 

1 1 -1 0.1125 

1  -1 1 0.1125 

1 -1 -1 0.1125 

-1 1 1 0.1125 

-1 1 -1 0.1125 

-1 -1 1 0.1125 

-1 -1 -1 0.1625 
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If we change the topologicial sort while maintaining 

all parameters, then we get the same joint pmf so the 

permutation property holds. It is straightforward to verify 

that the pmfs 
iv

π  and covariances 
,i jv v

β  are as expected. 

Moreover, if we simulated two vertices vi, vj, then we get: 

 

iv
x  

jv
x  ( , )

i jv v
X X∏   

1 1 0.275 

1 -1 0.225 

-1 1 0.225 

-1 -1 0.275 

 

so marginality is also maintained. 

In this note, we show how to compute these 

probabilities so that the pmfs and covariances are 

preserved in general as well as establish the conditions for 

the marginality and permutation properties above to hold. 

The remainder of this note is laid out as follows: 

Section 2 contains our notation and background. Next, 

we give the closed form of correlated random field, 

discuss regularity and establish the marginality 

property in Section 3. The permutation property is 

studied in Section 4. 

Notation and Background 

Probabilistic Setup 

Let V be a finite set of vertices, V
�

 denote this set of 

vertices with an ordering and Xv be a finite state space for 

each v∈V. For any nonempty subsequence B V⊂
� �

, the 

space of configurations ( )vB v B
x x

∈
=� �  on B

�
 is the Cartesian 

product 
∈

= ∏� �
vB v B

XX  and CB
�

denotes the subsequence so 

that CV B B= ∪
� � �

. We abbreviate �
V
X  by X and 

iv
x  by xi to 

ease notation. A random field ∏ is a strictly positive 

probability measure on X. The random vector ( )v v V
X X

∈
= �  

on the probability space ( ,2 , )∏X
X is also called a random 

field. For B V⊂
� �

, the random subfield on B
�

 is the 

projection map :
B B

X x x→� �  from X onto �
B
X . 

A neighborhood system ∂ = {∂(v): v∈V} is a 

collection of subsets of V: 

 

• v∉∂(v) for every v∈V  

• v∈∂ (u) if and only if u∈∂ (v) 

 
A random field ∏ is Markov with respect to ∂ if for 

all x∈X: 

 

( ) ( )( ) ( )| , |v v u u v v v vX x X x u v X x X x∂ ∂∏ = = ≠ = ∏ = =  (2.1) 

Problem Statement 

Let E be a set of edges where each (u, v) ∈ E with u, 

v∈V has no orientation but indicates u, v are neighbors 

of each other. Then, G = (V, E) is an undirected graph. If 

for every pair of vertices u, v∈V, there is a path of edges 

in E connecting u and v, then G is connected. If every 

vertex in G has a neighbor with at least two neighbors, 

then G is sufficiently connected. If for every pair of non-

neighbor vertices z, u there is a neighbor of z and a 

neighbor of u that are distinct, then G is disjoint pair 

rich. The open neighborhood of v∈V is ∂G(v) = {u, u ≠ v, 

(u, v)∈E} and its closed neighborhood [ ] ( ) { }
G G

v v v∂ = ∂ ∪ . 

{∂G(v), v∈V}is the neighborhood system implied by G. 

For any nonempty set B⊂V, the open neighborhood of B is 

( ) ( ) \
G v B G

B v B∈∂ = ∂∪  and the closed neighborhood 

[ ] ( )
G G

B B B∂ = ∂ ∪ . We set (0)
G

V∂ / =  for convenience. 

We illustrate the new concepts of sufficiently 

connected and disjoint pair rich. 

Example 2 

Consider the graphs in Fig. 2. 
Both graphs in Fig. 2 are connected. However, 

neither is sufficiently connected since in both cases none 
of the neighbors of w have two neighbors. 

Example 3 

The graphs in Fig. 3 illustrate the definition of 

“disjoint pair rich". 

In (B) non-neighbors z and u do not have distinct 

neighbors. Clearly in (C), every vertex has a neighbor with 

two neighbors and every pair of non-neighbors has distinct 

neighbors. Yet, two vertices only have one neighbor. 

Example 4 

If every vertex in a graph G has two neighbors, then 

it is disjoint pair rich. It is also sufficiently connected. 
 

 
 (a) (b) 
 
Fig. 2. Not sufficiently connected (a) Three vertex example (b) 

Four vertex example 
 

 
 
Fig. 3. Disjoint pair rich 
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We are interested in creating a random field over V, 

where random variable Xv at a vertex v∈V has a 

predescribed pmf πv and random vectors (Xu, Xv) have a 

predescribed non-zero covariance βuv (= βvu) for each (u, 

v)∈E. Naturally, this problem could be ill-posed in the 

sense that there are mathematically incompatible 

collections of pmfs and covariances. Also, there often 

are multiple solutions with some being more efficient to 

simulate and others having nice properties like the 

marginal and permutation properties defined above. 

Directed Graph 

The random variables in the field are simulated in 
sequence. The first step towards sequencing is directing 
the graph. Let A be a set of ordered vertex pairs, called 
arcs, (indicating the first vertex in the pair is simulated 
prior to the later). Then, D = (V, A) is a directed graph. If 
(u,v) ∈A for u, v∈V, then, there is an arc from u to v; u is 
a parent of v and v is a child of u. The set of parents of v 
is denoted pa(v). u is an ancestor of v if there is a 
sequence of arcs from u to v. D is acyclic if there is no 
v∈V that is an ancestor of itself. 

Graph Completion 

If G = (V, E) is an undirected graph, then ( , )G V E=  

denotes its completion, where there is an edge between 

every pair of vertices. Similarly, if D = (V, A) is a 

directed graph, then ( , )D V A= denotes its completion, 

where there is an arc between every pair of vertices and 

the direction of an arc that is also in A matches that of 

A. Kouritzin et al. (2014) gives one possible algorithm 

to construct an acyclic complete directed graph 

( , )D V A=  from a complete undirected graph ( , )G V E=  

and a topological sort on V, i.e. a simulation order 

1
{ }N

i i
V v ==
�

 where N = |V| is the number of vertices. Our 

new Quick Simulation Algorithm works on a completed 

acyclic directed graph. Zero covariances are placed 

along any added arc i.e. βv,u = cov(Xu, Xv) = 0 when (v, u) 

or (u,v) is in \A A . 

Conditional Probability Update 

The Quick Simulation Random Fields match a 

collection of pmfs {πv, v∈V} and a collection of 

covariances ( ){ ,  , }uv u v Eβ ∈ . However, there are also 

two auxiliary pmf parameter sets ˆ{ ,  v }
v

Vπ ∈ and 

{ ,  v }
v

Vπ ∈ɶ  that provide flexibility in the choice of 

field distribution as well as simulation. (See Kouritzin et al. 

(2014) for examples of choices for these auxiliary pmfs.) 

They also appear in the conditional probability update 

through functions: 

 

2

( )( }
( , ) v v v v

v

v

x x
g v x

π µ
σ

−
=
ɶ ɶ

ɶ
ɶ

 (2.2) 

( ) \{ }

ˆ ˆ( , ) ( )w w
w pa v u

h u v xπ
∈

= ∏  (2.3) 

 

for u∈pa(v), v∈V and xv∈Xv, where 

( )µ π
∈

= ∑ɶ ɶ

v v

v v v v

x

x x
X

and 2 2( ) ( )σ π µ
∈

= −∑ɶ ɶ ɶ

v v

v v v v v

x

x x
X

. gɶ and ĥ  

may look mysterious here. However, looking ahead to 

(3.3), we see they affect the field distribution in our new 

algorithm. gɶ  normalizes the sample xv by subtracting 

the mean and dividing by the variance but it allows this 

normalization to be done with respect to any convenient 

non-trivial pmf πɶ that could be different than π. ĥ  

allows us to consider all the parents except the one we 

are currently setting the covariance for as if they came 

from a different distribution π̂ . Intuitively, this makes 

sense. When we are focused on the covariance for one 

parent the other parents could have just as easily come 

from π or π̂ . The following proposition establishes that 

this flexibility is allowed. 

Let 
1

{ }N

i i
v =  be a topological sort of directed graph D 

= (V, A). For any B⊂V, we let j = max{i:1≤i≤N, vi∈B} 

and find: 
 

( )( ) ( )
1:1 ,

( )

|
i i i i

kv
k

B B

j

v v pa v pa v
ix k j v B

X x

X x X x
=≤ ≤ ∉

∏ = =

∏ = =∑ ∏  (2.4) 

 

where, ( ) ( )
1 1 1 1 1 1( ) ( )

|
v v pa v pa v v v

X x X x X x∏ = = = ∏ = . The 

main proposition in Kouritzin et al. (2014) is: 

Proposition 1 

Assume that D = (V, A) is a directed acyclic graph with 

N vertices, 
1

{ }N

i i
v =  is a topological sort of the vertices V and 

{ ( ) : , }π ∈ ∈ɶ
v v v v

x x v VX , ˆ{ ( ) : , }π ∈ ∈
v v v v

x x v VX  are sets of 

auxiliary non-trivial pmfs. Suppose further that {πv(xv): 

xv∈Xv, v∈V} are pmfs and {βv,u: (u, v) ∈A or (v, u) ∈A} are 

numbers such that the right hand side of: 
 

( )

( )

( ) ( )

( ) ( )

,
( )

|

( , )
( )

ˆ( , ) ( , )

i i i i

i

i i

i

i

v v pa v pa v

i i
iv

pa v pa v

u iu v
u pa v

X x X x

g v x
x

X x

g u x h u v

π

β
∈

∏ = =

= +
∏ =

∑

ɶ

ɶ

 (2.5) 

 

is non-negative for each ∈
i

i v
x X  and 

( ) ( )
∈

i ipa v pa v
x X  

( )1 i N≤ ≤ , where ( )( ) ( )i ipa v pa v
X x∏ =  is computed 

according to (2.4). Form the conditional probabilities 

recursively using (2.5), starting with
1 1

1 1( ) ( )
v v

X x xπ∏ = = . 

Then, the random field X, defined by (the multiplication 

rule and (2.5)): 
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( )( ) ( )
1

( )
i i i

N

iv pa v pa v
i

X x X x X x
=

∏ = = ∏ = =∏  (2.6) 

 

has marginal probabilities {πv} and covariances cov(Xu, 

Xv) = βv,u for all u∈pa(v). 

Remark 1 

The term non-trivial pmfs can be interpreted as: Each 

v
πɶ should have non-zero variance and each ˆ

v
π should be 

strictly positive. These auxiliary pmfs affect the field 
distribution but not its marginal vertex pmfs nor its 
vertex-vertex covariances. 

Remark 2 

In Kouritzin et al. (2014), there was the stronger 

constraint that the right hand side of (2.5) is in [0,1]. 

However, 
( ) ,

( )( ) ( )

( , ) ˆ( , ) ( , ) 0β
∈∈

=
∏ =

∑ ∑
ɶ

ɶ

v v

v
u v u

u pa vx pa v pa v

g v x
g u x h u v

X xX

 

since
2

( )( )
( , ) 0

π µ
σ∈ ∈

−
= =∑ ∑

ɶ ɶ
ɶ

ɶ
v v v v

v v v v
v

x x v

x x
g v x

X X

. Hence, if the 

right hand side of (2.5) is non-negative, then it is in [0, 

1] and (2.5) defines a legitimate conditional pmf. 

Remark 3 

Notice that (2.5) gives the same value, whether we 

consider the given graph D or its completion D  where 

the added arcs have zero covariance. 

Distribution and Marginality of Quick 

Simulation Fields 

Proposition 1 can be extended to give the full field 
distribution when the graph is complete. 

Proposition 2 

Assume that ( )D V A= = is a complete directed 

acyclic graph with N vertices,
1

{ }N

i i
V v ==
�

 is a 

topological sort of the vertices V and 

{ }ˆ( ) : , },{ ( ) : ,π π∈ ∈ ∈ ∈ɶ
v v v v v v v vx x v V x x v VX X  are 

auxiliary non-trivial pmf sets. Suppose further that 

{ }( ) : ,π ∈ ∈v v v vx x v VX  are pmfs and 

{ }, : ( , ) ( , )v u u v A or v u Aβ ∈ ∈  are numbers such that the 

right hand side of: 
 

( )
1 1

1 1

1 1

1

,1

1 1

| ,...,

ˆ( , ) ( , ) ( , )
( )

( ,..., )

i i

j i

i

i

i iv v v

i

i i j j j iv vj

iv
iv v

x x x

g v x g v x h v v
x

x x

β
π

−

−

−

−

=

−

Χ = Χ = Χ = =

+
Χ = Χ =

∏

∑
∏

ɶ ɶ  (3.1)  

 

is non-negative for each ∈
i

i v
x X , i = 1,…,N. Form the 

conditional probabilities recursively using (3.1), starting 

with 
1 1

1 1( ) ( )
v v

X x xπ∏ = = . Then, the random field X, 

defined by: 

 

( )
1 1

1 1

1

( ) | ,...,
i i

N

i iv v v
i

x X x x x
−

−
=

Χ = = ∏ = Χ = Χ =∏ ∏  (3.2) 

 

• Has marginal probabilities {πv} and covariances 

cov(Xu, Xv) = βv,u for all u,v∈V  

• Has closed form 
 

1
1,...,

1

1

1 1, 1

,

( ,..., ) ( )

ˆ ( ) ( )

( , ) ( , )

n i

k k

i j

n

n iv v v
i

i n

k kv v
j i n k k j k i

i i j jv v

x x x

x x

g v x g v x

π

π π

β

=

−

≤ < ≤ = ≠ = +

=

 
+ ×  

 

∏ ∏

∑ ∏ ∏

ɶ ɶ

 (3.3) 

 

for each ∈
i

i v
x X  and n = 1,…,N. 

Remark 4 

The one-pass algorithm (as opposed to the Gibbs-

type algorithm used in Kouritzin et al. (2013)) follows 

from (3.1). We just use the conditional probability to 

simulate the new vertex given the prior ones in the 

topological sort. However, the big efficiency comes from 

the fact that the terms in (3.1) are only non-zero (and 

hence need to be computed) in the case where vj is a 

parent of vi in the original (non-completed) graph.  

Remark 5 

Since the terms with 
,

0
i jv v

β =  disappear, the 

computations are the same as for the algorithm in 

Kouritzin et al. (2014) on the incomplete graph.  

Remark 6 

Regularity means that the right hand side of (3.1) is a 

conditional pmf. As noted in Remark 2, the right hand 

side of (3.1) need only be non-negative, which is 

equivalent to: 
 

( )
1 1

2

1 1

1

,
1

( ) ,....,

ˆ( ) ( , ) ( , )

i i i

i j i

i iv v v v

i

i j j j iv v v
j

x x x

x g v x h v v

σ π

µ β

−
−

−

=

− Χ = Χ = ≤

−

∏

∑

ɶ

ɶ ɶ
 (3.4) 

 
and can be checked during the iteration. Notice: 
 

(1) There is no constraint on 
,i jv v

β  when 

i j
i jv v

x or xµ µ= =ɶ ɶ  

(2) 
,

0
i jv v

β =  automatically satisfies the constraint 

 

By (2), we need only check: 
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( )
1 1

2

1 1

,
( )

( ) ,....,

ˆ( ) ( , ) ( , )

i i i

i i

i

i iv v v v

i u iv u v
u pa v

x x x

x g u x h u v

σ π

µ β

−
−

∈

− Χ = Χ =

≤ −

∏
∑

ɶ

ɶ ɶ
 (3.5) 

 
where, pa(vi) denotes parents in the original (not-

completed) graph. If pa(vi) = {vi−1} is a singleton, then 

(3.5) further simplifies by (2.2) to: 
 

( ) ( )1

1 1 1

1

12 2

1,
1

( ) ( )

( ) ( )

π π
σ σ µ β µ

π π
−

− − −

−

−

−
−

− ≤ − −ɶ ɶ ɶ ɶ
ɶ ɶ

i i

i i i i i i

i i

i iv v

i iv v v v v v
i iv v

x x
x x

x x
 (3.6) 

 
for 

1
1,

−
−∈ ∈

i i
i iv v

x xX X . One can check (3.5) or (3.6) 

iteratively to ensure the Quick Simulation algorithm is 

producing a field with the desired pmfs and covariances. 

Now, we show how equality in (3.6) is hit: 
 

1

1 1 1

1

1

1

1

1

12 2

1,

1

1

1 1 ,

1

,

( ) ( )
( ) ( )

( ) ( )

( ) ( )(1 ( ))

( , ) ( , )

( ) ( ) ( , )
( )

( , )

i i

i i i i i i

i i

i i i

i i

i i

i

i i

i iv v

i iv v v v v v

i iv v

i i iv v v

i i i iv v

i iv v

iv

i iv v

x x
x x

x x

x x x

g v x g v x

x y g v y
x

g v x

π π
σ σ µ β µ

π π

π π π

β

π π
π

β

−

− − −

−

−

−

−

−

−

−
−

−

− −

−

− = − −

⇔ = −

−

 +
⇔ =



ɶ ɶ ɶ ɶ
ɶ ɶ

ɶ ɶ

ɶ

ɶ

( )
1

1
1( ) ,

i

i i i

y x

i i iv v v
x x xπ

−

−

≠

−






⇔ = Χ ≠ Χ =

∑

∏

 (3.7) 

 
since 

11
( , ) 0

i
iy x

g v y−≠ −
=∑ ɶ  and it is shown in Proposition 

1 of Kouritzin et al. (2014) that ( )
1

1
,

i i
i iv v

X x X x
−

−Π = =  

1
1( ) ( )

i i
i iv v

x xπ π
−

−=
1

1 1 ,
( , ) ( , )

i i
i i i iv v

g v x g v xβ
−

− −+ ɶ ɶ . 

Hence, we hit this bound when we have a singleton 

parent and one value of Xi−1 precludes another value of Xi. 

Proof of Proposition 2 

a) This follows immediately from Proposition 1 and the 

fact that the parents of vi are all v1,…,vi-1 when the 

graph is complete. 

b) Note (3.3) holds for n = 1. Now, we assume it is true 

for n−1 with some n∈{2,…,N} and show it for n. 

(3.1) is equivalent to: 
 

1 1 1
1 1 1,..., ,...,

11

,
1 1,

( ,..., ) ( ) ( ,..., )

ˆ( , ) ( , ) ( )

n n n

j n k

n n nv v v v v

nn

n n j j kv v v
j k k j

x x x x x

g v x g v x x

π

β π

−
−

−−

= = ≠

Π =

 
+   

 

∏

∑ ∏ɶ ɶ
 (3.8) 

 
so by (3.8) and (3.3) with n−1: 
 

1
1,...,

,1 1

1

11

1,

( ,..., )

( , ) ( , )

( ) ( )
ˆ ( )

β

π π
π

− −

−

==

= ≠

Π

 
 

= +  
  
 

∑∏
∏

ɶ ɶ

n

n j

n i

k

nv v

n n j jv vn n

n
n iv v

ji kv
k k j

x x

g v x g v x

x x
x

 

1 1

1, 1

1 1

,

ˆ ( ) ( )
( )

( , ) ( , )

π π
π

β

− −

= ≠ = +

≤ < ≤ −

  
×   +   

 
  

∏ ∏
∑

ɶ ɶ

k k

n

i j

i n

k kv v
k k j k i

nv
j i n

i i j jv v

x x
x

g v x g v x

1

1

1, 1

1 1

,

11

,
1 1,

( )

ˆ ( ) ( )

( , ) ( , )

ˆ ( ) ( , ) ( , )

π

π π

β

π β

=

−

= ≠ = +

≤ < ≤ −

−−

= = ≠

=

  
×   +   

 
  

 
+   

 

∏

∏ ∏
∑

∑ ∏

ɶ ɶ

ɶ ɶ

i

k k

i j

k n j

n

iv
i

i n

k kv v
k k j k i

j i n

i i j jv v

nn

k n n j jv v v
j k k j

x

x x

g v x g v x

x g v x g v v

 

 
so the result follows by induction. 

It follows immediately from Proposition 2 that the 

field produced on {v1,…,vN-1, vN} extends the field 

produced on {v1,…,vN-1}. However, it is natural to 

wonder if the distribution of a subfield is the same as the 

distribution of the quick simulation field on the 

corresponding subgraph. Considering the marginal 

distribution with vertex vl removed, using (3.3) and 

recalling ( , ) 0
l

l lx
g v x =∑ ɶ , we break sum below into: 

i, j≠l, i = l, j = l to find: 
 

1 1 1

1

1 1 1,..., , , ,...,

1

1, 1

1
,

,

1

( ,..., , , ,..., )

ˆ ( ) ( )
( )

( , ) ( , )

ˆ ( ) ( )

π π
π

β

π π

− +

=

− +
∈

−

= ≠ = +

≤ < ≤
≠ ≠

= = +

Π

  
×    = +  

 
×  

+ ×

∑

∑ ∏ ∏
∑∏

∏

ɶ ɶ

l l l N

l v
l

k k

l
i

i

i j

k k

l l l Nv v v v v
x

i N

N
k kv v

k k j k ixiv
j i N

i l i j l
i i j jv v

N

k kv v
k k i

x x x x x

x x
x

g v x g v x

x x

Χ

1

1 1,

,

1

,
1 1, 1

1

1 1 1
1 , ,

( , ) ( , )

ˆ ( ) ( ) ( , ) ( , )

ˆ( ) ( ) ( )

β

π π β

π π π

−

≤ < ≠

−

≤ < = ≠ = +

−

≤ < ≤ = = +
≠ ≠ ≠ ≠

 
  
 

 
+ ×  

 

 
 = + ×  
 

∑ ∏

∑

∑ ∑∏ ∏

∑ ∏ ∏

ɶ ɶ

ɶ ɶ

l j

l

k k i l

l

i k k
i

i

j l k j

l l j jv v
x

i N

k k i i l lv v v v
i N k k j k i x

i N

i k kv v v
j i N k k i

i i j l k j l k l

g v x g v x

x x g v x g v x

x x x
1

,
( , ) ( , )β

=
∏

ɶ ɶ
i j

N

i i j jv v
g v x g v x

 (3.9) 

 
This is just the distribution we would have arrived at 

if we had just simulated {v1,…, vl−l, vl+1,…, vN} in order. 
Using (3.9) repeatedly, we have proved the following 
marginality lemma. 

Lemma 1 

Suppose the conditions of Proposition 2 hold 

and B
�
⊂V
�

. Then: 
 

( ) ( )
∈

Π = Π∑
� �

� � �

C CB B

B B V

x

x x
Χ

 (3.10) 
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Example 5 

The closed form on V
�

= {1, 2} is: 
 

(1,2) 1 2 1 1 2 2 2 2,1 1( , ) ( ) ( ) (2, ) (1, )x x x x g x g xπ π βΠ = + ɶ ɶ  (3.11) 

 

and the closed form on V
�

= {1, 2, 3} is: 
 

(1,2,3) 1 2 3 1 1 2 2 3 3

3 3 2 2,1 1

2 2 3 3,1 1

1 1 3 3,2 2

( , , ) ( ) ( ) ( )

( ) (2, ) (1, )

ˆ ( ) (3, ) (1, )

ˆ ( ) (3, ) (2, )

x x x x x x

x g x g x

x g x g x

x g x g x

π π π

π β

π β

π β

Π =

+

+

+

ɶ ɶ

ɶ ɶ

ɶ ɶ

 

 
Now, suppose 3,1β = 3,2β  = 0 so X1 and X2 are both 

uncorrelated from X3 by Proposition 2 (a) and: 
 

( )
(1,2,3) 1 2 3

1 1 2 2 2 2,1 1 3 3

(1,2) 1 2 3 3

( , , )

( ) ( ) (2, ) (1, ) ( )

( , ) ( )

x x x

x x g x g x x

x x x

π π β π

π

Π

= +

= Π

ɶ ɶ  

 
by the previous two equations so X3 is actually 

independent of X1, X2. The situation is less simple when 

not considering the last vertex simulated. If 3,1β  = 2,1β = 

0 so X3 and X2 are both uncorrelated from X1 by 

Proposition 2 (a), then it follows by Lemma 1 that ∏(2,3) 

(x2, x3) = π2(x2) π3(x3) 3 3,2 2(3, ) (2, )g x g xβ+ ɶ ɶ  and: 

 

( )
(1,2,3) 1 2 3 1 1 (2,3) 2 3

1 1 1 1 3 3,2 2

( , , ) ( ) ( , )

ˆ ( ) ( ) (3, ) (2, )

x x x x x x

x x g x g x

π

π π β

Π = Π

+ − ɶ ɶ
 

 
Hence, since each ˆ

v
π is non-trivial we must either have 

1 1
π̂ π= or β3,2 = 0 for X1 to be independent of X2, X3. The 

case of X2 being independent of X1, X3 similarly requires 

2 2
π̂ π= or β3,1 = 0 in addition to β3,2 = β2,1 = 0. 

This example illustrates several things about Quick 

Simulation Fields: order matters in general, there are 

dependent uncorrelated field and independence generally 

does not happen when ˆ
v v

π π≠ . Indeed, we explain 

below there is usually dependence even when ˆ
v v

π π= . 

Example 6 

In the important special case where ˆ
v v

π π= for all v 

the closed form becomes: 
 

1
1,....,

,
11

( ,...., )

( , )( , )
( ) 1

( ) ( )

n

l i j

i j

nv v

n
j ji i

lv v v
j i nl i jv v

x x

g v xg v x
x

x x
π β

π π≤ < ≤=

Π =

 
 +
 
 

∑∏
ɶɶ  (3.12) 

 

for each 
i

i v
x ∈ X  and n = 1,…,N. 

Now, suppose that l∈{1,…N−1} and 
,

0
i jv v

β =  when 

j≤l<i. Then: 
 

( )
1

1 1

1,....,

1 1,...., ,...,

,
1

,
1

,....,

( ,..., ) ( ,..., )

( , )( , )

( ) ( )
1

( , )( , )
1

( ) ( )

( , )

( )

N

l l N

i j

i j

i j

i j

i

i

Nv v

l l Nv v v v

j ji i

v v
j i l i jv v

j ji i

v v
j i l i jv v

i i

v
iv

x x

x x x x

g v xg v x

x x

g v xg v x

x x

g v x

x

β
π π

β
π π

β
π

+
+

≤ < ≤

≤ < ≤

Π

Π Π

 
 
 
 = −

 
 +
 
 

∑

∑

ɶɶ

ɶɶ

ɶ
,

1

,
1

( , )

( )

( , )( , )
1

( ) ( )

j

j

i j

i j

j j

v
l j i N jv

j ji i

v v
l j i N i jv v

g v x

x

g v xg v x

x x

π

β
π π

+ ≤ < ≤

+ ≤ < ≤

 
 
 
 

 
 +
 
 

∑

∑

ɶ

ɶɶ

 

 

so one requires: 
 

,
1

,
1

( , )( , )
0

( ) ( )

( , )( , )
0

( ) ( )

i j

i j

i j

i j

j ji i

v v
j i l i jv v

j ji i

v v
l j i N i jv v

g v xg v x
or

x x

g v xg v x

x x

β
π π

β
π π

≤ < ≤

+ ≤ < ≤

=

=

∑

∑

ɶɶ

ɶɶ
 

 

for independence. 

Permutation Property 

Let 
1

{ } , {1,2,..., }N

i i k
V v M k== = for k≤N and Gk be the 

symmetric group of permutations on Mk with 

composition, denoted ο, as group operation, identity 

permutation e(i) = i, ∀i∈Mk and generators (i i +1) in 

cyclic form  for 1≤i≤k−1. { }( ) 1{ } := ∈N

a i i Nv a G  gives the 

possible simulation orders. We are interested in when the 

distribution is unchanged. 

Definition 1 

Random field ∏ on 
1

{ }N

i i
V v ==  the permutation 

property if: 
 

(1) ( ) 1
(1),..., ( ) 1,..., ,....,

( ) ( ,..., )
a a N N

a a N Nv v v v
x x x xΠ = Π  

 

for every α∈GN. 

Marginality then gives: 

 

( ) ( )
(1) ( ) 1

1(1) ( )

,..., ,...,
,..., ,...,

a a k ki i i i
a a k k

v v i i v v i i
x x x xΠ = Π  

 

for every 1≤i1<i2< ⋅⋅⋅ <ik≤N and a∈Gk when the 

permutation property holds. 
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Theorem 1 

Suppose 3, ( , )N G V E≥ =  is the  completion of 

connected undirected graph G = (V, E) and {πv}v∈V, { }
v v V

π ∈ɶ  

and ˆ{ }
v v V

π ∈ are non-degenerate pmfs. Then, in the following 

(1) and (2) are equivalent and (3) implies (1) and (2): 
 
(1) The permutation property of the ˆ{ , , , }

v v v
π π π βɶ -Quick 

Simulation field ∏ on G  holds 

(2) For each distinct u, v, w∈V: 
 

( )
( )

2

,

2

,

ˆ( )( ) ( ) ( )

ˆ( )( ) ( ) ( )

w v v v v v u w w w w

v w w w w w u v v v v

x x x x

x x x x

σ π µ β π π

σ π µ β π π

− −

= − −

ɶ ɶ ɶ

ɶ ɶ ɶ
 (4.1) 

 
for all xv∈Xv, xw∈Xw. 

(3) For each w∈V: 
 

w
ˆ( ) ( ) ( ) ( )

w w w w w w w w
x x c x xπ π µ π= + − ɶ ɶ  (4.2) 

 

where, for each distinct u, v, w∈V the constants 

satisfy: 
 

2 2 2

u wv u v wu v w vu w
c c cσ β σ β σ β= =ɶ ɶ ɶ  (4.3) 

 

Remark 7 

The following proof reveals the equivalence of (1) and 
(2) holds even if the original graph G is not connected. 

Proof 

To ease notation, we let 

, ,
ˆ, , , ,π π π π π π β β= = = = =ɶ ɶ ɶ

i i i i i j
i i i i i jv v v v v v

X X  and: 

 
ˆ( ) ( ) ( ) ,1π π= − ∀ ∈ ≤ ≤

i i i i i i i i
y x x x x i NΧ  (4.4) 

 
For a∈GN, one has by commutativity and (3.3) that 

Xa(1),…,Xa(N) has joint pmf: 
 

(1),..., ( ) (1) ( )

1

1

( ) ( ) ( ) ( )

1 1, 1

( ) ( ), ( ) ( )

( ,.., ) ( )

ˆ ( ) ( )

( ( ), ) ( ( ), )

N

a a N a a N i i

i

i N

a k a k a k a k

j i N k k j k i

a i a i a j a j

x x x

x x

g a i x g a j x

π

π π

β

=

−

≤ < ≤ = ≠ = +

Π = +

 
  
 

∏

∑ ∏ ∏

ɶ ɶ

 (4.5) 

 

for each xi∈Xi (1≤i≤ N). By (4.5) the permutation 

property is equivalent to: 
 

( )

( )

1

( ) ( ) ( ) ( )

1 1, 1

( ) ( ), ( ) ( )

1

( ) ( ) ( ) ( )

1 1, 1

( ) ( ), ( ) ( )

ˆ ( ) ( )

( ), ) ( ( ),

ˆ ( ) ( )

( ), ) ( ( ),

i N

b k b k b k b k

j i N k k j k i

b i b i b j b j

i N

a k a k a k a k

j i N k k j k i

a i a i a j a j

x x

g b i x g b j x

x x

g a i x g a j x

π π

β

π π

β

−

≤ < ≤ = ≠ = +

−

≤ < ≤ = ≠ = +

 
× ×  

 

=

 
× ×  

 

∑ ∏ ∏

∑ ∏ ∏

ɶ ɶ

ɶ ɶ

 (4.6) 

for any two permutations a, b. 

(1) implies (2): Taking b = (2 3) ο a, one finds that the 

left and right side terms in (4.6) are the same when j = 1, i > 

3; j = 2, i = 3 or j > 3 so, upon cancelling these terms and 

substituting in for b, the remaining (j = 1, i = 2; j = 1; i = 3; j 

= 2, i > 3 and j = 3, i > 3) terms in (4.6) become: 
 

( )

( )

(2) (2) ( ) ( ) (3) (3), (1) (1)

4

(3) (3) ( ) ( ) (2) (2), (1) (1)

4

1

(1) (1) (2) (2) ( ) ( )

4 4

( ) ( )

( ) ( (3), ) ( (1), )

ˆ ( ) ( (2), ) ( (1), )

ˆ ˆ ˆ( ) ( ) ( )

( ) (

N

a a a k a k a a a a

k

N

a a a k a k a a a a

k

iN

a a a a a k a k

i k

a k a k

x x g a x g a x

x x g a x g a x

x x x

x g

π π β

π π β

π π π

π

=

=

−

= =

+

+ ×

∏

∏

∑∏

ɶ ɶ

ɶ ɶ

ɶ
( ) ( ), (3) (3)

1

1

(1) (1) (3) (3) ( ) ( )

4 4

( ) ( ) ( ) ( ), (2) (2)

1

( ), ) ( (3), )

ˆ ˆ ˆ( ) ( ) ( )

( ) ( ( ), ) ( (2), )

N

a i a i a a

k i

iN

a a a a a k a k

i k

N

a k a k a i a i a a

k i

a i x g a x

x x x

x g a i x g a x

β

π π π

π β

= +

−

= =

= +

+ ×

∏

∑∏

∏

ɶ

ɶ ɶ

 (4.7) 

 

(3) (3) ( ) ( ) (2) (2), (1) (1)

4

(2) (2) ( ) ( ) (3) (3), (1) (1)

4

1

(1) (1) (3) (3) ( ) ( )

4 4

( ) (

( ) ( ) ( (2), ) ( (1), )

ˆ ( ) ( ) ( (3), ) ( (1), )

ˆ ˆ ˆ( ) ( ) ( )

(

N

a a a k a k a a a a

k

N

a a a k a k a a a a

k

iN

a a a a a k a k

i k

a k a k

x x g a x g a x

x x g a x g a x

x x x

x

π π β

π π β

π π π

π

=

=

−

= =

=

+

+ ×

∏

∏

∑∏

ɶ ɶ

ɶ ɶ

) ( ) (1), (2) (2)

1

1

(1) (1) (2) (2) ( ) ( )

4 4

( ) ( ) ( ) ( ), (3) (3)

1

) ( ( ), ) ( (2), )

ˆ ˆ ˆ( ) ( ) ( )

( ) ( ( ), ) ( (3), )

N

a i a a a

k i

iN

a a a a a k a k

i k

N

a k a k a i a i a a

k i

g a i x g a x

x x x

x g a i x g a x

β

π π π

π β

= +

−

= =

= +

+ ×

∏

∑∏

∏

ɶ ɶ

ɶ ɶ

 (4.8) 

 
which simplifies using (4.4) to: 
 

( )
(2) (2), (1) (3) (3)

(3) (3), (1) (2) (2)

( (2), ) ( )

( (3), ) .

a a a a a

a a a a a

g a x y x

g a x y x

β

β=

ɶ

ɶ
 

 
Letting a be such that a(1) = u, a(2) = v and a(3) = w, 

we find (4.1) is necessary. 

(2) implies (1): Multiplying (4.1) by ( , )
u

g u xɶ yields: 
 

( )
,

,

ˆ( , ) ( , )( ( ) ( ))

ˆ( , ) ( , ) ( ) ( )

v v u u w w w w

w w u u v v v v

g v x g u x x x

g w x g u x x x

β π π

β π π

−

= −

ɶ ɶ

ɶ ɶ
 (4.9) 

 

for all xu∈Xu, xv∈Xv, xw∈Xw and distinct u, v, w∈MN. 

Take a∈GN and let b = (l l + 1) ο a for 1≤l≤ N−1. Noting 

that the transpose operations (l l + 1) are generators, we 

just need to show (4.6) for (arbitrary) a and this b. 

However, the left hand terms in (4.6) with i<l; j>l+1; j≤ 

l−1, l +2≤i; and j = l, i = l +1 directly cancel with the 

corresponding right hand terms for this b. Considering 



Michael A. Kouritzin et al. / Journal of Mathematics and Statistics 2017, 13 (3): 197.208 

DOI: 10.3844/jmssp.2017.197.208 

 

205 

the (remaining) terms on the left side of (4.6) with j≤l− 1 

and i = l, l + 1 for this b and using (4.9) with u = a(j), v = 

a(l), w = a(l + 1), we get upon manipulation: 
 

( ) ( ) ( )

( )

11

( ) ( ) ( ) ( ) ( 1)

1 1 2

( 1), ( ) ( ) ( ) ( )

11

( ) ( ) ( ) ( ) ( )

1 1 2

( ), ( ) ( ) ( 1) (

ˆ ( 1),

( ), ( )

ˆ ( ) ( ) ( ( ), )

ˆ( ( ), ) (

l Nl

a k a k a k a k a l

j k k l
k j

a l a j a j a l a l

l Nl

a k a k a k a k a l

j k k l
k j

a l a j a j a l a l

x x g a l x

g a j x x

x x g a l x

g a j x x

π π

β π

π π

β π

−−

+
= = = +

≠

+

−−

= = = +
≠

+

+ ×

+ ×

∑∏ ∏

∑∏ ∏

ɶ

ɶ

ɶ

ɶ

1

1

1)

11

( ) ( ) ( ) ( ) ( 1)

1 2

( 1), ( ) ( ) ( ) ( )

11

( ) ( ) ( ) ( ) ( )

1 2

( ), ( ) ( )

)

ˆ ( ) ( ) ( ( 1), )

ˆ( ( ), ) ( )

ˆ ( ) ( ) ( ( ), )

( ( ),

k

k

l Nl

a k a k a k a k a l

j k l
k j

a l a j a j a l a l

l Nl

a k a k a k a k a l

j k l
k j

a l a j a j

x x g a l x

g a j x x

x x g a l x

g a j x

π π

β π

π π

β

=

=

+

−−

+
= = +

≠

+

−−

= = +
≠

= + ×

+ ×

∑∏ ∏

∑∏ ∏

ɶ

ɶ

ɶ

ɶ
( 1) ( 1)) ( )a l a lxπ + +

 (4.10) 

 
so they are equal to the corresponding terms on the right 

of (4.6). (Notice the switch of π and π̂  in the final factors 

in (4.10).) Finally, the terms on the left of (4.6) with j = 

l, i≥l + 2 and j = l + 1, i ≥ l + 2 for b = (l l + 1)a: 
 

1

( ) ( ) ( ) ( )

2 1 1
1

( ) ( ), ( 1) ( 1)

1

( ) ( ) ( ) ( )

2 1 1

( ) ( ), ( ) (

ˆ ( ) ( )

( ( ), ) ( ( 1), )

ˆ ( ) ( )

( ( ), ) ( ( ),

i NN

a k a k a k a k

i l k k i
k l

a i a i a l a l

i NN

a k a k a k a k

i l k k i
k l

a i a i a l a

x x

g a i x g a l x

x x

g a i x g a l x

π π

β

π π

β

−

= + = = +
≠ +

+ +

−

= + = = +
≠

 
 
  
 

+

 
 +   
 

∑ ∏ ∏

∑ ∏ ∏

ɶ ɶ

ɶ ɶ
) )l

 

 
are just the terms on the right of (4.6) with j = l + 1, i ≥l + 2 

and j = l,  i ≥l + 2 i.e. in reverse order. Hence, by breaking 

the summation up, we have shown (4.6) holds for arbitrary 

a and b = (l l+1) ο a, which implies (4.6) holds for arbitrary 

a, b and sufficiency follows. 

(3) Implies (2) 

Letting u, v, w∈V be distinct and using (4.2, 4.3), we 

have that: 
 

( )2

,

2

,

ˆ( )( ) ( ) ( )

( )( ) ( )( )

w v v v v v u w w w w

w v v v v v u w w w w w

x x x x

x x c x x

σ π µ β π π

σ π µ β π µ

− −

= − − −

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ
 

( )

2

,

2

,

( )( ) ( )( )

ˆ( ( )) ( )( )

v v v v v w u v w w w w

v v v v v w u w w w w

x x c x x

x x x x

σ π µ β π µ

σ π π β π µ

=− − −

= − −

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
 

 
for all xv∈Xv, xw∈Xw. 

In Theorem 1, (1) and (2) almost imply (3), which 

would establish equivalence. However, the graph must be 

sufficiently connected as the following example shows. 

Example 7 

Suppose G is a connected graph with N≥3. Suppose 

further that G is not sufficiently connected. Choose 

distinct vertices u, v, w so that u and v are neighbors of w 

and that u and v are not neighbors. The completion of the 

graph will set βvu = 0 in (4.1), which in turn implies that 

either  ˆ ( ) ( ) 0π π− = ∀ ∈
v v v v v v

x x x X  or βu,w = 0 on the RHS 

of (4.1).  In the former, ˆ
v v

π π= . In the latter, u is not a 

neighbor of w so only the former is possible. If (3) were 

true, then cv = 0 by (4.2) and then cu = cw = 0 by (4.3) 

and connectedness. 

Theorem 2 

Suppose 3, ( , )N G V E≥ = is the completion of 

sufficiently connected undirected graph G = (V, E); 

{ } ,{ }
v v V v v V

π π∈ ∈ɶ and ˆ{ }
v v V

π ∈ are non-degenerate pmfs with 

ˆ{ }
v v v V

π π ∈≠ ; and (1), (2) and (3) are as in Theorem 1. 

Then, (1) or (2) imply (3). 

Proof. (1) and (2) are equivalent by Theorem 1. 

(2) implies (3): Let u, v, w be connected neighbors in 

G. Let w be the neighbor that has two neighbors. This 

means there are non-zero covariances from w to the other 

two. (4.1) is (by permuting u, v, w) equivalent to: 
 

( )( , ) ( , )

( , ) ( , ) ( ) 0

( , ) ( , ) ( )

u uv wv u wu

w wu v vu v v

w wv u vu w w

y xg v x g u x

g w x g v x y x

g w x g u x y x

β β
β β

β β

  −
  

− =  
  −   

ɶ ɶ

ɶ ɶ

ɶ ɶ

 

 
which implies all solutions have the form: 
 

( , )
( ) ( ),

( , )

( , )
( ) ( )

( , )

u vu
u u w w

w wv

v vu
v v w w

w wu

g u x
y x y x

g w x

g v x
y x y x

g w x

β
β

β
β

=

=

ɶ

ɶ

ɶ

ɶ

 

 

for all xu∈Xu, xv∈Xv, xw∈Xw. This implies that 
( )

( , )

w w

w

y x

g w xɶ
 

is constant, which in turn implies: 
 

ˆ( ) ( ) ( ) ( )
u u u u u u u u u

x x c x xπ π µ π= + − ɶ ɶ  (4.11) 
 

ˆ( ) ( ) ( ) ( )
v v v v v v v v v

x x c x xπ π µ π= + − ɶ ɶ  (4.12) 
 
where, cu, cv are constants. Since G is sufficiently 

connected (by non-zero covariances) every vertex can be 

included in some connected triple as above and we must 

have that: 
 

ˆ( ) ( ) ( ) ( )
w w w w w w w w w

x x c x xπ π µ π= + − ɶ ɶ  (4.13) 
 
for all w∈V. Now, choosing distinct (not-necessarily 

connected) u, v, w∈V and using (4.1), we find that these 

constants must satisfy: 2 2 2

u wv u v wu v w vu wc c cσ β σ β σ β= =ɶ ɶ ɶ .  
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Example 8 

When N = 3, one c, cu say, can be chosen arbitrarily and 

the other two can then be solved for by (4.3). 

Example 9 

There is always the trivial solution ˆ
u u

π π=  (and 
u

πɶ  

arbitrary) for all u. This corresponds to taking all the cu 

to be 0. 

The above theorem gives us the necessary relation: 

 

( ) ( ) ( ) ( )ˆ
w w w w w w w w wx x c x x w Vπ π µ π= + − ∀ ∈ɶ ɶ  (4.14) 

 
for the permutation property to hold under sufficient 

connectivity. Below we will consider completely non-

trivial Quick Simulation Fields meaning ˆ
w w

π π≠ , i.e. 

0
w

c ≠ , for all w∈V. 

We work through an example in a simple four-vertex, 

black-and-white, complete-graph example, which shows 

the completely non-trivial solutions. For simplicity (of 

calculation and simulation) we let all marginal pmfs to 

be equal, all auxiliary pmfs 1

2
(1) ( 1)

i i
π π= − =ɶ ɶ  and all 

covariances to be equal. The fact that the ci's below can 

be non-zero means that the solutions can be completely 

non-trivial. The possible graph distributions are given. 

Example 10 

Let V = {1, 2, 3, 4}; A = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 

4), (3, 4)}; Xi = {1,−1} for 1≤i≤4; 1

2
( ) ;π = ∀ ∈ɶ

i i i i
x x X  and 

πi(1) = p and πi(−1) = 1−p where 0 < p < 1. It follows that 

0
i

µ =ɶ and 2 1
i

σ =ɶ . Let β12 = β13 = β23 = β14 = β24 = β34 = β 

so (4.15) holds trivially. It follows by (4.16) that c1 = c2 = 

c3 = c4. Then, ˆ
i

π must satisfy (4.14) and be a non-trivial 

pmf for each i = 1, 2, 3, 4 i.e.: 
 

( ) ( )
�

( )
�

1
2

ˆ 1 1 1 1 0
i i i i

p

cπ π π= − ⋅ ⋅ >ɶ  

 
and: 
 

( )ˆ 1 1 0
2

i
i

c
pπ − = − + >  

 

This translates into the condition 2p> ci> 2p − 2. The 

permutable joint pmf of X1,…,X4 follows directly from 

(3.3) as: 
 

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4

1,2,3,4 1 2 3 4

1

1 2 3 3 4 4 1 3 2 2 4 4

2 3 1 1 4 4 1 4 2 2 3 3

2 4 1 1 3 3 3 4 1 1 2 2

, , ,

ˆ

1
ˆ ˆ ˆ

4
ˆ ˆ ˆ ˆ

i i

i

x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

π

π π π π

β π π π π

π π π π

=

Π =

 +
 
 + + +
 
 + + 

∏

 

for each xi∈X (1≤i≤4). 

Now, we give our final main result, which establishes 

necessary and sufficient conditions for completely non-

trivial solutions. 

Theorem 3 

Suppose 4, ( , )N G V E≥ =  is the completion of 

connected undirected graph G = (V, E) and 

{ } ,{ }
v v V v v V

π π∈ ∈ɶ and ˆ{ }
v v V

π ∈ are non-degenerate pmfs. 

Then, the following are equivalent: 
 
a) G is sufficiently connected and disjoint pair rich and 

there is a completely non-trivial ˆ{ , , , }
v v v

π π π βɶ -

Quick Simulation field ∏ on G  satisfying the 

permutation property 

b) The original graph G is complete, (4.14) holds with 

at least one cw ≠ 0 and for each distinct u, v, w, z∈V: 

 

, , , ,u v w z u w v zβ β β β=  (4.15) 

 
When (a) and (b) hold, the constants in (4.14) can be 

taken as: 
 

32 1

1 2

1 3 2

1 1

1

1 1

2

,

2

,

2

,

2

,

,

2,..., 1i i i

i i

i i i

v v v

v v

v v v

v v v

v v

v v v

c c

c c i N

σ β

σ β

σ β

σ β
+ −

+

+ −

=

= ∀ = −

ɶ

ɶ

ɶ

ɶ

 (4.16) 

 

where, 
2

0
v

c ≠  can be taken arbitrarily and 
1

{ }N

i i
G v == . 

Proof. (a) implies (b): (4.14) holds by Theorem 2. For 

distinct u, v, w, z∈V, we find by (4.3) that: 
 

2 2 2 2

u zu wv u v zu wu v v wu zu v u zv wu u
c c c cσ β β σ β β σ β β σ β β= = =ɶ ɶ ɶ ɶ  

 

so after cancellation (
u

πɶ is non-trivial, cu ≠ 0): 
 

0
zu wv zv wu

β β β β− =  (4.17) 

 

Now, suppose z, u∈V that are not neighbors in G, we 

choose distinct v and w to be neighbors of z and u 

respectively (by disjoint pair rich property). Then, 

(4.17) implies: 
 

0 0
zu wv zv wu zu

β β β β β= ≠ ⇒ ≠  (4.18) 
 
and there is a contradiction. Hence, every z, u∈V are 

neighbors and G is complete.  

(b) implies (a): It follows from completeness and 

(4.16) that each ci ≠ 0: 
 

2 2 2

1 3,2 1 2 3,1 2 3 2,1 3c c cσ β σ β σ β= =ɶ ɶ ɶ  

 
and: 
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, 2 1, 12 2 2

1 1 , 1 1, 1 1 1

1, 2

i i i i

i i i i i i i i i i

i i

c c c
β β

σ β σ β σ
β
− + −

+ + − + − − −
− −

= =ɶ ɶ ɶ  

 

for all i = 3,..., N−1. However, it follows by (4.15) that: 
 

 , 2 1, 1 1, 2 1, 0i i i i i i i iβ β β β− + − − − +− =  (4.19) 

 

so by the previous two equations: 
 

2 2 2

1 1 , 1 1, 1 1 1 1,i i i i i i i i i i i ic c cσ β σ β σ β+ + − + − − − += =ɶ ɶ ɶ  (4.20) 

 
∀i∈{2,...,N−1}. 

We have shown (4.3) in the case u = vi−1, v = vi and w 

= vi+1. Now, let u, v, w∈V be arbitrary. Then, they 

correspond to 
3 2 1

, ,
i i i

v v v  respectively and, without loss of 

generality, we can assume that 1≤i1<i2<i3≤N. Using the 

left hand equality in (4.20) repeatedly, we find: 

 
3

3 3 2 2 3 3 3

2

2

3

2 2 3

2

2

1

2 2

, 1, 1 1

, 11

1

2

1, 1 1

, 11

1

1

i

j ji i i i i i i
j i

j jj i

i

j ji i i
j i

j jj i

c c

c

σ β σ β
β

σ β
β

−

−− −
= −= +

−

+ − −
= −= +

=

=

∏
∏

∏
∏

ɶ ɶ

ɶ

 (4.21) 

 

However, it follows by repeated use of (4.15) that: 
 

3 3

3 2

2 2

1 1

1, 1 , 1, 1
1

i i

j j j ji i
j i j i

β β β
− −

+ − −−
= = +

=∏ ∏  (4.22) 

 

Combining (4.21) and (4.22), one finds: 
 

3 3 2 2 2 2 3 2

2 2

, 1 , 1i i i i i i i i
c cσ β σ β

− −
=ɶ ɶ  (4.23) 

 

Moreover, using (4.15) again (when i2−1 ≠ i1), one 

has that: 
 

2 2 2 1

3 2 3 1

, 1 ,

, 1 ,

i i i i

i i i i

β β

β β
−

−

=  (4.24) 

 

so, substituting (4.24) into (4.23) and relabelling, we 

have that: 
 

2 2

, ,u u v w v v u wc cσ β σ β=ɶ ɶ  (4.25) 

 
Hence, the first equality in (4.3) holds. The second 

equality follows in exactly the same manner using the 

second equality in (4.20) in lieu of the first.  

Finding and Conclusion 

We introduced the quick simulation fields, which 

are correlated Markov fields that can be almost as fast 

and easy to simulate as independent fields. The given 

algorithm works on graphs so one can simulate in any 

dimension and it is an improvement of the prior 

algorithms of the authors because it facilitates closed form 

description of the possible field distributions with no added 

computational costs. The purpose of this work is: (1) To 

introduce this algorithmic improvement and (2) To discuss 

important simulation properties that one may wish to hold 

or wish to avoid. We introduced the following concepts: 
 
(1) Marginality is the property that the induced 

distribution of a simulated random field on any 

subfield is the same as the distribution produced by 

the simulation algorithm directly on the subfield 

when the simulation order is maintained. 

(2) The Permutation Property states that the distribution 

of a simulated field is the same regardless of the 

order that the graph vertices are simulated in 

(3) A quick simulation field is said to be completely 

non-trivial if 
w w

π π≠
⌢

 for every vertex w 

(4) A sufficiently connected graph is one where every 

vertex has a neighbor with two neighbors 

(5) A disjoint pair rich graph is one where every pair of 

non-neighbor vertices have distinct neighbors 
 

Some of our main findings about our quick 

simulation field are: 
 

(1) There is a closed form for the possible quick 

simulation field that is given by (3.3). 

(2) Marginality always holds by Lemma 1 

(3) There are uncorrelated quick simulation fields that 

are still not independent by Example 5 
(4) In the general case, the Permutation Property holds 

if and only if (4.1) holds 
(5) In the sufficiently connected case, the Permutation 

Property holds if and only if (4.2) and (4.3) both hold 
(6) If there are at least four vertices, then the following 

are equivalent: 
(a) The graph is sufficiently connected, disjoint 

pair rich and there is a completely non-trivial 

Quick Simulation Field on its completion for 

any collections , , ,π π π β⌢
ɶ  (with

w w
π π≠

⌢
for all w) 

satisfying the permutation property. 

(b) The original graph is already complete, the 

commutate or type condition (4.15) holds and 

(4.14) holds with at least one 0
w

c ≠ . 
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