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Abstract: In this study, the p-singular values of random matrices with 

Gaussian entries defined in terms of the lp-p-norm for p>1, as is studied. 

Mainly, using analytical techniques, we show the probabilistic estimate, 

precisely, the decay, on the upper tail probability of the largest strictly 

convex singular values, when the number of rows of the matrices becomes 

very large and the lower tail probability of theirs as well. These results 

provide probabilistic description or picture on the behaviors of the largest 

p-singular values of random matrices in probability for p>1. Also, we show 

some numerical experiential results, which verify the theoretical results. 
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Introduction 

The largest singular value and the smallest singular 

value of random matrices in l2-norm, including Gaussian 

random matrices, Bernoulli random matrices, 

subgaussian random matrices, etc, have attracted major 

research interest in recent years and have applications in 

compressed sensing, a technique for recovering sparse or 

compressible signals. For instance, (Soshnikov, 2002; 

Soshnikov and Fyodorov, 2004) studied the largest 

singular value of random matrices and (Rudelson and 

Vershynin, 2008a; 2008b; Tao and Vu, 2010) and some 

others, studied the smallest singular values. 
In the study of the asymptotic behavior of 

eigenvalues of symmetric random matrices, Wigner 
symmetric matrix is a typical example, whose upper (or 
lower) diagonal entries are independent random 
variables with uniform bounded moments. Wigner 
proved in (Wigner, 1958) that the normalized 
eigenvalues are asymptotically distributed in the 
semicircular distribution. Precisely, let A be a symmetric 
gaussian random matrix of size n×n whose upper 
diagonal entries are independent and identically-
distributed copies of the standard gaussian random 
variable, then the empirical distribution function of the 

eigenvalues of 
1

n

 A is asymptotically: 
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0 | | 2
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p x

for x

π


− ≤

= 
 >

 (1.1)  

As the matrix size n goes to infinity. This is the well-
known Wigner’s Semicircle law, which provides the 
precise description of the statistical behavior of 
eigenvalues of matrix of large size. In another case, for a 
random matrix whose entries are independent and 
identically-distributed (i.i.d.) copies of a complex 
random variable with mean 0 and variance 1, Tao and 

Vu, (2008; Tao et al., 2010) that the eigenvalues of 
1

n

 

a converges to the uniform distribution on the unit circle 

as n goes to ∞ and that holds not only for the random 
matrices with real entries but also for complex entries. 
Their result has also generalized (Girko, 1985) and solved 
the circular law conjecture open since the 1950’s, that the 
smallest eigenvalue converges to the uniform distribution 
over the unit disk as n tends to infinity (Bai, 1997).  

The largest singular values of matrices are actually 

their p-norm, which, from a geometric perspective, 

has connectionsa with the Minkowski space, complex 

l
p
 space, in differential geometry, for which one can 

refer to (Liu, 2013; 2011), because one can view the 

p-norm of a matrix as a generalization of the p-norm 

of a vector. 
For random matrices whose entries are i.i.d. random 

variable satisfying certain moment conditions, the largest 
singular value was studied in (Geman, 1980; Yin et al., 
1988). Tracy and Widom (1996) that the limiting law of 
largest eigenvalue distributions of Gaussian Orthogonal 
Ensemble (GOE) is given in terms of a particular 
Painlevé II function, which is the well-known Tracy-
Widom law. Furthermore, the distribution of the 
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eigenvalue of Wishart matrices, WN,n = AA*, where A = 

AN,n is a Gaussian random matrix of size N×n, was 
studied in (Johansson, 2000; Johnstone, 2001). They 
showed that the distribution of largest eigenvalue of 
Wishart matrices converges to the Tracy-Widom law as 

n

N
tend to some positive constant. More generally, the 

non-gaussian random matrices were studied in 
(Soshnikov, 2002). Seginer (2000) compared the 
Euclidean operator norm of a random matrix with i.i.d. 
mean zero entries to the Euclidean norm of its rows and 
columns. Later, (Latala, 2005) gave the upper bound on 
the expectation (or average value) of largest singular 
value namely the norm of any random matrix whose 
entries are independent mean zero random variables with 
uniformly bounded fourth moment. 

The condition number, which is the ratio of the 
largest singular value over the smallest singular value of 
a matrix, is critical to the stability of linear systems. In 
(Edelman, 1988), the distribution of the condition 
number of Gaussian random matrices, was particularly 
investigated in numerical experiments. As a typical 
example of subgaussian random matrices, the 
invertibility of Bernoulli random matrices was also 
studied. Tao and Vu (2007) the probability of Bernoulli 
random matrices to be singular is shown to be at 

most ( )
3

1
4

n

o
 

+ 
 

, where n is the size of the matrices. 

Their result shows that the probability of the smallest 
singular value of Bernoulli random matrices to be zero is 
exponentially small as n tends to infinity. Recently, the 

singularity probability ( )
3

1
4

n

o
 

+ 
 

 has been improved to 

( )
1

1
2

n

o
 

+ 
 

 by (Bourgain et al., 2010). 

The recent studies of the smallest singular value have 
also been motivated, in a large sense, by some open 
questions or conjectures. Spielman and Teng (2002) the 
following conjecture was proposed in the International 
Congress of Mathematicians in 2002. 

Conjecture 1.1 

Let ξ be Bernoulli random variable, in other words, 

( ) ( )
1

1 1
2

P Pξ ξ− = = − = . Then: 

 

( ) n

n

t
P s M t c

n

ξ
  

≤ ≤ +  
  

  (1.2)  

 
for all t>0 and some 0<c<1. 

In the breakthrough work on the estimate on the 
smallest singular value, (Rudelson and Vershynin, 
2008a), Rudelson and Vershynin obtained the upper tail 

probabilistic estimate on the smallest value in l2-norm 
for square matrices of centered random variables, with 
unit variance and appropriate moment assumptions. In 
particular, they proved the Spielman-Teng conjecture up 
to a constant. The lower tail probabilistic estimate on the 
smallest value in l2-norm for square matrices was 
estimated in (Rudelson and Vershynin, 2008b). These 
results have shown that the smallest singular value of the 

n×n subgaussian random matrices is of order 
1

2
n

−

 in high 

probability for large n. In a more explicit way, the 
distribution of the smallest singular value of random was 
given in (Tao and Vu, 2010) by using property testing 
from combinatorics and theoretical computer science. 
The pregaussian matrices were used to recover sparse 
image in (Rauhut, 2010) and matrix recovery, on 
which one can refer to (Oymak et al., 2011; Lai et al., 
2012). Very recently, Rudelson and Vershynin (2010) 
gave a comprehensive survey on the extreme singular 
values of random matrices. 

It is well-known that the classic singular value is 
defined in terms of l2-norm, then a natural question 
would be what if one defines the singular value by the lq-
quasinorm for 0<q≤1 and lp-norm for p>1. There were 
some remarkable results by other researchers on the 
largest singular values of random matrices in the l2-
norm. Geman  (1980; Yin et al., 1988) showed that the 
largest singular value of random matrices of size m×N 

with independent entries of mean 0 and variance 1 tends 

to m N+  almost surely. The largest and smallest q-

singular values of pregaussian random matrices for 
0<q≤1 were studied in (Lai and Liu, 2014), which has 
applications in a technique of signal processing (Foucart 
and Lai, 2010; 2009; Lai and Liu, 2011) and other areas. 
Similar to the q-singular value when 0<q≤1, the strictly 
convex largest p-singular value, in which p>1, can be 
defined and we will show the probabilistic estimate, 
precisely, the decay, on the upper tail probability of the 
largest strictly convex p-singular value, when the 
number of rows of the matrices becomes very large and 
the lower tail probability of theirs as well. These results 
provide probabilistic description or picture on the 
behaviors of the largest p-singular values of random 
matrices in probability.  

The Largest p-Singular Value 

The p-singular values of a matrix, in general, can be 

defined in the way of maximum of minimums or 

supremum of infimums. In largest p-sigular values can 

be defined as follows:  

Definition 2.1 

For an m×N matrix A, the largest p-singular value of 

A denoted as ( )
1

p

s  (A) is defined as: 
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( ) ( ) { }1
: || || : || || 1

p N

p p
s A sup Ax x with x= ∈ =ℝ  (2.1)  

 
For given p>1. 

Lai and Liu (2014), the following lemma on a linear 
bound for partial binomial expansion was established. 

Lemma 2.2  

For every positive integer n: 
 

( )
1

2

1 8

n
n kk

n
k

n
x x x

k

−

 
= + 
 

 
− ≤ 

 
∑  (2.2) 

 
For all x∈ [0, 1]. 

The above lemma can be applied to estimate 
probabilities. 

Lemma 2.3  

Suppose ξ1, ξ2, ···, ξn are i.i.d copies of a random 

variable ξ, then for any ε>0: 
 

( )
1

| | 8 | |
2

n
p

i

i

n
P P

ε
ξ ξ ε

=

 
≤ ≤ ≤ 

 
∑  (2.3)  

 
For any given p>1. 
Proof. Given p>1, we have the relation on the 

probability events that: 
 

( )1

1

,... : | |
2

n
p

n i

i

mε
ξ ξ ξ

=

 
≤ 

 
∑  (2.4) 

 

Is contained in: 
 

( ){ }1, 1

1
2

... :| | ,... | | ,... | | :
n

p p p

n i ik in

n
k

ξ ξ ξ ε ξ ε ξ ε ε
 

= + 
 

≤ > > =∪  (2.5) 

 
where, {i1, i2, · · ·, ik} is a subset of {1, 2 ···, n} and {ik+1, 

···, in} is its complement. 

Let x = P(|ξ1|
p
 ≤ε), then by the union probability: 

 

( ) ( )
1

2

1

n
n kk

n
k

n
P x x

k
ε

−

 
= + 
 

 
= − 

 
∑   (2.6)  

 
And applying Lemma 2.2, we have: 

 

( ) ( )1
8 8 | |P x Pε ξ ε≤ = ≤  (2.7)  

 
Since the event (2.4) is contained in the event (2.5): 

 

( ) ( )1

1

| | 8 | |
2

n
p p

i

i

n
P P P

ε
ξ ε ξ ε

=

 
≤ ≤ ≤ ≤ 

 
∑  (2.8) 

 
To estimate the lower tail probability of the largest 

p-singular value, we have the following theorem on 

the lower tail probability of the largest p-singular 
value for p>1. 

Theorem 2.4 

Let ξ be a pregaussian variable normalized to have 

variance 1 and A is an m×N matrix with i.i.d. copies of ξ 

in its entries, then for every p>1 and any ε>0, there 

exists γ>0 such that: 
 

( ) ( )
1

1

p p
P s A mγ ε

 
≤ ≤ 

 
 

 (2.9)  

 

Which γ only depends on p, ε and the pregaussian 
variable ξ. 

Proof. Since aij is pregaussian with variance 1, then 

any ε>0, there is some δ>0, such that: 
 

( )| |
8

p

ij
P a

ε
δ≤ ≤  (2.10)  

 

But we know: 
 

( )
( )

1

1

| |
1

m p
p

ij

i

p
s A a

=

 
≥  
 
∑  (2.11)  

 

For all j, because by the definition of the largest p-
singular value 2.1, choosing x to be the standard basis 

vectors of RN
 gives us maxj ( ) ( ) ( )

1

11
| |

m ppp

iji
a s A

=

≤∑ . 

Therefore, by Lemma 2.3: 
 

( ) ( )

( )

1
1

1

1

| |
2 2

8 | |

m
p

p pp

ijo

i

p

ij

m
P s A m P a

P a

δ δ

δ ε

=

 
   ≤ ≤ ≤      

 

≤ ≤ ≤

∑
 (2.12)  

 

Thus let

1

2

pδ
γ

 
=  
 

, then (2.9) follows. 

For the upper tail probability of the largest p-
singular value, p>1, we can derive the following 
lemma first by using the Minkowski inequality and 
discrete Hölder inequality. 

Lemma 2.5 

For p≥1, (2.1) defines a norm on the space of m × N 
matrices and: 
 

( ) ( )
1

1
|| || || ||

p

p p

j p j p
j j

max a s A N max a

−

≤ ≤  (2.13)  

 
In which aj, j = 1, 2, ···, N, are the column vectors of A. 
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Applying the above lemma, an estimate we can 

derive easily for Bernoulli random matrices, whose 

every entry equals to 1 or-1 with equal probability (Tao 

and Vu, 2009), is the following theorem on the upper tail 

probability of the largest p-singular value of Bernoulli 

matrices for p>1. 

Theorem 2.6 

Let ξ be a Bernoulli random variable normalized to 

have variance 1 and A be an m×N matrix with i.i.d. 
copies of ξ in its entries, then: 
 

( ) ( )
11 1

1

p

pp p pm s A m N

−

≤ ≤  (2.14)  

 

One may conjecture that the bound might be
1

pm . 

However, considering the Bernoulli matrices, whose 
entries are in Bernoulli distribution, as special 
subgaussian matrices, the expectation of the largest p-

singular value may not be 
1

pm . Indeed, let A be an m× m 

Bernoulli matrix and x be a non-zero vector in Rm. The 

expectation of the largest p-singular value:  
 

( ) ( )( )1

|| ||

|| ||

p p

p

Ax
E s A E

x
≤   (2.15)  

 

For all x∈Rm and particularly for x = (1,···, 1) ∈ Rm, 

we have: 
 

1
1

1

1

|| ||
| ... |

|| ||

n p
p pp

i in

ip

Ax
E n E

x

−

=

 
== ∈ + +∈ 

 
∑  (2.16)  

 

Now let Xi: = ∈i1 +···+∈in, then ( )
1

11
... |

n pp

i ini
E

=

∈ + +∈∑  is 

the expectation of the lp-norm of the vector (X1, X2, ···, Xn). 
We also have the following result on the upper tail 

probability of the largest p-singular value of Bernoulli 
matrices for p>1. 

Theorem 2.7 

Let A be an m×m Bernoulli matrix with every entry 
equal to 1 or-1 with equal probability, then one has: 
 

( ) ( )( ) ( )1

p

m
P s A K exp cm≥ ≤ −  (2.17)  

 
For some K>0 and some absolute constant c>0. 

Proof. Let A = (∈ij)m×m and 1m

p
S

−  be the unit sphere with 

respect to lp-norm in Rm, then for any 1m

p
x S

−

∈ , by the 

convexity of the function f (t) := tp for p>1: 

1

1

1

1

1 1

|| ||

| | || ||

p ppm m
p

p ij j

i j i

p pm m

ij j p

i j

Ax x m

x m x m

−

= −

= =

 
 = ∈ ≤
 
 

 
∈ = =  

 

∑∑
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  (2.18) 

 
Therefore we have: 
 

|| ||
p

E Ax m≤  (2.19)  

 

For all 1m

p
x S

−

∈ . By Chernoff bound, we get: 

 

( ) ( )
( )

|| || || || || ||
p p p

P Ax Km P Ax KE Ax

exp cKm

≥ ≤ ≥

≤ −

 (2.20)  

 
For any K>2 and some absolute constant c>0. 
By Lemma 4.10 in (Pisier, 1999), there is a subset N 

which is a δ-net of 1m

p
S

−

 with cardinality: 

 

( )
2

1

m

card N
δ

 
≤ + 
 

 (2.21)  

 

Finally, using the union bound of probability and an 
approximation of any point on the sphere by points of 

the δ-net, we obtain (2.17).  
For the rectangular matrices, we have the following 

theorem on the upper tail probability of the largest p-
singular value of rectangular matrices for 1<p≤2. 

Theorem 2.8 

Let ξ be a pregaussian variable normalized to have 

variance 1 and A is an m× N matrix with i.i.d. copies of ξ 

in its entries, then for every 1<p≤2 and any ε>0, there 
exists K>0 such that: 
 

( ) ( )
21 1

2 2

1

p

p p p
P s A K m m N ε

−  
 ≥ + ≤ 

  
  

 (2.22)  

 

where, K only depends on p, ε and the pregaussian 
variable ξ. 

Proof. By the discrete Hölder inequality and the 
definition of the largest p-singular value: 
 

( ) ( )

( ) ( )

1

, 0 , 0

1 1

1 12
222

1

2

|| ||

|| ||

|| ||

|| ||

N N

p p

x x x xp

p

p

Ax
s A sup sup

x

m Ax
m s A

x

∈ ≠ ∈ ≠

−

−

= ≤

=

ℝ ℝ

 (2.23)  

 

We also know that there exists K>0 such that: 
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( ) ( )
1 1

2
2 2

1
P s A K m N ε

  
≥ + ≤   

  
 (2.24)  

 

Therefore, we have: 
 

( ) ( )

( ) ( )

1 11 1

2 22 2

1

1 1

2
2 2

1

p
P s A K m m N

P s A K m N ε

−  
 ≥ + 

  
  

  
≤ ≥ + ≤   

  

 (2.25)  

 
To have a full generalization, let us derive the 

following useful lemma.  
In general, for the relation between 

( ) ( )
1 1

1 1
, 1, 1,

q q

s and s q
p q
+ = > one can deduce the following 

duality lemma on general rectangular matrices. 

Lemma 2.9 

For any q≥1 and m × N matrix A: 
 

( ) ( ) ( ) ( )1 1

q p T
s A s A=  (2.26)  

 

where, 
1 1

1
p q
+ = .  

Proof. By the discrete Hölder inequality, we know 

that if 
1 1

1
p q
+ =  then: 

 

, || ||
q

Ax y Ax≤  (2.27)  

 

For all x∈R
N
 and y∈R

m
 with ||y||p = 1 and 

furthermore the equality holds for some y0 with ||y0 ||p = 
1. Thus: 
 

,|| || 1

|| || ,
m

p

p

y y

Ax sup Ax y
∈ =

=

ℝ

 (2.28) 

 
By the definition of the largest q-singular value: 

 
( ) ( )1 ,|| || 1

,|| || 1 ,|| || 1

|| ||

,

N
q

N m
q p

q

qx x

x x y y

s A sup Ax

sup sup Ax y

∈ =

∈ = ∈ =

=

=

ℝ

ℝ ℝ

 (2.29) 

 
In the same way, we also have: 
 

( ) ( )
1 ,|| || 1

1
,|| ||

,

m
Np x x q

p T

y y

s A sup sup Ax y
=

∈ =

∈

=

ℝ
ℝ

 (2.30)  

 

Finally, using 〈Ax, y〉 = 〈AT
y, x〉 and switching the 

supremums, we get ( ) ( ) ( ) ( )1 1

q p T
s A s A= .  

We have the following remarks on the above lemma. 

Remark 2.10 

One can also obtain the above lemma the operator 
duality on the dual spaces. 

Remark 2.11 

The above lemma allows us to obtain the 

probabilistic estimates on ( ) ( )1

p

s A  for p>2 by taking the 

transpose of A and using the estimates on ( ) ( )1

q T
s A .  

Thus using the duality lemma, we obtain. 

Theorem 2.12 

(Lower tail probability of the largest p-singular value 

of rectangular matrices, p>2). Let ξ be a pregaussian 

random variable normalized to have variance 1 and A be 

an m×N matrix with i.i.d. copies of ξ in its entries, then 

for every p>2 and any ε>0, there exists γ>0 such that: 

 

( ) ( )
1

1

p

p p
P s A mγ ε

− 
≤ ≤ 

 
 

 (2.31)  

 

which, γ only depends on p, ε and the pregaussian 
random variable ξ. 

Moreover, we have the upper tail probability of the 

largest p-singular value of rectangular matrices for p>2. 

Theorem 2.13  

(Upper tail probability of the largest p-singular value 

of rectangular matrices, p>2). Let ξ be a pregaussian 

variable normalized to have variance 1 and A is an m×N 

matrix with i.i.d. copies of ξ in its entries, then for every 

p>2 and any ε>0, there exists K>0 such that: 
 

( ) ( )
1 21

22

1

p p

p p p
P s A K N m N ε

− −  
 ≥ + ≤ 

  
  

  (2.32)  

 

where, K only depends on p, ε and the pregaussian 
variable ξ. 

Numerical Experiments 

In general, matrix p-norms are, in fact, NP-hard to 

approximate if p ≠ 1,2,∞, on which one can refer to 

(Hendrickx and Olshevsky, 2010; Liu, 2014; Higham, 

1992). In this section, however, we would like to show 

the results from some numerically computable 

experiments on the p-singular value for p>1 and q-

singular value for 0<q≤1 of random matrices. 
For p = 2, we plot the largest 2-singular value of 

Gaussian random matrices of size n×n, where n runs 
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from 1 through 100. Figure 1 this graph shows that the 2-

singular value is ( )O n . 

For p = 1, in the first numerical experiment we plot 
the largest 1-singular value of Gaussian random of size 

n×n, where n runs from 1 through 100. Figure 2 the 
graph shows that the largest 1-singular value is O (n). 

In the second numerical experiment for p = 1, we 
plot the largest 1-singular value of Gaussian random 

matrices of size n×n, where n runs from 1 through 
200. Figure 3 the graph shows that the largest 1-
singular value is O (n). 

In the third experiment for p = 1, we plot the largest 
1-singular value of Gaussian random matrices of size 

n×n, where n runs from 1 through 400. Figure 4 the 
graph shows that the largest 1-singular value is O (n). 

For p = ∞, we plot the largest ∞-singular value of 
Gaussian random matrices of size n×n, where n runs 
from 1 through 500. Figure 5 this graph shows that the 
∞-singular value is O (n). 

Higham (1992), the p-norm of a matrix of size m by n 

was estimated reliably in O (mn) operations and an 
algorithm that can estimate the p-norm in a specific 

accuracy, within a factor of
1

1
p

n

−

, was provided. Using this 

algorithm, we plot the largest 4-singular value of Gaussian 
random matrices and Bernoulli random matrices of size 

m×n, where m and n run from 1 through 81 Fig. 6 and 7. 
 

  
 

Fig.1. Largest 2-singular value of Gaussian random matrices 
 

 
 

Fig. 2. Largest 1-singular value of Gaussian random matrices: Experiment 1 
 

 
 

Fig. 3. Largest 1-singular value of Gaussian random matrices: Experiment 2 
 

 
 

Fig. 4. Largest 1-singular value of Gaussian random matrices: Experiment 3 
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Fig. 5. Largest ∞-singular value of Gaussian random matrices 
 

 
 

Fig. 6. Largest 4-singular value of Gaussian random matrices 
 

 
 

Fig. 7. Largest 4-singular value of Bernoulli random matrices 
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