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ABSTRACT 

Periodic autoregressive moving average PARMA process extend the classical autoregressive moving 
average ARMA process by allowing the parameters to vary with seasons. Model identification is the 
identification of a possible model based on an available realization, i.e., determining the type of the 
model with appropriate orders. The Periodic Autocorrelation Function (PeACF) and the Periodic 
Partial Autocorrelation Function (PePACF) serve as useful indicators of the correlation or of the 
dependence between the values of the series so that they play an important role in model identification. 
The identification is based on the cut-off property of the Periodic Autocorrelation Function (PeACF). 
We derive an explicit expression for the asymptotic variance of the sample PeACF to be used in 
establishing its bands. Therefore, we will get in this study a new structure of the periodic 
autocorrelation function which depends directly to the variance that will derived to be used in 
establishing its bands for the PMA process over the cut-off region and we have studied the theoretical side 
and we will apply some simulated examples with R which agrees well with the theoretical results. 
 
Keywords: Periodic Models, PARMA Model, Identification, Periodic Autocorrelation Function 

1. INTRODUCTION 

The time series has been found that many 
meteorological variables (such as rainfall, global 
temperature) are nonstationary. The theory and 
practice of time series analysis have developed rapidly 
since the appearance in 1970 of the seminal work of 
(Box et al., 2013). 

We Know that the time series analysis and 
modeling is an important tool in many areas in our life 
like water resources. It is used for building 
mathematical models to generate synthetic hydrologic 
records to forecast, determine the likelihood, detect 
trends and shifts, and to interpolate missing data and 
extend records in hydrologic records. The statistical 
characteristics of hydrologic series are important 
deciding factors in the selection of the type of model. 
For example, in most cases known in nature, river 

flows have significant periodic behavior in the mean, 
standard deviation and skewness. In addition to these 
periodicities, they show a time correlation structure 
which may be either constant or periodic, for more 
details see (Anderson and Vecchia, 1993; Bartlett, 1946). 

Many macroeconomic time series display a trend and 
marked seasonal variation, while many variables in 
finance and marketing display seasonality but no 
trend. If there is a trend in the data, then often one is 
interested in examining the nature of this trend, as this 
can have implications for forecasting and for 
subsequent model building, (Iqelan, 2011). 

The fundamental aim of periodic time series analysis 
is generally two-fold: To understand and identify the 
stochastic process that produced the observed series and 
in turn to forecast future values of a series from past 
values alone. The common procedure in modeling such 
periodic river flow series is first to standardize or filter 
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the series and then fit an appropriate stationary model to 
the reduced series, for more details see (Hipel and 
McLeod, 1994). Most estimation techniques depend 
on the assumption that the series is stationary. A 
special class of nonstationary time series has been 
defined by (Gladyshev, 1961), called periodically 
correlated time series (also known as cyclostationary 
time series). These time series are nonstationary, but 
have periodic means and covariances. 

The major aim of this study is the PARMA model 
identification, i.e., the determination of the seasonally 
varying orders of the PARMA model, and to develop a 
practical computer program which performs model 
identification for any given actual periodic stationary 
series. An important class of periodic models useful in 
such situations consists of PARMA models, which are 
extensions of commonly used ARMA models that allow 
periodic parameters. PARMA models explicitly 
represent the seasonal fluctuations in mean flow, flow 
standard deviation, and flow autocorrelation, resulting in 
a more realistic time series model that leads to more 
reliable simulations of natural river flows, for more 
details (Ula and Smadi 2003; Vecchia, 1985). 

Since PARMA models are quite new, many questions 
about them are still unanswered and need further studies. 
It is known that there exists general methods for the 
identification of standard ARMA models of mixed type, 
however no such satisfactory method is available for 
PARMA processes. In the application part of this study, 
PARMA models may be more suitable for some seasons 
(Table 1). This study involves only the periodic 
stationarity case and the programs work only for periodic 
stationary processes. There exists well-known methods 
like differencing or filtering to achieve stationarity of 
standard ARMA models, such methods for achieving 
periodic stationarity should also be investigated. 
 
Table 1. Behavior of the PeACF and PePACF for PARMA 

models, where the PeACF have values before lag qs but 
it is zero for lags beyond qs for pure PMA processes and 
the order of the process can be decided according to 
the sample PeACF. Also the PePACF have values 
before lag ps but it becomes zero for lags beyond ps for 
pure PAR processes and the order of the process can be 
decided according to the sample PePACF 

                         PAR (ps)            PMA (qs)        PARMA (ps, qs) 
PeACF     Tails off Cuts-off after Tails off 
         lag qs  
PePACF Cuts-off after     Tails off Tails off 
       lag ps  

Of specific importance to this study is to establish an 
identification of a possible model based on an available 
realization, i.e., to decide the kind of the model with 
correct orders by using two statistics functions widely 
used for identifying PARMA time series models which 
are PeACF and PePACF. Also, we will get some 
properties of the variance summarized which are needed 
for the assessment of the cut-off property of the seasonal 
ACF for a season s which follows a MA(q(s)) and then 
apply this establish on some simulated examples. 

2. STEPS FOR MODEL 
IDENTIFICATION 

In time series analysis, the periodic autocorrelation 
function PeACF and the periodic partial autocorrelation 
function PePACF serve as useful indicators of the 
correlation or of the dependence between the values of 
the series so that they play an important role in model 
identification (Box et al., 2013).  

The most crucial steps are to identify and build a 
model based on available data (Fig. 1). This requires a 
good understanding of the processes, particularly the the 
characteristics of these processes in terms of their 
PeACF and PePACF. In practice, these PeACF and 
PePACF are unknown, so they have to be estimated by 
the sample PeACF and PePACF. 

Thus, in model identification our goal is to match 
patterns in the sample PeACF and PePACF for the 
PARMA models, for more details (William, 2006). 

 

 
 
Fig. 1. Summary of steps for model identification which 

summarize in collecting data then plot the time 
series data then compute and examine the sample 
PeACF and the sample PePACF of the series and 

finally test the deterministic terms 
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Step 1: Plot the time series data and choose proper 
transformation, where the most commonly used 
transformation are variance-stabilizing 
transformations 

Step 2: Compute and examine the sample PeACF and the 
sample PePACF of the original series to further 
confirm a necessary degree of them 

Step 3: Compute and examine the sample PeACF and the 
sample PePACF of the properly transformed 
series to identify the orders of p = 
max{p1,…,pd} and q = max{q1,…,qd} in 
PARMAd (p1, q1, p2, q2, …., pd, qd) 

Step 4: Test the deterministic terms φs,0 and θs,0 when 
d>0 

Alternatively, one can include φs,0 and θs,0 initially and 
discard it at the final model estimation if the preliminary 
estimation result is not significant. This steps will applied in 
section of simulation with R program. 

3. PEACF OF PARMA MODLS 

We consider the identification of seasonally varying 
orders of PARMA time series models by making use of a 
periodic version of the functions ACF and PACF, to get 
a periodic autocorrelation function PeACF and periodic 
partial autocorrelation function PePACF. 

Definition 3.1 

 Gladyshev (1961) We say that the process {Xt} is a 
periodically correlated time series, if: 
 

∃d ∈ Z+;∋µt = µt+d, γX(s,t) = γX(s+d,t+d) ∀s,t ∈ Z, 
 
where: 
 

( )( )( , ) st t s t tXEX and s t E X EX X EXµ γ  = < ∞ = − − < ∞   

 
We will write the time index parameter t as t(s, r) = s 

+ rd such that s = 1,…,d refers to season and r + 1(r = 
0,…,N-1) refers to year, d is the number of seasons and 
N is the number of years with total sample size n = Nd. 

Let {Xs+rd} be a zero-mean periodically correlated 
time series of period d = 2, 3, … . The PARMAd (p1, q1, 
p2, q2, …., pd, qd) has representation Equation 3.1: 
 

, ,
1 1

p qs s

s i s is rd s rd i s rd s rd i
i i

X Xφ θ+ + − + + −
= =

− =∈ − ∈∑ ∑  (3.1) 

 
where {∈s+rd} is an uncorrelated periodic white noise 
process and normally distributed terms with mean zero and 

periodic variances σ∈
2(s) and φs,i, θs,i are the autoregression 

and moving average coefficients respectively. 
For the univariate periodic stationary PARMA 

process {Xs+rd}, the Periodic Autocovariance Function 
(PeACVF) is defined as Equation 3.2: 
 

( )

.

2
, ,

0

( )

, 0 ;

0,

s s rd s rd h

q hs

ss i h s h i s h i
i

s

h E X X

if h q

if h q

γ

θ θ σ

+ + −

−

+ − − −
=

=


≤ ≤= 

 >

∑  (3.2) 

 
where,  θs,0 is defined to be 1 for all seasons s at lag 
h≥0. This is similar to the cut-off property of the 
ACVF of the MA processes. 

The PeACF of ρs(h) for season s at lag h≥0 is 
defined as Equation 3.3: 
 

2
, ,0

2
, ,0

2 2 2 2
, ,0 0

, 1 ;
( ) (0) (0)

0, .

, 1 ;

0, .

q hs
s i h s h i s h ii

s
s s s h

s

q hs
s i h s h i s h ii

s
q qs s

s i s i s h i s h ii i

s

if h q
h

if h q

if h q

if h q

θ θ σ
ρ γ γ

θ θ σ

θ σ θ σ

−
+ − − −=

−

−
+ − − −=

− − − −= =


 ≤ ≤= 


>


 ≤ ≤= 

 >

∑

∑

∑ ∑

 (3.3) 

 
where, γs(0) is the variance for the sth season. 

This is an important property of the PeACF. That 
is, for a season following a pure MA(qs) process, ρs(h) 
= 0 ∀ h>qs, which is called the cut-off property of the 
periodic autocorrelation function of a pure PMA 
processes. Also, this function does not play the same 
role with PARMA and PAR models. 

Definition 3.2 

The PeACF of {Xs+rd} for season s is defined as 
Equation 3.4: 
 

( )

( )
(0) (0)

( )
, 0

(0) (0)
s

ss rd s rd h s h
s

s s h

s rd s rd h

s s h

X X
h E

E Z Z

h
h

µ µ
ρ

γ γ

γ
γ γ

+ + − −

−

+ + −

−

  − −
  =
  
  

=

= ≥

 (3.4) 

 
where, γs(0) is the variance for the sth season and {Zs+rd} 
denotes the periodically standardized time series. 
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We can define a function called peacf which 
summarizes the steps of periodic autocorrelation function 
PeACF to identify the seasonally varying orders of 
PARMA time series models. This function, which 
implements formula (3.3), is represented in Algorithm 1. 
 
Algoritm 1. peacf of PeACF for PARMAd(0;qs) process 

    Input: ( )( )2 , ,    1, ,  ss h i h s dσ γ− − = …   

    for s←1 to d  do 
         for i←0 to qs-h  do 

              
( )

, 1 ;
( ) (0) (0)

0, . / /

s
s

s s s h

s

h
h q

h

h q cut -off

γ
ρ γ γ −


≤ ≤←

 >

 

         end 
   end 
Output:  ρs (h) 
 

Although, as for the ACF of a stationary ARMA 
model, it can be shown for a periodic stationary PARMA 
model that limh→∞ρh (s) = 0 (i.e., PeACF of a stationary 
series goes to zero as time lag increases) (Ula and Smadi, 
2003). The cut-off property of ρh(s) for an arbitrary 
season s following the PMA[q(s)] process Equation 3.5: 
 

,
1

qs

s rd s rd s i s rd i
i

X θ+ + + −
=

=∈ − ∈∑  (3.5) 

 
where is that ρh (s) = 0 for all h>q(s). This is analogous to 
the cut-off property of the ACF of an ordinary MA process. 

Definition 3.3 

The sequences of {ψs,i} is called absolutely 

summable sequences (i.e., converge) if ,0 s ii ψ∞
= < ∞∑ . 

Definition 3.4 

The periodic autoregressive moving-average process 
for the time series {Xs+rd} is said to be causal function of 
{ ∈s+rd}, if for each season s = 1, 2,...,d, there exist 
sequences of {ψs,i}, such that Equation 3.6: 
 

,
0

, 1,.., ; 0,1,2,...s is rd s rd i
i

X foreach s d rψ
∞

+ + −
=

= ∈ = =∑  (3.6) 

 
where, ψs,0 = 1 and all the values  ψs,i are d-periodic and 

satisfy ,0 s ii ψ∞
= < ∞∑  for each season s. 

Proposition 3.1 

Let {Xs+rd} to be periodically correlated time series 
and the absolutely summable sequences {ψs,i} be such 

that {ψs,i} is d-periodic. Then the autocovariance 
function γs(h) = E[Xs+rdXs+rd-h] is given by Equation 3.7: 
 

( )
1

, ,
0 0

,

( , )

X

d

s h l r s h r
r ql h

s s h

s h r l s h r

γ

ψ ψ γ
∞ − ∞

∈− + −
= ==

− =

− − + − −∑∑∑
 (3.7) 

 
Proof 

Let {Xs+rd} be a zero-mean periodically correlated 
time series of period d = 2, 3,... . Then: 
 

,
0

,
0

, ,
, 0

, ,
, 0

, ,
, 0

lim

lim

lim ( , )

( , )

n

s is rd s rd h s rd in i

n

s h i s rd h i
i

n

s i s h j s rd i s rd h jn i j

n

s i s h jn i j

s i s h j
i j

E X X E

E

s i s h j

s i s h j

ψ

ψ

ψ ψ

ψ ψ γ

ψ ψ γ

+ + − + −→∞ =

− + − −
=

− + − + − −→∞ =

∈−→∞ =
∞

∈−
=

 
  = ∈  

 

 
∈ 

 

 
= ∈ ∈ 

  

= − − −

= − − −

∑

∑

∑

∑

∑

 

 
Since the autocovariance function of {∈s+rd} is 

bounded by max. [γ∈(1, 1),…,γ∈(d, d)] and the 
elementwise product of absolutely summable 
sequences is absolutely summable. 

Now, let us change the index i by l = h+j-i to get: 
 

, ,
0

1

, ,
0 0

( , )

( , )

s rd s rd h

s h j l s h j
jl h

d

s h l r qd s h r qd
r ql h

E X X

s h j l s h j

l qd qd

ψ ψ γ

ψ ψ γ υ υ

+ + −

∞ ∞

∈+ − −
==

∞ − ∞

∈− + + − +
= ==

  = 

 
− − + − − 

  

 
= + − − 

  

∑ ∑

∑∑ ∑

 

 

where, j = r + qd and v = s-h-r. Therefore: 
 

1

, ,
0 0

( , )

s rd s rd h

d

s h l r qd s h r qd
r ql h

E X X

lψ ψ γ υ υ

+ + −

∞ − ∞

∈− + + − +
= ==

  = 

 
+ 

  
∑∑ ∑

 

 
Corollary 3.1 

If { ∈s+rd} in proposition (3.1) is periodic white noise 

PWN( )20, ,s dσ , then Equation 3.8: 
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( )
1

2
, ,

0
,X

d

s h r s h r s h r
r

s s hγ ψ ψ σ
−

+ − − −
=

− = ∑  (3.8) 

 
4. PEPACF OF PARMA MODELS 

In time series analysis, the periodic partial 
autocorrelation function is well adapted to the 
identification of pure PAR processes. Let {Xs+rd} be a 
zero-mean periodically correlated time series of period d 
= 2, 3, …. The PARd (p1,…,pd) has representation 
Equation 4.1: 
 

,
1

ps

s is rd s rd i s rd
i

X Xφ+ + − +
=

= + ∈∑  (4.1) 

 
Definition 4.1 

The conditional expectation of Xt given Xs, s<t is 
denoted by E(Xt|Xs, s<t) and defined as follows E(Xt|Xs, 
s<t) = a1Xt-1 + a2Xt-2 +… . 

The conditional expectation can be replaced by the 
linear projection. The best linear prediction of Xt, s<t 
is denoted by pred (Xt|Xs, s<t), for more details see 
(Iqelan, 2011). 

Consider the discrete time series Xs+rd;  
Xs+rd-h, Xs+rd-(h-1),…,Xs+rd-1, Xs+rd, … . Hence, for any h>1, 

define ( )( 1)
1 ( 1)

ˆ Pr | ,...,h
s rd s rd s rd s rd hX oj X X X−

+ + + − + − −=  to 

be the best forward linear predictor of Xs+rd from the 
intermediate variables Xs+rd-1 to Xs+rd-(h-1), where the 
upper indices refer to quantities connected to the 
predictor of Xs+rd based on the h-1 observations right 
before or right after it. So Equation 4.2: 
 

1
( 1)

1, ( )
1

ˆ
h

h
s rd h i s rd h i

i
X a X

−
−

+ − + − −
=

=∑  (4.2) 

 
where ah-1,i , i = 1,…, h-1 are the forward coefficients of 
the prediction. 

Let ( 1) ( 1)ˆh h
s rd s rd s rdX X− −
+ + +∈ = −  to be the forward residual 

of Xs+rd and define Equation 4.3: 
 

( )( 1) 2 ( 1)fh
s rd s rdVar hσ−

+ +∈ = −  (4.3) 

 
We can also obtain the best backward linear 

prediction if we reversing the time index, say 

( 1)
( 1) 1Pr ( | ,...., )h

s rd h s rd h s rd h s rdX oj X X X−
+ − + − + − − + −=%  to be the 

backward linear predictor of Xs+rd-h from Xs+rd-(h-1) to 
Xs+rd-1. So Equation 4.4: 

1
( 1)

1,
1

h
h

s rd h h i s rd i
i

X b X
−

−
+ − − + −

=
= ∑%  (4.4) 

 
where, bh-1,i , i = 1,..,h-1 are the backward coefficients of 
the prediction. 

Also, let ( 1) ( 1)h h
s rd h s rd h s rd hX Xη − −
+ − + − + −= − % to be the 

backward residual of Xs+rd-h and define Equation 4.5: 
 

( )( 1) 2 ( 1)h b
s rd h s rdVar hη σ−

+ − += −  (4.5) 

 
Definition 4.2 

Iqelan (2011) The periodic partial autocorrelation 
function β(s, s-h) is the correlation between Xs+rd and 
Xs+rd-h with the effect of the intermediate variables 
Xs+rd-1, ..., Xs+rd-(h-1) “filtered out”, which is defined on 
Z×Z by Equation 4.6: 
 

( )

( 1) ( 1)

,

( ), 0;

( , ), 1;

ˆ( , ), 2.

s rd

s rd s rd h
h h

s rd s rd s rd h s rd h

s s h

Var X if h

Corr X X if h

Corr X X X X if h

β

+

+ + −
− −

+ + + − + −

− =

 =
 =


− − ≥
%

 (4.6) 

 
Notice that, setting β(s, s) = Var(Xs+rd) instead of 1 in 

the above definition. Also, we can rewrite β(s, s-h) at lag 
h of one variable to be as Equation 4.7: 
 

( )
( )

( )
( 1) ( 1)

( 1) ( 1)

2 2

( ) ,

ˆ ,

,

( 1) ( 1)

s

h h
s rd s rd s rd h s rd h

h h
s rd s rd h

f b
s rd s rd

h s s h

Corr X X X X

Cov

h h

β β

η

σ σ

− −
+ + + − + −

− −
+ + −

+ +

= −

= − −

∈
=

− −

%
 (4.7) 

 
Theorem 4.1. 

1. If {Xs+rd} is a causal periodic autoregression of order 
ps at season s, then βs(h) = 0 whenever h>ps. 

2. If {Xs+rd} is a periodic series with period d and βs(h) = 
0 for all h>ps and βs(ps)  ≠ 0 for each season s, then {Xs+rd} 
is a periodic autoregression of order ps at season s; 1≤s≤d. 

It was mentioned that for a pure PMA processes, the 
PeACF is zero for lags beyond qs. Likewise, for pure PAR 
processes, the PePACF becomes zero for lags beyond ps, so 
if the correct order is ps for season s, then βs(h) = 0 for all 
h>ps. This is the cut-off property of periodic partial 
autocorrelation function for PAR processes. 
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Actually, the PePACF for PMA models behaves 
much like the PeACF for PAR models. 

Also, the PePACF for PAR models behaves much 
like the PeACF for PMA models. 

Also, we can define a function called pepacf which 
summarizes the steps of periodic partial autocorrelation 
function PePACF to identify the seasonally varying 
orders of PARMA time series models which implements 
formula (4.7) to be represented in Algorithm 2. 
 
Algoritm 2. pepacf of PePACF for PARMAd(ps; 0) 
process 
 Input: ( ), ,

( 1) ( 1) ( 1) ( 1)2 2( 1), ( 1), ,f h h h hb
s rd s rd s rd s rd h s rd s rd hh h Covσ σ η η− − − −
+ + + + − + + −− − ∈ ∈ .  

 for s←1 to d  do 

      ( ) ;

.

( 1) ( 1)ˆ( , ),1

0, / / cut off

h h
ss rd s rd s rd h s rd h

s
s

Corr X X X X h p
h

h p
β

− −
+ + + − + −

 − − ≤ ≤←
> −

%

 

 

 end 
 Output: βs (h) 

5. SAMPLE PERIODIC 
AUTOCORRELATION FUNCTION 

Assume that {X1, X2,…,XNd} be a series of size Nd 
from a periodic stationary process {Xs+rd}. Then ˆ ( )h sγ  is 

the sample periodic autocovariance function which 
calculated from Equation 5.1: 
 

( )( )

1 1

0 0

1

0

1

0

1 1
ˆ ( )

1

1

N N

h s rd s rd
r r

N

s rd h s rd h
r

N

ss rd s rd h s h
r

s X X
N N

X X
N

X X X X
N

γ
− −

+ +
= =

−

+ − + −
=

−

+ + − −
=

 
= − 

 

 
− 

 

= − −

∑ ∑

∑

∑

 (5.1) 

 
where, the sample mean for season s is 

1
0

1 N
s s rdrX X

N

−
+== ∑ . 

Also, the sample periodic autocorrelation function 
can be given by Equation 5.2: 
 

0 0

ˆ ( )
( ) , 0

ˆ ˆ( ) ( )
h

h

s
r s h

s s h

γ

γ γ
= ≥

−
 (5.2) 

 
Since µs and γh(s) are periodic with period d, also 

sX and ˆ ( )h sγ  are so. 

Let the white noise terms to be independent and 
normal, so that {Xs+rd} is a Gaussian PARMA process, 

then in (Pagano, 1978) it is proved that ˆ ( )h sγ  are 

consistent, asymptotically independent, joint normal, 
unbiased estimates, efficient and converge almost surely 
to γh(s) for all s and h. Also, sX is consistent and 

unbiased estimator of µs and it can be shown that it also 
consistent under the periodic stationarity assumption. 

For stationary processes, the asymptotic joint 
normality and unbiasedness of the sample ACF rh(s) 
with d = s = 1 have been shown by (Bartlett, 1946) 
and the asymptotic variancecovariance matrix has 
been specified in which Equation 5.3: 
 

{ }2 2 2

( )

1
4 2

h

m m mm h m h h m h h
m

Var r s

N
ρ ρ ρ ρ ρ ρ ρ ρ

∞

+ − −
= −∞

  ≅ 

+ − +∑
 (5.3) 

 
where, the symbol “≅” wherever appears means that the 
statement is true for large N (Box et al., 2013).  

In Vecchia (1985) an approximate solution for the 
first- and second-order moments of rh(s) were obtained 
by pretending that the sample means sX and variances 

0ˆ (s)γ  in rh(s) are equal to their population counterparts 

µs and γh(s), respectively. This assumption will obviously 
be well justified only for large samples due to the 
consistency of these estimators. In that case, we can take 
rh(s) as Equation 5.4: 
 

1

0

1
( )

N

h s rd s rd h
r

r s Z Z
N

−

+ + −
=

= ∑  (5.4) 

 
It then follows that rh(s) is asymptotically unbiased 

with asymptotic variance Equation 5.5: 
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 (5.5) 

 
Which by utilizing ρs(h) = ρs-h(-h) and the fact that 

ρmd(s)ρmd(s-h)+ρmd+h(s)ρmd-h(s-h) is an even function 
of m, reduces to Equation 5.6: 
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Now, the Equation 5.5 and 5.6 is used, only the first 
two terms are retained in these Equation. The remaining 
last two terms containing the third-and higher-order 
autocorrelations disappear for h>q(1) if the first season 
follows a MA(q(1)) process. Therefore, for the 
assessment of cut-off in seasonal autocorrelation, that is 
for checking whether season s is a MA(q(1)) or not, for 
example, for which ρh(1) = 0, for h>q(1). 

In the following proposition some properties of the 
variance of Var[rh(s)], which follow from (5.6), are 
summarized which are needed for the assessment of the 
cut-off property of the seasonal ACF for a season s 
which follows a MA(q(s)) process. 

Proposition 5.1 

Ula and Smadi (2003) Let {Xs+rd} be a periodic 
stationary PARMAd(p(s), q(s)) process. 

If s is an arbitrary with p(s) = 0, then for positive 
integer h, we have the following results for Var[rh(s)];  

(i) for q(s)<d Equation 5.7: 
 

( )21
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(ii) for rd≤q(s)<(r+1)d, r = 1, 2, …, then: 
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Proof 

For more details see Ula and Smadi (2003). 

Setting d = s = 1, it can be easily seen from 
Proposition (5.1) that, for h>q(s) = q, case (i) reduces to 
the white noise process Equation 5.8: 
 

1
( ) , 1hVar r s h

N
  = ≥   (5.8) 

 
Also, case (ii) reduces to the MA(h) process 

Equation 5.9: 
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1
( ) 1 2 ,

r

mh
m

Var r s h r
N

ρ
=

 
  ≅ + >  

 
∑  (5.9) 

 
These are the well-known formulas for the 

identification of white noise and MA processes, 
respectively, in the context of stationary processes 
(Box et al., 2013). However, note that for h≤q(s) the 
formulas for Var(rh) in case (ii) of Proposition (4.1) are 
rather approximate as they are base on (5.6). 

The identification bands for the MA(q(s)) process 
utilize rh(s) being asymptotically normal with zero 
mean and variance Equation 5.8 and 5.9 over the cut-
off region h>q(s). 

Following the same methodology applied to the 
sample ACF of a stationary process, for a season s which 
follows a MA(q(s)) process, we start checking values of 
q(s) successively, starting with q(s) = 1. Then for large 
N, as long as q(s)<d, Equation 5.8 implies that rh(s), for 
h>q(s), is normally distributed with mean zero and 

variance 1/N, so that the 95% band  
1.96 1.96

,
− 

 
 N N

 is 

applied to those autocorrelations. If q(s)≥d, which is 
unlikely for moderate or large values of d, Equation 
5.9 should be utilized, with ρh(s) estimated by rh(s). 

let sh to denoted the sample value of [ ( )]hVar r s , the 

95% band is (-1.96 sh, 1.96 sh), which should be 
applied for rh(s), for h>q(s), the accuracy of these 
bands are verified through simulation next section. 

6. SIMULATION RESULT 

In this section we will illustrate some simulation studies 
to investigate the usefulness in practice of the theoretical 
results stated earlier and to demonstrate the identification 
procedure. The R programming language was used in this 
simulation study in conjunction with the pear package. 

Example 6.1 

Consider the model PARMA4 (0, 1; 2, 2; 3, 0; 0, 4): 
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Which is chosen to be periodic stationary and 

invertible (for determining periodic stationarity and 
invertibility of such processes, the first season MA (1), 
second season ARMA (2,2), third season AR (3) and 
fourth season MA (4). 

To process our simulation study an R-code was written 
to generate 10000 independent replicates. Each of these 
replicates has sizes N = 2500, N = 5000 and N = 7500. 

In all cases, the white noise terms are independently 
and normally distributed with mean zero and variance 
equal to one. In Fig. 2 we see that one of simulated series 
which corresponds to N = 10000. 

The white noise terms are assumed to be 
independently and normally distributed with zero means 
(our basic assumptions) and unit variances 

( )2( ) 1; 1,2,3,4a s sσ = = . Ten thousand realizations each 

of length N (years), i.e., 4 ×N values, for N = 2500; 5000; 
7500, are simulated from the above 4-period PARMA 
model. For each realization, the sample PeACF, rh(s), for s 
= 1, 2, 3, 4 and h = 1,…,10 are computed in Table 2. Only 
the first and fourth seasons here follow a pure MA process, 
MA (1) and MA (4), respectively. For the first season, we 
expect a cut-off behavior for the sample PeACF for h>1 and 
for the fourth season for h>4. These can be observed from 
the values in Table 2. Only for these first seasons, we 
observe an apparent sudden drop in the values, for more 
analysis see Fig. 3. 

Equation 5.8 follows and the relative frequencies (rel. 
freq.) of rh(1), h>q = 1, going outside the 95% band 

1.96 1.96
,

N N

− 
 
 

for N = 2500; 5000; 7500, are given in 

Table 2 respectively and shown in Fig. 4, which agree 
well with the theoretical asymptotic value of 5%. The 
relative frequency is the percentage of autocorrelation 
values over all realizations falling outside the 
corresponding bands. The asymptotic property also 
justifies the improvement in the values as N increases. 

 

 
 

Fig. 2. Line graph of 10000 observations 
 

 
 
Fig. 3. The PeACF for the size data sets(N = 2500, N = 5000 and N = 7500 respectively). In season one  PeACF  show cut-off after 

lag 1 and since PeACF shows better cut-off, this season is said to follow MA (1) model. Also, in season four PeACF show 
cut-off after lag 4 and this season is said to follow MA (4) model 
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Fig. 4. The 95% confidence interval size data sets (N = 2500, N = 5000 and N = 7500 respectively). It can be said that the 

first, second, third and the fourth seasons (for N = 2500) follow white noise process without any doubt, since all 
values fall inside the bands for PeACF, but for season one, 1st lag in PeACF is outside the bands and since that value 
is close to band limits, it may be ignorable. Also, the seasons (for N = 5000) follow white noise process, but for 
season one and four, 1st lag in PeACF may be ignorable. Finally, the seasons (for N = 7500) follow white noise 
process, but for season one, two and four, 1st lag in PeACF may be ignorable 

 
Table 2. Average sample PeACF rh(s) for lag h = 10 with 2 1=aσ  

 N = 2500    N = 5000    N = 7500 
 ---------------------------------------- -------------------------------------- ------------------------------------------------- 
h\s 1 2 3 4 1 2 3 4 1 2 3 4 

1 0.605 0.378 0.000 0.430 0.592 0.388 0.232 0.4370 0.598 0.384 -0.003 0.455 
2 -0.003 0.008 -0.031 0.020 -0.002 -0.007 0.647 -0.0320 0.000 -0.044 -0.606 -0.009 
3 0.006 -0.005 0.000 -0.020 0.002 -0.018 -0.104 -0.0209 -0.001 -0.058 -0.126 0.000 
4 -0.03 -0.002 -0.002 0.039 -0.007 -0.067 -0.199 -0.0270 -0.002 -0.040 0.000 0.003 
5 0.019 -0.005 -0.023 0.036 -0.015 0.009 0.052 -0.0070 0.008 -0.006 0.007 -0.000 
6 0.003 -0.019 0.008 -0.005 0.033 -0.001 -0.261 0.0080 -0.001 0.220 0.132 -0.001 
7 0.016 0.013 0.004 0.001 -0.001 0.023 -0.048 -0.0150 0.002 -0.003 0.007 -0.019 
8 -0.014 0.011 0.018 0.004 0.041 -0.009 0.012 -0.0110 0.008 0.030 0.022 0.001 
9 -0.021 0.030 -0.008 0.003 -0.001 0.391 -0.007 0.0040 0.001 -0.001 0.000 0.009 
10 -0.022 0.008 -0.008 0.000 0.005 0.040 0.021 -0.0060 0.000 0.041 0.007 0.008 
Rel. freq. 1.220 1.580 1.320 0.680 0.240 0.420 0.520 0.8500 0.680 0.590 0.790 0.290 

 
Table 3. Average sample PeACF rh(s) for lag h = 10 with σa

2 = 0.5. The variance seem to have no significant effect on the 
overall result, as theoretically expected 

 N = 10000 
 --------------------------------------------------------------------------------------------------------------------------- 
h\s 1 2 3 4 

1 0.612 0.370 -0.002 0.436 
2 -0.005 0.003 -0.013 0.010 
3 0.002 -0.008 0.014 -0.015 
4 -0.001 -0.007 0.006 0.010 
5 -0.000 0.014 -0.010 0.001 
6 0.015 0.003 -0.006 -0.002 
7 -0.001 0.016 -0.011 0.004 
8 0.006 -0.000 0.002 0.002 
9 0.005 0.007 0.007 0.003 
10 0.001 0.015 0.003 -0.000 
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For the fourth season, therefore Equation 5.9 applies 
with relative frequencies of rh(4) going outside the 
corresponding 95% band for the three N values. 

Example 6.2 

In this example we will to see the effect of variance 
on the results, we take the same model in the previous 
example PARMA4 (0, 1; 2, 2; 3, 0; 0, 4) and the white 
noise terms are independently and normally distributed 
with mean zero and variance equal 0.5 (possible take any 
value of the standard deviation). 

We will see the variances seem to have no 
significant effect on the overall result, as theoretically 
expected. The simulation is repeated for N = 10000 
and σa

2(s) = 0.5 for s = (1, 2, 3, 4). For the first season, 
we expect a cut-off  behavior for the sample PeACF 
for h>1 and for the fourth season for h>4. These can 
be observed from the values in Table 3 

7. CONCLUSION 

In this study we have made a survey on one of the 
most important topics in identification of PARMA 
models. An explicit expression for the asymptotic 
variance of the sample process PeACF is derived to be 
used in establishing its bands for the PMA process 
over the cut-off region and we have studied the 
theoretical side therefore we have some applications 
on it where the simulation results agree well with the 
theoretical results. In the future research, we will 
explicit expression for the asymptotic variance of the 
sample process PePACF that derived to be used in 
establishing its bands for the PAR process over the 
cut-off region and therefore we have some 
applications on it. Also, we will get estimation of 
PARMA models using some ways of estimation. 
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