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Abstract: The down-and-out call barrier option with rebate payment on 

dividend-paying stock is simulated using a new version of the Monte Carlo 

algorithm. The standard Monte Carlo method for simulating such an option 

suffers from two sources of errors: Hitting time error inherent from time 

stepping and the Monte Carlo statistical error. We present a modified 

version of Monte Carlo method that can reduce these errors efficiently 

using the Brownian bridge technique for the hitting time error and the 

antithetic variate approach for the statistical error. We found that the 

Brownian bridge technique is responsible for improving the order of 

convergence in hitting time from one half to one and the antithetic variate 

technique can speed up the Monte Carlo simulation by reducing the 

variance of the computed payoff, giving almost twice as much accuracy. 

The standard error and the coefficient of variation are applied in order to 

measure the effectiveness of the volatility of the underlying option. 
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Introduction 

A European option is a contract giving the option 

holder the right, but not the obligation to buy ( called call 

option) or to sell (called put option) an asset at a 

prescribed time, known as expiry time or maturity T, for 

a certain price K, known as strike price (Hull, 2009). 

Throughout this paper, we restrict ourselves on the 

European call option and the other type can be dealt 

with, in the same manner. 

Basically, evaluating the price of European option, 

(Vc for the call option), is based on analysis of the 

classical Black-Scholes model (Black and Sholes, 1973), 

where the money market consists of a riskless cash bond 

whose value at time t is described by B(t) = e
rt
, where r 

is the continuously compounded annual risk-free interest 

rate, and a single risky asset whose price S(t) follows a 

Geometric Brownian motion defined by: 
 

0
( ) ( ) ( ) ( ), (0)dS t S t dt S t dW t S Sµ σ= + =  (1) 

 

where, W(t) is a standard Brownian motion and µ and σ 

are constants denoting the expected rate of return and the 

volatility of the asset price, respectively (Hull, 2009; 

Black and Sholes, 1973). Using Ito’s formula, a closed 

form solution for the asset price defined by (1) in its Ito 

form is obtained as (Kloeden and Platen, 2011): 
 

( ) ( )
( )

2

20

t
t W t

S t S e

σ
µ σ− +

=  (2) 

 

At expiry time, T, the payoff of the call option is 

calculated as (Black and Sholes, 1973): 

 

( )( )( ) max ,0C T S T K= −  

 

The price of European call option then can be found 

by discounting the expected of its payoff C(T) at the 

risk-free rate with respect to the risk-neutral probability 

measure Q(i.e., µ = r in (2)). Thus: 
 

( )rT Q

c
V e E C T

−

=  (3) 

 

This class of option is known as standard or vanilla 

call European option on non dividend-paying stock. 

However, for dividend-paying stock as we consider 

in this study, the stock price S in risk-neutral world at 
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expiry time T can be calculated by putting µ = r - q in 

(2), where q is dividend payable (Hull, 2009): 
 

2

( )
2

( ) (0)
r q T W T

S T S e

σ

σ

 
− − +  

 
=  (4) 

 

Other type of European options that become 

increasingly popular in world markets, are options with 

barrier features, commonly called European barrier 

options. Unlike the standard European options, the 

payoff of European barrier options depends not only on 

the price at expiry time but also on whether or not the 

underlying asset price has reached a specified boundary 

during the lifetime of options (Hull, 2009). 

Two basic types of European barrier options can be 

identified: Knock-out and knock-in options. Knock-out 

option is one where the option is worthless if the asset 

price touches or passes the barrier. In contrast, the 

knock-in option is activated if the asset price hits or 

crosses the predefined barrier level. The attractiveness of 

such options is that they can be cheaper than their 

counterparts of standard European options, since they 

risk either not being knocked in or being knocked out. In 

this study, we restrict our attention to single barrier 

knock-out options, particularly down-and-out options. 

Using out-in parity, the value of the corresponding 

knock-in can be found as the difference between the 

vanilla call option and the down-and-out call option. 

Valuation formulas have been derived for the barrier 

options in the literature. Merton (1973) provided the first 

analytical formula for a down-and-out call option which 

was the oldest barrier option type. Reiner and Rubinstein 

(1991) provide closed form solutions for the prices of all 

four types of barrier on both call and put options with the 

assumption that the underlying asset price follows 

Geometric Brownian process. Later in (Haug, 1998) 

gave a generalization of these formulas that were 

provided by Reiner and Rubinstein (1991). 
Some barrier options specify that a fixed rebate R is 

to be given to the holder of the options if the knock-out 
and knock-in options become worthless. This can make 
the barrier options more attractive to the potential 
purchasers by compensating them for the loss of the 
option when the knock-out option is knocked out or 
when knock-in option is never knocked in (Chriss, 
1997). Here, we will consider the down-and-out barrier 
option with rebate payment, and this case is considered 
as the first exit time problem. 

The analytical expressions are not available for many 

cases of barrier options such as options with multiple 

assets and path-dependent options. Numerical 

techniques, particularly Monte Carlo algorithms, play 

crucial role in such a situation. Monte Carlo algorithms 

are a class of algorithms based on simulating a large 

number of price paths of the underlying assets under the 

risk neutral probability measure, computing the payoffs, 

averaging, and discounting at the risk free rate 

(Glasserman, 2003). Boyle (1997) provides an early 

discussion of the use of Monte Carlo methods in pricing 

options, and since that time, this technique has become 

one of the standard methods for the calculation of option 

values due to its flexibility in handling the increasing 

complexity of options problems. 

However, in the case of simulating barrier options, 

the standard Monte Carlo algorithm becomes 

inefficient since it yields high statistical and 

discretization errors, due to the knockout feature of 

such options. The method has slow convergence and 

produces statistical errors with order of convergence 

of
1

O
M

 
 
 

, where M is the number of simulations 

(Glasserman, 2003; Higham, 2004) and discretization 

error or hitting time error with order of convergence of 

1
O

N

 
 
 

, with N time steps (Gobet, 2009). 

Basically, the 95% confidence interval of the underlying 

option is defined as (Glasserman, 2003; Higham, 2004): 

 

1.96
M

Var
V

M

 
±   

 
 (5) 

 

where, VM is the Monte Carlo estimation of the option 

value and Var represents the computed variance of the 

value of the barrier option. Observe that the 

quantity
Var

M
represents the standard error in Monte 

Carlo Simulation. Obviously, one way to reduce such an 

error and to improve the Monte Carlo approximation is 

by taking more samples, which makes it an expensive 

work in terms of computational time. For example, 

improving the accuracy by getting an extra digit, that is, 

shrinking a confidence interval by a factor of 10, 

requires 100 times as many samples (Higham, 2004). 

Moreover, if we would reduce the variance by a half, we 

need to add four times of samples. The standard error is 

also proportional to the square root of the variance and 

this motivates an alternative approach by concentrating 

on reducing the variance other than adding more 

samples. Such techniques are known as variance 

reduction techniques and its most widely used technique 

is the antithetic variate technique. For background on 

this technique and more details about it, see as a brief 

sampling (Hull, 2009; Glasserman, 2003; Boyle, 1997; 

Higham, 2004; Boyle et al., 1997). 

There are many other variance reduction approaches 

such as control variate, stratified sampling, importance 

sampling and moment matching methods that have been 

discussed in literature; see for example (Glasserman, 

2003) and the references given there. Recently, Giles and 
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Szpruch (2013) used Giles’ multilevel Monte Carlo 

technique for pricing many financial problems including 

barrier options in order to minimize the overall variance 

for a given computational cost. 

For continuously monitored barrier options, the MC 

method also suffers from the hitting time error inherent 

from time stepping. As mentioned above, this error is 

proportional to 
1

N

, due to the fact that the standard 

MC algorithm overestimates the actual values of the 

option prices because the option may be knocked out 

between the discrete computational nodes (Gobet, 2009). 

Inspired by (Mannella, 1999), one can improve such a 

slow convergence by using Brownian interpolation to 

calculate the exit probability of the barrier. This 

technique is known as a Brownian bridge technique and 

according to (Gobet, 2000), this simple technique is 

responsible for improving the order of convergence from 

1
O

N

 
 
 

to 
1

O
N

 
 
 

under some conditions on functional 

of the stock price. For more analysis on using this 

technique in barrier options, we refer the reader to 

(Glasserman, 2003; Gobet, 2009; Baldi, 1995; Moon, 

2008) and for other applications, we refer to (Alzubaidi 

and Shardlow, 2014) for neuroscience models and 

(Mannella, 1999; Jansons and Lythe, 2003; Buchmann, 

2005) for physical systems. 

The rest of the paper is arranged as follows. In 

section 2, the problem of the down-and-out call barrier 

option with rebate payment is formulated and necessary 

notations are introduced. In section 3, we compute the 

analytical expressions for the value of the underlying 

option. In section 4, a Monte Carlo algorithm for 

simulating the barrier option is discussed. In addition, we 

introduce a variance reduction technique called antithetic 

variate technique and an error reduction approach known 

as a Brownian bridge technique. Moreover, we present a 

modified version of Monte Carlo algorithm by 

combining these techniques with the standard MC 

method. In section 5, we include numerical experiments 

concerning the underlying option, in order to compare 

the standard MC for efficiency and accuracy with the 

modified version of MC algorithm. The resultant errors 

are analyzed and the effectiveness of the volatility is 

studied. Section 6 contains our conclusions and some 

ideas for future works. 

Problem Formulation 

Let H, where H < S0, denotes the level of the barrier 

of the down-and-out call barrier option with rebate 

payment R. The first hitting time of the stock price St 

with barrier H, where 0 < t < T and T is expiry time, is 

thus defined by (Glasserman, 2003; Moon, 2008): 

{ }inf 0 :
H t

t S Hτ = ≥ ≤  

 
The discounted payoff of such an option is thus given 

by (Moon, 2008): 
 

( )
( )max ,0 if 0

,
if 0

rT

T t

H H
r H

t

e S K S H forall t T
f S

e R S H for some t T
τ

τ

τ

−

−

 − > < <
= 

≤ < <

 (6) 

 

The value of the option price at time t = 0 can be 

formally given as (Moon, 2008): 

 

( ),

Q

docr H HV E f S
τ

τ =    (7) 

 

where, the expectation here is taken with respect to the 

risk-neutral probability measure and K is strike price of 

the barrier option. 

The rebate here is called non-deferred rebate since 

the rebate R is paid as soon as the barrier is hit. 

Explicit Formulas 

Theorem 3.1. (The Barrier Option with Zero 

Rebate) 

Consider 

0
( / )In H S

d
Tσ

= , 0
( / )In K S

c
Tσ

= ,

2

0

2
r q T

σ

θ
σ

 
− + 

 =  and 

2

2

1

2
r q T

σ
σ

θ
σ

  
− + +   

  = , then the theoretical value of 

Vdoc at time t = 0 of a down-and-out call option, with strike 

price K, volatility σ, dividend payable q, risk-free interest 

rate r, barrier H and expiration time T, is given by: 

 

( )( ) ( )( )0 1 0
max , , , max , , ,

qT rT

docrV S e F c d d Ke F c d dθ θ
− −

= −  (8) 

 

Where: 

 

( ) ( ) ( )2
, , 2

b
F a b N a e N a b

θ
θ θ θ= − − − + +  

 

N denotes the standard normal distribution function 

defined as: 
 

2

2
1

( )
2

y
x

N x e dy
π

−

−∞

= ∫  

 
Proof. For the proof, Horfelt (2003). 

Theorem 3.2. (The Pure Rebate Option) 

The theoretical value of Rebate option in down-and-

out call option Vdoc at time t = 0 is given by: 
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( )0 0
Re , , ,

rT

roc
V F d d if H Sθ

−

= <  (9) 

 
Where: 
 

( ) ( )2( , , ) 2b
F a b N a e N a b

θ
θ θ θ= − − − + +  

 
Proof. For the proof, Horfelt (2003). 

Consequently, the value of the down-and-out call 

barrier option with rebate payment can be calculated 

as the sum of the values of the options given in (8) 

and (9). Thus: 
 

docr doc roc
V V V= +  (10) 

 
Which will be used to check the efficiency of the 

numerical simulation algorithms that will be discussed in 

next section. 

Monte Carlo Algorithm with Error and 

Variance Reduction Techniques 

We begin with discretization of the time interval [0, 

T] into N +1 uniform subintervals 0 = t0 < t1 < t2 < t3 

<···< tN = T, where N ∈ N, tn = n∆t, n = 0, 1, ···, N and 

T
t

N
∆ =  is the fixed time step. 

We next compute Sn+1 = S(tn+1) at each time step for n 

= 0, 1, ···, N-1 by: 
 

2

2

1

n
r q t W

n n
S S e

σ

σ

 
− − ∆ + ∆  

 
+ =  (11) 

 
where, ∆Wn = W(tn+1)-W(tn) are increments in the 

Brownian motion, which are normally distributed, and 

can be simulated as 
n n

W tη∆ = ∆  where each ηn is 

independent and identically distributed standard normal 

random variable (Glasserman, 2003; Higham, 2004). 

The standard Monte Carlo approximation for the 

expected value of the discounted payoff of the down-

and-out call barrier option with rebate payment defined 

in (6) can be calculated as (Glasserman, 2003; Higham, 

2004; Moon, 2008): 

 

( )
1

1
,

M

M j H H

j

V f S
M

τ
τ

=

= ∑ ɶ
ɶ  

 

where, M is the simulation number, fj is the discounted 

payoff at simulation step j and: 

 

{ }inf : 1,2, , :
H n n

t n N S Hτ = = ≤ɶ ⋯  

 

is the approximation for the first hitting time τH. Then 

the resultant error produced using the standard MC can 

be written as (Moon, 2008): 

( ) ( )

( ) ( )( )

( ) ( )

1

1

1
, ,

, ,

1
, ,

M
Q

H H j H H

j

Q

H H H H

M
Q

H H j H H

j

H s

E f S f S
M

E f S f S

E f S f S
M

τ τ

τ τ

τ τ

ξ τ τ

τ τ

τ τ

ξ ξ

=

=

 = − 

 = − 

 
 + −  

 

= +

∑

∑

ɶ

ɶ

ɶ ɶ

ɶ

ɶ

ɶ ɶ

 

 

where, ξH and ξs represent the hitting time error and the 

statistical error, respectively. In the following 

subsections, we will discuss the ways to reduce these 

errors using the Brownian bridge technique for the 

hitting time error and antithetic variate approach for the 

statistical error. 

Brownian Bridge Technique 

Using time stepping methods to simulate the payoff 

of the barrier options may cause large errors in the 

calculation of the probability of first time the option 

price reaches the barrier. This is due to the possibility 

that the process may attain the barrier and come back, 

within the time step. Approximating the continuous 

sample paths of Brownian motion using discrete random 

walks gives the values only at the beginning and the end 

of the time step and so we have no information about the 

behaviour of the continuous process during the time step 

(Buchmann, 2005). 

Inspired by (Mannella, 1999; Moon, 2008) dealt with 

this situation by applying a simple hitting test after each 

time step using the distribution of the Brownian bridge 

from S(tn) = Sn to S(tn+1) = Sn+1. To be more precise, the 

price St for t ∈ [tn, tn+1], can be considered as a constant-

drift Brownian bridge pinned at S(tn) = Sn to S(tn+1) = Sn+1 

and therefore, the distribution of the first hitting time 

through the barrier H with respect to this bridge can be 

approximated as: 

 

( ) ( )( )

( )( )

1 1

1

2 2

| ,

2
exp

n H n n n n

n n

n

P P T S t S S t S

H S H S

S t

τ

σ

+ +

+

= < = =

 − − −
 =
 ∆
 

 (12) 

 

To check if the barrier H is crossed during the time 

step [tn, tn+1], we sample a uniformly distributed random 

variable un ∼ U(0, 1) and then compare it to the 

probability exit Pn defined by (12). If un < Pn, we assume 

that the exit event has occurred and in this case, a 

predefined rebate R need to be paid. We consider S
τH ≤ H 

for some τH ∈ (tn, tn+1), which means that the discounted 

payoff can be given as e
-rτH

R. Otherwise, the process St is 

assumed to remain within the time step for all t ∈ [tn, 

tn+1]. For an approximation to the first hitting time τH, 
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one can choose the midpoint of the time interval. 

Thus 1
1

2 2

n n

H

t t n
tτ

+
+ + 

= = ∆ 
 

ɶ , where n = 0, 1, 2, ··· , N-1. 

Antithetic Variate Technique 

The antithetic variate technique attempts to reduce 

the variance by exploiting the existence of negative 

correlations between two estimates of the underlying 

option (Merton, 1973). To illustrate how to use this 

technique, suppose our objective is to estimate the option 

value defined by (7). From (11), the risk neutral stock 

price Sn, n = 0, 1, ··· , N are generated using the sequence 

of independent and identically distributed standard 

normal random variables ηn, n = 0, 1, ··· , N. The idea 

behind such a technique is that if ηn are used to simulate 

the increment of Brownian path, then their antithetic 

variates -ηn, which are also normally distributed random 

variables, can be used to simulate the increment of the 

reflection of the path about the origin (Giles and 

Szpruch, 2013). The output computed using the 

increment of Brownian path will be negatively correlated 

with that obtained by its reflection, resulting in a 

reduction in variance. 

Recall that the standard MC estimator for the option 

value defined in (7) is given as: 
 

1

1
M

M j

j

V f
M

=

= ∑  

 
where, fj is the discounted payoff of the underlying 

barrier option at the simulation step j. 

The antithetic alternative estimator is simply the 

averages of all of 2M observations (Glasserman, 2003; 

Higham, 2004): 
 

1 1

1

2

M M

A j j

j j

V f f
M

= =

 
= + 

 
∑ ∑  

 

where, the 
j
f is the discounted payoff of the option at the 

simulation step j which is obtained by changing the sign of 

all random standard normal samples used for calculating 

fj. The pairs fj and 
j
f are called the antithetic variates.  

The VA is thus the sample mean of M independent 
observations: 
 

1

1

2

M
j j

A

j

f f
V

M
=

 +
=   

 
∑  

 
Applying the Central Limit Theorem yields that 

( )

2

A docr

j j

M V V

f f
Var

−

 +
  
 

converges in distribution to N(0, 1) 

(Glasserman, 2003; Higham, 2004). We now have: 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

1
2

2 4

1
2 2

4

1

2

j j

j j j j

j j j

j j j

f f
Var Var f Var f Co f f

Var f Co f f

Var f Co f f

υ

υ

υ

 +
= + + +  

 

= + +

= + +
 

 

where, ( )j j
Co f fυ + represents the covariance of fj 

and
j
f . Therefore, we need ( ) 0

j j
Co f fυ + <  in order to 

reduce the computed variance, and that will be valid 

when f is monotonic (Glasserman, 2003; Higham, 2004). 

Based on these techniques, the modified version of 

MC algorithm is carried out as follows: 

 

Algorithm 1: Modified version of Monte Carlo 

algorithm for the down-and-out call barrier option with 

rebate payment 

1: for j = 1 to M do 

2: for n = 1 to N do 

3:        Generate an N(0, 1) samples ηn: n = 1, 2, ···, N, 

4:        Set
2

1
exp ∆

2
n n n

S S r q t t
σ

σ η
+

  
= − − ∆ +   

  
 

5:        Set
2

1
exp ∆

2
n n n

S S r q t t
σ

σ η
+

  
= − − ∆ −   

  
 

6:        Set 
( )( )1

2 2

2
exp

∆

n n

n

n

H S H
P

S

tSσ

+
 − − − 

=  
 

   

7:        Set 
( )( )1

2 2

2
exp

∆

n n

n

n

H S H S

t
P

Sσ

+

 − − −
 =
 
 

 

8: end for 

9: Generate a U(0, 1) samples un: n = 1, 2, ···, N 

10: if  
n

S H> and 
n n
P u< for all n = 1, 2, ···, N then 

11:         max( ,0)rT

j N
e Sf K−

= −   

12: Otherwise r H

j
f Re τ−

=

ɶ  

13: end if 

14: if 
n

S H> and 
n n
P u< for all n = 1, 2, ···, N then 

15: max( ,0)
rT

j Ne Sf K
−

= −  

16: Otherwise r H

jf Re
τ−

=

ɶ  

17: end if 

18: end for 

19: 
1

1

2

M j j

A j

f f
V

M =

 +
=   

 
∑ % Estimation value of the 

barrier option 

20: 
( )

2

1

1

M

A docrj
V V

Var
M

=

−

=

−

∑
% computed variance 

21: 
Var

ST
M

= % standard error 



Hasan Alzubaidi / Journal of Mathematics and Statistics 2016, 12 (1): 1.11 

DOI: 10.3844/jmssp.2016.1.11 

 

6 

22: 
A

Var
CV

V
=  % Coefficient of variation 

23: CI = VA ± 1.96ST % 95% Confidence Interval 

 

Results and Discussion 

In our numerical experiments, we will simulate the 

down-and-out call option with rebate payment using 

the algorithms considered in previous section. The 

efficiency of such algorithms will be examined by 

comparing the simulated results to the analytical 

results obtained by (10). The statistical and hitting 

time errors will be analyzed. In addition, we will 

study the effectiveness of volatility on the pricing of 

underlying option using such algorithms. 

Convergence Properties 

Figure 1 displays the error in computed discounted 

expected payoff of down-and-out call option as a 

function of the discretization parameter
1

t
N

∆ = , where N 

is the number of time steps, using the underlying 

algorithms. The parameters are specified as follows: The 

volatility parameter σ  = 0.20, the dividend q = 0.03, the 

risk-free interest rate r = 0.02, the current value of the 

option S0 = 100, the strike price K = 98, the barrier H = 

95, the rebate R = 1.5 and the expiration time T = 1. The 

theoretical value is 5.2835. The averages are taken over 

M = 10
7
 realizations. The number of time steps are 

chosen as: N = 100, 125, 200, 400, 1000. When the 

standard MC is used, we find a hitting time error 

proportional to ( )
1

2

1
t

N

∆ =  however, when the modified 

version of MC is applied, this systematic error is reduced 

to being proportional to 
1

t
N

∆ = . 

Figure 2 displays the CPU time against the error in 

computed discounted expected payoff of the 

underlying option for the two methods. To avoid any 

influence from statistical errors, M is to be chosen as 

10
6
. The number of the time steps is adjusted in each 

method until we reach the desired accuracy. As seen 

from the plot, the modified version of MC has a 

significantly better computational time required to 

achieve a given accuracy level than the standard MC. 

For example, in order to achieve the accuracy level 

0.03, we needed 30000 time steps in each path for the 

standard MC and only 40 time steps in each path for 

the modified method. The ratio between the two CPU 

time in this case is equal to 159.6783, which means 

that the modified version of MC is approximately 160 

times more efficient than the standard MC. 

 

 
 
Fig. 1. Plots of the absolute error calculated using the standard MC and the modified version of MC algorithms against the 

discretization parameter ∆t for the down and out barrier option with rebate payments. The parameters are fixed as: The 

volatility parameter σ = 0.20, the dividend q = 0.03, the risk-free interest rate r = 0.02, the current value of the option S0 = 

100, the strike price K = 98, the barrier H = 95, the rebate R = 1.5 and the expiration time T = 1. The theoretical value is 

5.2835 and the averages are taken over M = 107 realizations 
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Fig. 2. Plots of the CPU time as a function of absolute error using the standard MC and the modified version of the method. M = 106, 

with keeping other parameters as in Figure 1 

 
Table 1. 95% confidence interval for the down and out barrier option with rebate payments using the standard Monte Carlo algorithm 

and the modified version of MC 

M The standard MC The modified version of MC Ratio of widths 

104 [5.3302, 5.7662] [5.1891, 5.4671] 1.6 

105 [5.5592, 5.6959] [5.2475, 5.3344] 1.6 

106 [5.5714, 5.6142] [5.2714, 5.2989] 1.6 

107 [5.5937, 5.6073] [5.2781, 5.2869] 1.6 

Analytical result 5.2835 

 

The analysis of these results as follows. The 
approximations of down-and-out call option obtained by 

standard MC algorithm overestimate the actual values, 
even for small values of ∆t, because the exact path of the 

underlying option may attain the barrier and comeback, 
within the time step, causing the hitting time error. 

Inspired by (Mannella, 1999), one can use conditional 

exit probability after each time step to correctly check 
whether the barrier is being hit or not. As discussed 

above, this approach is known as a Brownian bridge 
technique and according to (Gobet, 2000), this simple 

technique is responsible for improving the order of 

convergence from half order to one order, which 
coincides with our numerical observations shown in Fig. 

1. The overall accuracy depends not only on the hitting 
time error, but also on the sampling error arising from 

Monte Carlo approximation to the mean of the option, 
which decreases as more realizations are generated. Thus 

the sampling error is dominated and in order to estimate 

the option value with reasonable accuracy, a large value 
of M is required, which is computationally expensive. 

As shown in Table1, using the antithetic variate 
technique can lead to saving in computation time by 

reducing the variance of option value. To be more 
precise, Table 1 shows the 95% confidence intervals and 

the ratio of their widths (1.96×standard errors) for time 
step ∆t = 0.0025 (N = 400) and M = 10

4
, 10

5
, 10

6
, 10

7
 

using the underlying numerical techniques. The standard 

MC is overestimating the option values, even for largest 
sample size M = 10

7
. Thus the confidence interval for M 

= 10
7
, which is [5.5937, 5.6073], does not even include 

the theoretical value of the down and- out call option 

(5.2835), whereas for each sample size M, this analytical 

value is always contained in the corresponding 
confidence interval when the antithetic variate technique 

is used. Moreover, the antithetic variate technique 
shrinks the confidence intervals by a factor of around 

1.6. Observe that the width of the corresponding 
confidence interval scales with the square root of the 

variance of the underlying option and is inversely 

proportional to the square root of the number of 
simulations M, which makes it an expensive work to 



Hasan Alzubaidi / Journal of Mathematics and Statistics 2016, 12 (1): 1.11 

DOI: 10.3844/jmssp.2016.1.11 

 

8 

improve the approximation by taking more samples. 
Broadly speaking, the use of Brownian bridge technique 

and the antithetic variate approach significantly speeds 

the convergence and improves the computational 
efficiency compared to the standard MC. 

Volatility 

The stock price volatility σ is critically important to 

option price since it is considered as a measure of the 

uncertainty about stock returns. Figure 3 and 4 show 

the effectiveness of the volatility σ on the pricing of the 

down-and-out call option with rebate using the standard 

MC and the new version of MC algorithm. We chose ∆t 

= 0.0025, M = 10
6
, with keeping other parameters as in 

Fig. 1. Following (Hull, 2009), the stocks typically 

have a volatility between 15 and 60%. In Fig. 3, we 

plot the computed mean value of underlying option 

against these values of volatility using the two 

numerical methods. Standard MC results are 

represented using squares symbols whereas the circles 

represent the results obtained using the MC with the 

variance and error reduction techniques. The estimation 

of 95% confidence interval of each computation is 

shown as error bars. For reference values of our 

computations, the theoretical Black-Scholes prices are 

plotted as shaded circles. 

There is excellent agreement between the 

analytical Black-Scholes values and those obtained 

using the MC algorithm combined with antithetic 

variate approach and Brownian bridge technique for 

given values of volatility. Moreover, all Black-

Scholes values are contained in the corresponding 

95% confidence intervals of simulation results 

obtained by such a technique. As σ increases, the 

results obtained using the modified MC remain stable 

and converge to the corresponding analytical results. 

In contrast, as volatility σ increases, the standard MC 

simulated results go up and diverge away from the 

analytical results, giving poor convergence with wider 

widths of confidence intervals. 

To understand the behaviour of these results, we 

plot in Fig. 4 the variance of underlying option against 

the volatility σ for each method, with M = 10
6
 and N = 

400. As we increase the volatility more, the 

corresponding computed variance increases. 

Moreover, It is clearly seen that using the modified 

MC method greatly reduces the variance of the 

estimates by approximately above 50% for each 

volatility, persistent with the theoretical framework 

discussed in section 4. For example, using the 

standard MC, the values of variance are 119.0926 for 

σ = 0.20, 423.3956 for σ = 0.40 and 960.1935 for σ = 

0.60. These values have been reduced to be 49.4972 

for σ = 0.20, 173.0023 for σ = 0.40 and 375.3769 for 

σ = 0.60, when the modified version of MC is applied. 

 

 
 
Fig. 3. Plots of the expected Payoff of the down and out barrier option with rebate payments as a function of volatility parameter 

σ using the standard MC and the modified version of the method. ∆t = 0.0025, M = 106, with keeping other parameters as 

in Figure 1 



Hasan Alzubaidi / Journal of Mathematics and Statistics 2016, 12 (1): 1.11 

DOI: 10.3844/jmssp.2016.1.11 

 

9 

 
 
Fig. 4. Plots of the Variance of the down and out barrier option with rebate payments as a function of volatility parameter σ using the 

standard MC and the modified version of the method. ∆t = 0.0025, M = 106, with keeping other parameters as in Figure 1 

 
Table 2. Standard errors for the down-and-out call barrier option with rebate payments using the standard Monte Carlo algorithm and 

the modified version of MC 

 Standard errors Standard errors Standard errors using the 

 using standard MC using standard MC modified version of MC 

Volatility σ with samples M = 106 with samples 2M = 2×106 algorithm with samples M = 106 

0.1 ±0.0084 ±0.0059 ±0.0053 

0.20 ±0.0109 ±0.0077 ±0.0070 

0.25 ±0.0134 ±0.0094 ±0.0086 

0.30 ±0.0157 ±0.0112 ±0.0102 

0.35 ±0.0181 ±0.0129 ±0.0117 

0.40 ±0.0206 ±0.0147 ±0.0132 

0.45 ±0.0231 ±0.0164 ±0.0147 

0.50 ±0.0255 ±0.0181 ±0.0162 

0.55 ±0.0285 ±0.0201 ±0.0177 

0.60 ±0.0310 ±0.0222 ±0.0194 

 

Table 3. Coefficient of Variation for the down and out barrier option with rebate payments using the standard Monte Carlo algorithm 

and the modified version of MC 

  CVnew = Coefficient of  

 CVstand = Coefficient of  variation using the modified  

Volatility σ variation using standard MC of MC algorithm version new

stand

CV
Ratio

CV
=  

0.15 1.6417 1.0794 0.6575 

0.20 1.9561 1.3312 0.6805 

0.25 2.2494 1.5695 0.6977 

0.30 2.5315 1.7997 0.7109 

0.35 2.8057 2.0255 0.7219 

0.40 3.0841 2.2526 0.7304 

0.45 3.3602 2.4832 0.7390 

0.50 3.6255 2.7193 0.7500 

0.55 3.9281 2.9629 0.7543 

0.60 4.2002 3.2167 0.7658 
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Table 2 summarizes the results of evaluating the 

standard errors, for the underlying option with different 

values of volatility σ, chosen as in Fig. 3. First, we 

observe that the standard errors are increasing functions of 

volatility σ. The use of antithetic variate technique affects 

the estimation of the standard errors. For example, the 

standard errors have been reduced from ±0.0084 to 

±0.0053 for σ = 0.15, and from ± 0.031 to ±0.0194 for σ = 

0.60, giving almost twice as much accuracy as the 

standard MC. Moreover, our results indicate that the 

standard errors obtained using the modified version of MC 

algorithm usually much less than the standard MC results 

calculated using 2M samples (Hull, 2009). 

In the investing world, the coefficient of variation CV 

or the ratio of standard deviation to the expected payoff 

can be considered as a measure of how much volatility 

we are assuming in comparison to the expected return 

from an investment. There for, an investment with lower 

value for the CV is preferred to a one with higher CV. 

Table 3 displays the coefficient of variation CV as a 

function of volatility σ that are chosen as in Fig. 3. The 

results indicate that the values of CV obtained by 

standard MC have been reduced by around a third for the 

low-level of volatility and around a quarter for high-level 

of volatility, when the modified MC algorithm is used. 

To be more precise, the ratio of the CVnew to the CVstand 

raises from 0.6575 to 0.7658 as we increase the volatility 

σ from 15% to 60%. Moreover, for the chosen 

parameters, the CV is always greater than one, which is 

the indication of a greater variability in the price of the 

underlying option. 

Conclusion 

A barrier option is a type of path-dependent option 

whose payoff at maturity depends on whether or not the 

underlying asset price has hit a specified barrier during 

the life of the option. In our work, we considered the 

down-and-out call barrier option with rebate payment. 

Explicit expressions for underlying option were derived. 

We applied the standard Monte Carlo algorithm for 

simulating such an option. The statistical and hitting 

time errors obtained by standard MC algorithm have 

been analyzed. We discussed the ways to reduce these 

errors using the antithetic variate technique for the 

statistical error and the Brownian bridge technique for 

the hitting time error. We found that the Brownian 

bridge technique is responsible for improving the order 

of convergence in hitting time from one half to one, 

coinciding with the theoretical work done previously; 

(Gobet, 2009; 2000). We also found that the antithetic 

variate technique can speed up the Monte Carlo 

simulation by reducing the variance of the computed 

option price by around 50%, with the same number of 

realizations. In statistical problems, the parameters are 

usually estimated using the 95% confidence interval to 

guarantee capturing the explicit value of the underlying 

option, with high probability. Indeed, using the antithetic 

variate technique shrinks the 95% confidence interval of 

the simulated value of the underlying option efficiently, 

giving almost twice as much accuracy; see for more 

analysis (Glasserman, 2003; Higham, 2004). A modified 

version of Monte Carlo algorithm has been introduced 

using these reduction techniques. Finally, the standard 

error and the coefficient of variation have been applied 

to measure the effectiveness of the volatility computed 

using the standard and the modified version methods. 

Based on the Black-Scholes framework, the volatility is 

considered to be constant during the life of the option; 

however, this is usually inconsistent with real stock 

markets. By assuming that the volatility of the stock 

price is subject to fluctuations, it becomes possible to 

model the options more accurately. The models with this 

feature are known as stochastic volatility models either 

with jumps such as Bates model or without jumps such 

as Heston model. This would be an interesting area to 

consider in our future work. 
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