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Introduction 

Suppose we have a networked data structure x = 

{(x(u), x(v)): uv ∈ e} generated by a memoryless source 

G with distribution P(x) to be compressed with distortion 

no greater than d ≥ 0, using a memoryless random 

codebook Ĝ with distribution P(y). In this instance, the 

compression performance can be calculated by the 

generalized information theory or generalized 

Asymptotic Equipartition Property (AEP), which gives 

the probability of locating a d- close match between x = 

{(x(u), x(v)): uv ∈e} and any given networked data 

structure (codeword) y = {(y(u), y(v)): uv ∈ e}, as a 

number approximately equal 
( ) ( )( ), ,

2
x ynR P P d−

. The rate 

function R(P(x)
, P(y)

, d) may be presented as an infimum 

of relative entropies. The aim of this article is to extend 

the results presented in the recent paper Doku-Amponsah 

(2010) and the reference therein. 

To be specific, in this article, we develop a Lossy 

AEP for networked structured data modelled as 

coloured random graphs. We present and prove 

process Large Deviation Principle (LDP) for the 

coloured random graph conditioned to have a given 

empirical colour measure and empirical pair measure, 

see Doku-Amponsah (2006), using similar coupling 

techniques as in the article by Boucheron et al. 
(2002). From this LDP and the techniques employed 

by Dembo and Kontoyiannis (2002) for the random 

field on Z2
, we obtain the proof of the Lossy AEP for 

the Networked Data Structures. 

We apply our Lossy AEP to a concrete example 

from biology, Metabolic network. This is a graph of 

interactions forming a part of the energy generation and 

biosynthesis metabolism of the bacterium E coli. In this 

case, the colours represent substrates and products and 

edges represent interactions Newman (2002). 

The article is organized as follows: Generalized AEP 

for Coloured Random Graph Model section contains the 

core result of the paper, Theorem 2.1. LDP for two-

dimensional Coloured Random Graph Model section 

gives process level LDP's, Theorem 3.1 and 3.2, which 

form the bases of the proof of the core result of the 

article. The final part of the paper provides the proofs 

of all Process Level Large deviation principles (i.e., 

Proof of Theorem 2.1, 3.1 and 3.2) for the paper and 

hence the core result of the article. 

Generalized AEP for Coloured Random 

Graph Process 

Main Result 

Consider two Coloured Random Graph processes X = 

{(X(u), X(v)): uv ∈ E} and Y = {(Y (u), Y (v)): uv ∈ E} 

which take values in G = G(X) and Ĝ = Ĝ(X), resp., the 

spaces of finite graphs on X. We equip G(X), Ĝ(X) with 

their Borel σ fields F(x) and ( )ˆ xF . Let P(x) and P(y) 

denote the probability measures of the entire processes X 

and Y. By ( )
( )

,

xPσ π  and ( )
( )

,

yPσ π  we denote the coloured 

random graphs X and Y conditioned to have empirical 

colour distribution σ and empirical pair distribution π. 

See, example (Doku-Amponsah, 2006). We always 

assume that X and Y are independent of each other. 

By X we denote a finite alphabet and we denote by 

N(X) the space of counting measure on X equipped with 

the discrete topology. By M(X) we denote the space of 
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probability vectors on X aimed with the weak topology 

and M*(X) denotes the space of finite measures on X 

aimed with the weak topology. 

Throughout the remaining part of the paper we 

shall assume that X and Y are Coloured Random 

Graph processes, (Penman, 1998). For n ≥ 1, let ( )y
nP  n 

denote the marginal distribution of X on V = {1, 2, 3, 

..., n} taken with respect to ( )
( )

,

yPσ π  and ( )y
nQ  denote the 

marginal distribution Y on V = {1, 2, 3, ..., n} with 

respect to ( )
( )

,

yPσ π . 

We take ρ: X × N(X) × X × N(X) → [0,∞) as an 

arbitrary non-negative function and we define a 

sequence of single-letter distortion measures ρ(n)
: G × 

Ĝ → [0, ∞), n ≥ 1 by: 

 

( ) ( ) ( ) ( )( )1
, ,

n
x y

v V

x y B v B v
n

ρ ρ
∈

= ∑  

 

where, Bx(v) = (x(v), Lx(v)) and By(v) = (y(v), Ly(v)), 

Given d ≥ 0 and x ∈ G, we denote the distortion-ball of 

radius d by: 

 

( ) ( ) ( ){ }ˆ, : ,
nB x d y G x y dρ= ∈ ≤  

 

For (σ, π) ∈ M(X) × M(X × X), we write: 

 

( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )
( )

,

, /

,

, /
,

!

ba b a

b X

K a l

e a b a
a for N X

b

σ π

π σ π σ
σ

−

∈

  = ∈∏
ℓ

ℓ
ℓ

 

 

and define the rate function I1:M[(X × N(X))
2
] → [0, ∞] by: 

 

( )

( ) ( )( )
1

1,1 1,2, ,
|| , ,

,

I v

H v K K if visconsistent and v v

otherwise
σ π σ π σ ⊗ = =

= 
∞

(2.1) 

 

where: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ), , , ,
, , , , ,x y x y x x y yK K a a l l K a l K a lσ π σ π σ π σ π⊗ =  

 

By x D p we mean x has distribution p. For (σ, π) ∈ 

M(X) × M(X × X)m we write: 

 

( ) ( )
( ) ( )

,

, ,
, log , ,

X Yt B B

avd e K K
ρ

σ π σ πσ π =  

 

Assume: 

( ) ( ) ( ) ( )
( ) ( ) ( )min , sin , min ,x y

n n

n n

P Y D Q
d E es f X Y dσ π ρ σ π = →

 
 

 

For n > 1; we write: 

 

( )( ) ( ) ( )( ) ( )1 ˆ, , : inf || :
n

y x yx
n n n n n n n

V
R P Q d H V P Q V M G G

n

 = × ∈ × 
 

 

 

and: 

 

( ) ( ) ( )( ){ }min
1

, : inf 0 : sup , ,
x y

n n n
n

d d R P Q dσ π∞

≥
= ≥ < ∞  

 

Theorem 2.1 (ii) below gives the Lossy AEP for 

networked data structures. 

Theorem 2.1 

Suppose X and Y are coloured random graphs. 

Assume ρ are bounded function. Then: 

 

• with P(x)
- probability 1, conditional on the event 

{Φ(Ln,1) = Φ(Ln,2) = σ, π)} the random variables 

{ρ(n)
(x, Y)} satisfy an LDP with deterministic, 

convex rate-function: 

 

( ) ( ){ }1: inf : ,
v

I z I v v zρ ρ= =  

 

• for all d ∈ (dmin(σ, π), dav(σ, π), except possibly at 

( )min ,d σ π∞ : 

 

( ) ( )( )

( )
( )

( )
( )( ), ,

1
lim log ,

, ,

x
n

n

x y

Q B X D
n

R P P d almost surelyσ π σ π

→∞
−

=
 (2.2) 

 

where, R(p, q, D) = infv H(v || p × q). 

Application (Doku-Amponsah, 2012) 

Metabolic Network 

Let us consider a metabolic network of the energy 

and biosynthesis metabolism of the bacterium E coli 
modelled as coloured random graph on n nodes 

partitioned into nσn(substrate) block of substrates and 

nσn(product) block of products and n||_πn|| number of 

interactions divided into nπn(substrate, product), 

nπn(substrate, product), nπn(substrate, substrate)/2, 

nπn(product, product)/2 different interactions, 

respectively. Assume σn converges σ and πn converges 

π. If we take ρ(s, r) = (s-r)
2
 then, by Theorem 2.1 we 

have the distortion-rate: 
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( )
( ) ( ) ( ) ( )2 , , , 2 ,0,

, ,
if D subs prod subs subs prod prod subs prod

R P Q D
otherwise

π π π π ≥ + + +
= 
∞

 (2.3) 

 

where subs := substrate and prod := product. 

LDP for Two-Dimensional Coloured 

Random Graph Process 

For any n ∈ N we define: 

 

( ) ( ) ( ){ }
( )

( )
{ }

( )*

: : ,

: : , ,
1 1

n

n

M X M X n b for all b X

M X X

n
M X X b a for all b a X

b a

σ σ

π π

= ∈ ∈ ∈

×

  
= ∈ × ∈ ∈ 

+ =  

ℕ

ɶ

ɶ ℕ

 

 

Throughout the proof, we shall assume that ωn(ax, ay) 

> 0, for all ax, ay ∈ X and ωn,1(ax) = σn(ax), ωn,2(ay) = 

σn(ay). It is not too difficult to see that the law of the 

two-dimensional coloured random graph conditioned to 

have empirical colour distribution σn and empirical pair 

distribution πn: 

 

( ) ( ) ( ) ( ) ( ){ },1 ,1 ,2 ,2, : | , , ,n n n n n n n nP P L Lσ π ω π ω π= ⋅ Φ = Φ =  

 

Can be constructed in the following way: 

 

• Colours are assigned to the vertices by sampling 

without replacement from the collection of n 

colours, which contains any colour (ax, ay) ∈ X 

exactly nωn(ax, ay) times 

• For each unordered pair {b, a} of colours, we create 

exactly mn(b, a) edges by sampling without 

replacement from the pool of potential edges 

connecting vertices of colour b and a, where: 

 

( )

( )
( )

( )

( )

, ,

, ,

, : , ,
2

, ,
2

n x x x x

n y y y y

n n x x x x

n y y y y

n a b if a a b b and a b

n a b if a a b b and a b

nm a b a b if a a b b and a b

n
a b if a a b b and a b

π
π

π

π

 = = ≠


= = ≠


=  = = =



= = =


 (3.1) 

 

We define the process-level empirical measure Ln 

induced by X and Y on G × Ĝ by: 

 

( )

( ) ( )( ) ( ) ( ) ( )2*

,

,

1
, , ,

X Y

n x y

x y x y kB v B v
v V

L

for M X X
n

β β

δ β β β β
∈

 = ∈ ×  ∑
 

 

Note that we have: 

( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
,

1

,

1

,,

,, ,

,

, ,

1
, ,

1
, ,

: , ,

X Y

X Y

n x y

x yB v B v
v V

x yX v Y v L v
v V

n x y

L x v y v l v

x v y v l v
n

x v y v l v
n

L x v y v l v

φ

δ φ

δ

−

−

∈

∈

⊗

=

=

=

∑

∑
ɶ

 

 

where, φ(βx,βy) = ((x(v), y(v)), lx,y(v). The next Theorem 

which is the LDP for Ln of the process X, Y is the main 

ingredient in the proof of the Lossy AEP. 

Theorem 3.1 

The sequence of empirical measures Ln obeys an LDP 

in the space of probability vectors on (X × N(X))
2
 

equipped with the topology of weak convergence, with 

convex, good rate-function I1. 

The proof of Theorem 3.1 above is dependent on the 

LDP for nLɶ given below: 

Theorem 3.2 

The sequence of empirical measures nLɶ  satisfies a 

large deviation principle in the space of probability 

measures on X2
 × N(X)

2
 equipped with the topology of 

weak convergence, with convex, good rate-function: 

 

( )

( ) ( )( )
2

1,1 1,2, ,
|| , ,

L

H K K if isconsistentand

otherwise
σ π σ π

ω

ω ω ω ω σ ⊗ = =
= 
∞

 (3.2) 

 

where: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ), , , ,
, , , , ,x y x y x x y yK K a a l l K a l K a lσ π σ π σ π σ π⊗ =  

 

For any bin v ∈ {1,..., n}, we denote its colours by 

( ) ( )( ),X v Y vɶ ɶ and for h = x, y, the number of balls of 

colour bh ∈ X it contains it contains is denoted by lv
(bh). 

Now we define an empirical process-level occupancy 

distribution of this constellation by: 
 

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )

,
, ,, ,

2 2

,

1
, , , , ,

, ,

X Y
n x y x y x y x yX v Y v L v

v V

x y x y

L a a a a
n

for a a X N X

δ+

∈

=

∈ ×

∑ ɶ ɶ ɶ

ɶ ℓ ℓ

ℓ

 

 

where, ( ),X YL vɶ = (lv
(bx), lv

(by), (bx, by) ∈ X × X) is the 

colour distribution in bin v. In the next theorem we prove 
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exponential equivalence of the law of the empirical 

process-level distribution nLɶ under ( ),n n

P
σ ϖ

, the law of the 

coloured random graph conditioned to have colour law 

σn and edge distribution πn and the law of the empirical 

process-level occupancy distribution nL+ɶ  in the random 

allocation model ( ),n n

P
σ π
ɶ  (We refer to (Dembo and 

Zeitouni, 1998), Definition 4.2.10) for the definition of 

definition of exponential equivalence). 

Lemma 3.3 

The law of nL+ɶ under ( ),n n

P
σ π
ɶ and the law of nLɶ  under 

( ),n n

P
σ π

 are exponentially equiv-alent. 

We define the metric d of total variation by: 
 

( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )( ) ( )( )

2 2, , ,

2 2

1
, | , , ,

2

, , , |, ,

x y x y

x y x y

a a l l X N X

x y x y

d v v v a a l l

v a a l l for v v M X N X

∈ ×

=

− ∈ ×

∑ɶ

ɶ ɶ

 

 
As this metric generates the weak topology, the 

proof of Lemma 3.3 is the equivalent to proving that 

for every ε > 0: 
 

( ){ }1
lim log ,n n
n

P d L L
n

ε+

→∞
≥ = −∞ɶ ɶ  (3.3) 

 
where, P indicates a properly defined coupling measure 

between the random allocation model and the coloured 

random graph. 

We begin, by denoting by V (a) the set of vertices 

(bins) which have colour a ∈ X and observe that: 
 

( ) ( )# nV a n aσ=  

 

For h = x, y and every ah, bh ∈ X, begin: At each step 

k = 1,..., mn(ah, bh), we pick at random two vertices 

( )1

k
hV V a∈  and ( )2

k
hV V b∈ . Place one ball of colour bh in 

bin 
1

kV and one ball of colour ah in 
2

kV  and link 
1

kV to 
2

kV  

by an edge unless 
1 2

k kV V=  or the two vertices are already 

connected. When one of these two things occur, then we 

simply choose an edge at random from the set of all 

possible edges connecting colours ah and bh, which are 

not yet an edge in the graph. This gives a graph with: 
 

( ) ( ) ( ),1 ,2 ,n n n nL L ω πΦ = Φ =ɶ ɶ  

 
and: 
 

( ) ( ) ( )
, ,

2
, , ,n n

n n x x y y
a b X a b X

d L L B a b B a b
n

+

∈ ∈

 
≤ + 

 
∑ ∑ɶ ɶ   (3.4) 

where, Bn
(a, b) is the total number of steps k ∈ {1,..., 

mn(a, b)} where there is a difference between the vertices 

1

kV , 
2

kV drawn and the vertices which formed the kth 

edge linkimg a and b in the random graph constructed. 

Given a, b ∈ X, the probability that 
1 2

k kV V= or the 

two vertices are already connected is given by: 

 

[ ] ( ) ( ) { }

( ) { }
( )

( )( )

,

2,

1
, : 1

,

11
1 1

, ,

h h

h h

h hk a b
n h h

a b
n h h n h h

p a b
m a b

k

m a b m a b

=

  −
 + −
 
 

 

 

Bn
(ah, bh) is a sum of independent Bernoulli random 

variables ( )
( )

( )
1 , / 2

,...,
n h h

h h

n a b
X X

ϖ
with ‘success’ probabilities 

given by [ ] ( ) ( ) ( )1 , / 2
, ,..., ,

n h h
h h h hn a b

p a b p a b
ϖ

. Note that E[Xk] 

= p[k](ah, bh) and: 

 
( )

[ ] ( ) [ ] ( )( ), 1 ,
h

k h h h hk kVar X p a b p a b  = −   

 

Now, we have: 

 

( ) [ ]

( )
( ) { }

{ } ( ) ( ) { }

,

,
1

, , 1

1 1
1 1 1 1 1

, ,

h h

h h

h h

n a b

n
h h h hk a b

k

h ha b
n h h n h h

EB a b p a b

a b
m a b m a b

=

=

= =

  
  + − − ≤ + =
  
  

∑
 

 

We write: 

 

( ) ( )
( )

( ),

2

1

1
, :

,

n h hm a b
h

n h h k
kn h h

a b Var X
m a b

σ
=

 =  ∑  

 

and observe that: 

 

( )( ) ( )( )
( ) ( ) { }

2

,

lim , lim ,

lim , , 1 1
h h

n
n h h h h

n n

n h h n a bn

E B a b Var B a b

m a b a bσ
→∞ →∞

→∞

=

= = +
 

 

We Define e(z) = (1 + z) log(1 + z) –z, for z ≥ 0 and 

use Bennett's inequality, (Bennett, 1962), to arrive at, for 

sufficiently large n: 

 

( ) { }

( ) ( ) ( )

,

1

,

2 1

2
,

,

1 1
1

,

exp , ,
, ,

h hh x y a bn
h h

h x y

n h h n h h
h x y n h h n h hh x y

P B a b
n n

n
m a b a b e

m a b a b

δ

δ
σ

σ

= =

=

= =

 +
 

≥ + 
  

  
  ≤ −

  
  

∑
∑

∑ ∑
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for any δ1 > 0. Let ε ≥ 0 and choose 1 22m

ε
δ = . Suppose 

that we have Bn
(ah, bh) ≤ δ1, for h = x, y. Then, by (3.4): 

 

( ) 2

1, 2nd L v mδ ε≤ =ɶ  

 

Hence: 

 

( ){ } ( ){ }

( ) { } ( ){ }
( ) ( )

( ) ( )

1
,

,

2

1,,
,

2

2

1, ,
2

, max ,

max sup , 1 1 / 2

, ,

max sup exp

, ,

h h

h h
h h

n
h h

h x y
a b X

n
h h a bh x y a b X

n h h n h h

h x y a b X

n h h n h h

P d L L P B a b n

m P B a b n

m a b a b

m n
e

m a b a b

ε δ

δ

σ

δ
σ

+

=
∈

= ∈

= ∈

> ≤ ≥

≤ ≥ + +

 −
 
 ≤  
  
    

∑ɶ ɶ

 

 

Let 0 ≤ δ2 ≤ 1. The, for very large n we obtain: 

 

( ){ } ( ) ( )

( )( ) { }( )

{ }( ) { }( )

1
2

2

1

2

2

1 1

2 2

1
log , 1

2 1

1

2 1 1

1 1

log 1
2 1 1 2 1 1

b a

b a

a b a b

n
P d L L e

n

n

n

δ
ε δ

δ

δ

δ
δ

δ δ

δ δ

+

=

=

= =

 
 > ≤− −
 + 

  
  +   + +  

=− + −  
  
 + − 
    + + + +
  

ɶ ɶ

 (3.5) 

 

This ends the proof of the lemma. 

Proof of Theorem 3.2, 3.1 and 2.1 

Proof of Theorem 3.2 

We write ( )
2

nϑ := ( ) ( )2 ,
n

n nvϑ ϖ , ( )
1

nϑ := ( ) ( )1 ,
n

n nvϑ ϖ  and 

state the following Lemmma. Denote by Σ(n)
(σn, πn) the 

space of all empirical neighbourhood measures with 

empirical colour distribution σn and empirical pair 

distributions πn. 

Lemma 4.1 (Doku-Amponsah, 2014) 

For any process level empirical measure vn with vn,1, 

vn,2 ∈ Σ(n)
(σn, πn), we have: 

 

( ) ( )
( )

( ) ( )

( )
( )

( ) ( )
( )

,2 1, ,

,2 2, ,

,1|| ||

,

,1|| ||
2

,
| |

n
n

n n n n

n n

n
n

n n n n

n n

n H vn K H v K

n n

n H vn K H v K
n

e P L v

e

σ π σ π

σ π σ π

ϑ

σ π

ϑ

σ π

    
    − + +     +    

    
    − + +    −     

≤ =

≤ Σ

ɶ ɶ

  (4.1) 

 

where: 

( ) ( ) ( ) { }
,

, |
nn n

h h n h h hK a l a K l a
πσ π

σ=  

 

and: 

 

{ }
( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( )

, /

2 1

, /
| ,

!

, .

lim lim 0

hn h h n h

n

h

ba b a

n h h n h

h h

b X h

h

n n

n n

e a b a
K l a

b

for N X and h x y

π σ

π

π σ

ϑ ϑ

−

∈

→∞ →∞

 
 =

∈ =

= =

∏
ℓ

ℓ

ℓ  

 

Proof 

Note, by construction, for any process level empirical 

measure, vn with vn,1, vn,2 ∈ Σ(n)
(σn, πn), we have: 

 

( ) ( )

( ) ( ) ( ){ }
,

,1 ,2
| ,

n n
n n

n n n n n n

P L v

P L v L L

σ π

σ π

+

+ + +

=

= = Φ = Φ =

ɶ ɶ

ɶ ɶ ɶ ɶ
 (4.2) 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

,
,

,

,

, ,

, 1

, 1,...,

h

n h h

h h
h

n h

h x y a X h h hn u h

n a b

n h h

j
a b X n hh n ha

n a

nv a N X

n a b

n ab j n a

π

σ

π

σω

= ∈

∈

 
 =
 ∈ 

  
  
  =   

∏ ∏

∏

ℓ ℓ

ℓ

 (4.3) 

 

while ( ) ( )
,n n

nP L
σ π

+ɶ ɶ = 0 when ( ),1nL+Φ ɶ ≠ (σn, πn) or ( ),2nL+Φ ɶ  

≠ (σn, πn) by convention. Therefore, by similar 

combinatoric computations as in the proof of     

(Doku-Amponsah, 2014), Lemma 0.6) and the Sterling's 

formula see, (Feller, 1968) we have 4.1. 

The proof of Theorem 3.2 is derived from Lemma 

4.1 and similar arguments as (Doku-Amponsah, 2014, 

Page 13). 

Proof of Theorem 3.1 

Let Γ ∈ M[(X × N(X))
2
] and write Γφ = {ω ⊗φ-1

: 

ω∈ Γ}. Note that if A is closed (open) then Γφ is a 

closed (an open) since φ is linear. Now suppose F is a 

closed subset of M[(X × N(X))
2
] then by Theorem 3.2 

we have: 

 

( ) ( ) { }

{ } { }
( ) ( )

1

2 2

1

2 2

1
inf inf liminf log

1 1
lim log liminf log

lim inf

n
F nv F

n n
n n

Fv F

I I v P L F
n

P L F P L F
n n

I v I

φ

φ

φω

φ

ω

ω φ

ω φ

−

∈ →∞∈

→∞ →∞

−

∈∈

− ⊗ = − ≤ ∈

≤ ∈ ≤ ∈

≤ − = − ⊗

ɶ

ɶ  

 

The form of the rate function in Theorem 3.1 is 

obtained if we solve the optimization problem: 
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( ){ } ( )1

2 1inf :I v v Iω φ ω−⊗ = =  

 

Proof of Theorem 2.1 

We write M:= M[(X × N(X))
2
] and define the set Cε by: 

 

( ) ( )
( )

( ) ( )
,

,

: sup | ,

,

, |

x y

x y
X N X

x y

v M v
C

K

ε β β

σ π

β β
σ π

β β ε

∈ ×

 ∈
 

=  
 − ≥ 

 

 

Lemma 4.2 

Suppose the sequence of measures (σn, πn) converges 

to the pair of measures (σ, π): For any ε > 0 we have 

( ) ( )
,

lim 0
n n

n P Cε

σ π→∞ = . 

Proof 

Observe that Cε defined above is a closed subset of M 

and so by Theorem 3.1 we have that: 

 

( )( ) ( )1

1
limsup log , infn n

v Cn

P C I v
n ε

εσ π
∈→∞

≤ −  (4.4) 

 

We use proof by contradiction to show that the right 

hand side of (4.4) is negative. Suppose that there exists 

sequence vn in Cε such that I1(vn)↓ 0. Then, there is a 

limit point v∈ F1 with I(v) = 0. Note I is a good rate 

function and its level sets are compact and the mapping 

( )v I v֏  lower semi-continuity. Now I1(v) = 0 implies 

v(βx, βy) = K(σ, π) ⊗ K(σ, π) (βx, βy), for all βx, βy ∈ X × N(X) 

which contradicts v ∈ Cε. 
Notice ρ(n)

(X, Y) = 〈ρ,Ln〉 and if Γ is an open (a 

closed) subset of M then: 

 

{ }: : ,v vρ ρΓ = ∈Γ  

 

is also an open (a closed) set since ρ is bounded 

function: 
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ρ

ρ

ρ

ρ
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ρ

σ π

ρ

σ π

∈ Γ ∈ Γ

→∞
−

→∞

→∞

∈ Γ
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 ∈Γ 
≤  

= Φ = Φ =  

 ∈Γ 
≤  

= Φ = Φ =  

 ∈Γ 
≤  

= Φ = Φ =  

≤ − ( )
( )

( )inf
z cl

v I zρ∈ Γ
= −

 

Observe that ρ are bounded, therefore by Varadhan's 

Lemma and convex duality, we have: 

 

( ) ( ) ( )*, , supx y

t

R P P d td t d∞ ∞
∈

 = − Λ = Λ 
ℝ

 

 

where: 

 

( ) ( ),* 1
: lim log

nnt L

n
n

t e dQ y
n

ρ

∞ →∞
Λ = ∫  

 

Exists for P almost everywhere x. Using bounded 

convergence, we can show that: 

 

( ) ( ) ( ) ( ) ( ) ( ),1
: lim lim log

nnt L y x
n n n

n n
t t e dQ y dP x

n

ρ

∞ →∞ →∞

 Λ = Λ =   ∫ ∫  

 

Using Lemma 4.4, by boundedness of ρ we have that: 

 

( ) ( )

( ) ( )(( )
( )

( ) ( ) ( )
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1
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, ,

1 1
log
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x y
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j
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Λ =
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∑
 

 

Also let: 

 

( ) ( ) ( )
min , : lim

n n

t

t
D

t
σ π

↓−∞

Λ
=  

 

so that ( )*

n dΛ  = ∞ for d < ( ) ( )min ,
nd d σ π< , while ( )*

n DΛ  

< ∞ for ( ) ( )min ,
nd σ π . Observe that for n < 1 we have 

( ) ( )min ,
nD σ π = ( )( ),

n nP YDQ
E essinf n X Yρ 
  , which converges 

to dmin(σ, π). Using similar arguments as (Dembo and 

Kontoyiannis, 2002, Proposition 2) we obtain: 

 
( ) ( )( ) ( )( ) ( )*, , sup :
x y

n n n n n
t

R P Q d td t d
∈

= − Λ = Λ
ℝ

 

 

Now we observe from (Dembo and Kontoyiannis, 

2002, Page 41) that the converge of ( )*

nΛ ⋅ →Λ∞(⋅) is 

uniform on compact subsets of R. Moreover, Λn is 

convex, continuous function converging informally to 

Λ∞ and hence we can invoke (Shannon, 1948, 

Theorem 5) to obtain: 

 

( ) ( )* *

ˆ0 | |

ˆlimlimsup infn n
d dn

d d
δ δ→ − <→∞

Λ = Λ  

 

Using similar arguments as (Dembo and 

Kontoyiannis, 2002, Page 41) in the lines after equation 

(64), we have (2.3) which completes the proof. 
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Conclusion 

In this  article  we  have  found  a  rate  distortion  

theorem  for  networked  data structures. As an application 

the abstract theorem was applied to biosynthesis 

metabolism of the bacterium E coli. This  theorem  could  

serve  as the  basis   for  providing  efficient 

coding/compressing algorithm and/or approximate pattern  

matching  algorithms  for networked  data  structures  

modeled  as coloured  random  graphs. 

Acknowledgement 

This extension has been discussed in the author's PhD 

Thesis at University of Bath. 

Conflict of Interest 

The author declares that he has no conict of interest. 

Reference 

Bennett, G., 1962. Probability inequalities for the sum of 

independent random variables. J. Am. Stat. Assoc., 

57: 33-45. DOI: 10.2307/2282438 

Boucheron, S., F. Gamboa and C. Leonard, 2002. Bins 

and balls: Large deviations of the empirical 

occupancy process. Ann. Applied Probab., 12: 

607-636. DOI: 10.1214/aoap/1026915618 

Dembo, A. and I. Kontoyiannis, 2002. Source coding, 

large deviations and approximate pattern matching. 

IEEE Trans. Inform. Theory, 48: 1590-1615. 

 DOI: 10.1109/TIT.2002.1003841 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dembo, A. and O. Zeitouni, 1998. Large Deviations 

Techniques and Applications. 1st Edn., Springer, 

New York, ISBN-10: 0387984062, pp: 396. 

Doku-Amponsah, K., 2006. Large deviations and basic 

information theory for hierarchical and networked 

data structures. PhD Thesis, Bath. 

Doku-Amponsah, K., 2010. Large deviation results for 

critical multitype Galton-Watson trees.  

Doku-Amponsah, K., 2012. Asymptotic equipartition 

properties for simple hierarchical and networked 

structures. ESAIM: PS, 16: 114-138. 

 DOI: 10.1051/ps/2010016 

Doku-Amponsah, K., 2014. Exponential approximation, 

method of types for empirical neighbourhood 

distributions of random graphs by random 

allocations. Int. J. Stat. Probability, 3: 110-120. 

DOI: 10.5539/ijsp.v3n2p110 

Feller, W., 1968. An Introduction to Probability Theory 

and its Applications. 3rd Edn., Wiley, New York, 

ISBN-10: 0471257087, pp: 528. 

Newman, M.E., 2002. Random graphs as models of 

networks. 

Penman, D.B., 1998. Random graphs with correlation 

structure. PhD Thesis, Sheeld. 

Shannon, C.E., 1948. A mathematical theory of 

communication. Bell Syst. Tech. J., 27: 623-656. 

DOI: 10.1002/j.1538-7305.1948.tb00917.x 


