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ABSTRACT 

The problem addressed is that of sequentially estimating the square of the parameter of the Rayleigh 
distribution, subject to a weighted squared loss plus cost of sampling. We propose a sequential 
procedure and provide a second-order asymptotic expansion for the incurred regret. It is seen that the 
asymptotic regret is negative for a range of values of the parameter. 
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1. INTRODUCTION 

Let X1,,…,Xn denote independent observations to 
be taken sequentially up to a predetermined stage n 
from the Rayleigh distribution with p.d.f: 
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where, θ is an unknown positive number. It is desired to 
estimate θ2, subject to the loss function considered by 
(Chow and Yu, 1981; Martinsek, 1988) that is Eqution 1: 
 

2 2 4 4 2 2( ,  ) [ ] ,a n nL w a w nβθ θ θ−= − +  (1) 

 
where, a is a known positive number, determined by the 
cost of estimation relative to the cost of a single 
observation, β>1 is a given number and wn is an 
appropriate point estimate of θ2 (defined below). In 
practice, one might be interested in estimating the 
population variance σ2 = ½(4-π)θ2 or the population 
second moment µ2 = 2θ2. Since both of these parameters 
are linear functions of θ2, it suffices to estimate θ2. 

For observed values x1>0,…, xn>0, of X1,, …, Xn, the 
log-likelihood function is: 
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For θ>o. It follows that the maximum likelihood 

estimator of θ is: 
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where, n

n

i
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1
Y = Y

n
∑  with 2

i 2iY = X , i = 1,…, n and where 

the random variables Y1,…, Yn are independent with 
common distribution the Exponential distribution with 
mean µY = θ2 and standard deviation σY = θ2. 

The risk incurred by estimating θ2 with ˆ2
n nnW = θ = Y  

under the loss (1) is: 
 

2 4
2 4 4 2 2( )  [( ) ]a n

a
R n a E Y n n

n

β
β θθ θ−= − + = +  

 
For any fixed value of a>0, this risk is minimized with 

respect to n by choosing n as the greatest integer less 
than or equal to 2β β

a Yn = aθ = aσ ; in which case, the 

minimum risk is Equation 2: 
 

* ( ) 2 2a a a a YR R n n a βσ= = =  (2) 
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Since na depends on the unknown value of θ, there is 
no fixed-sample-size procedure that attains the minimum 
risk *

aR  in practice. Therefore, we propose to use the 

sequential procedure ( )TT,Y  which stops the sampling 

process after observing Y1,…,YT and estimates θ2 by 

T TW = Y , where Equation 3: 
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   = ≥ > −  
   
∑  (3) 

 
with ma being a positive integer. Note that the 

standard deviation based on Y1,…, Yn is used in (2) as the 
estimator of θ2, instead of n nW = Y , since θ2 is also the 

standard deviation of Y1. 
If ma in (3) is such that δ√a ≤ma = o(a) as a→∞ for 

some δ>0, then Equation 4: 
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As a θθ, by Martinsek (1988), since the skewness 

of Y1 is equal to 2. This shows that TY  is biased for 

large values of a. Thus, consider the biased-corrected 
estimator Equation 5: 
 

*
1/ 1 1/n nY

a nβ β
βθ −= +  (5) 

 
For n≥1, where β>1. The regret of the sequential 

procedure ( )*
TT,θ is defined as Equation 6: 

 
* * *( , ) [ ( , )]a T a T ar T E L T Rθ θ= −  (6) 

 
where, *

aR  is as in (2). In this study we provide a second-

order asymptotic expansion, as as a→∞, for ( )*
Tar T,θ and 

show that this regret is asymptotically negative if we 
choose 60 < θ < (4β - 4) (3.25β+1) . 

Starr and Woodroofe (1969) considered the case in 
which X1, X2, … are i.i.d. Normal random variables and 
showed that the regret of their procedure is O(1). Then, 
Woodroofe (1977) showed that the regret is 0.5 + o(1) if 
ma≥4. Martinsek (1983) extended Woodroofe’s result to 
the nonparametric case. Tahir (1989) proposed a class 
of bias-reduction estimators of the mean of the one-
parameter exponential family and provided an 
asymptotic second-order lower bound for the regret. 
Kim and Han (2009) considered estimation of the scale 
parameter of the Rayleigh distribution under general 

progressive censoring. Mousa et al. (2005; Prakash, 
2013) focused on Bayesian prediction and Bayesian 
estimation for Rayleigh models. 

2. ASYMPTOTIC EXPANSION FOR THE 
REGRET OF THE SEQUENTIAL 

PROCEDURE 

Rewrite the stopping time T in (3) as Equation 7: 
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And let Ua = t(Vt/t)

-1/2-a denote the excess over the 
stopping boundary. Chang and Hsiung (1979) showed 
that the excess Ua converges in distribution to a random 
variable U as a→∞. 

Lemma 1 

Let T be as in (3). Then β 2β
Y

T
σ = θ

a
→  w.p.1 as a → 

∞. Moreover: 
 

[ ] 1.375 (1)E T a oν= + − +  
 

As a→∞, where ν = E[U] is the asymptotic mean of 
the excess over the boundary. 

Proof 

The first assertion follows from Lemma 1 of Chow and 
Robbins (1985). For the second assertion: 
 

( )22 2
14

3
[ ] 0.5 ( ) (1)

8

3
         0.5 ( 1) (1)

8
         1.375 (1)

Y Y
Y

E T a E Y o

a o

a o

ν µ σ
σ

ν κ

ν

 = + − − − − +
  

= + − − − +

= + − +

 

 
As a→∞, by Chang and Hsiung (1979), using the fact 

that the kurtosis of Y1 is -4 4
Y 1 Yκ= σ E[(Y - µ ) ] = 6.   

Proposition 1 

Let *
nθ  be defined by (5) and let T be defined by (3) 

with ma being such that δ√a≤ma = o(a)as a→∞ for some 
δ>0. Then, * 2[ ] (1 / )TE o aθ θ= +  as a→∞. 

Proof 

For a>0 Equation 8: 
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The proposition follows by taking the limit as a→∞ 

in (8) and using (4) and the fact that 
[( ) ]-(1-1/ β) 1- β

YE T / a σ→  as a→∞ if β>1, by the first 

assertion of Lemma 1 and (2.2) of Martinsek (1983). 
Let ( )*

a Tr T,θ  be as in (6). Then Equation 9: 
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Lemma 2 

Let T be defined by (3) with ma being such that 
δ√a≤ma = o(a) as a→∞ for some δ>0 and with β>1. 
Then: 
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As α→∞. 

Proof 

First, observe that Equation 10: 
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For a>0. Moreover Equation 11: 
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As a→∞, by (4). Next, expand g(y) = y1/θ1 at β

Yy = σ , 

substitute y = T/a and multiply by ( )YTa Y - µ
�

 to obtain 

Equation 12: 
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where, T* is a random variable such that 

*

β β

Y Y-
T σ T / a - σ≤ . Next, rewrite T in (3) as T = inf{n ≥ 

ma: n(Vn/n)−β/2 >a}, where, Vn is as in (7) and let: 
 

/ 2
* T
a

V
U T a

T

β−
 = − 
 

 

 
Denote the excess over the stopping boundary. 

Expanding h(y) = y−β/2 at 2
Yy σ= , substituting y = VT/T 

and multiplying by T yields: 
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for a>0, where  λT is a random variable between VT/T 

and 2
Yσ . Furthermore, write: 
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For a>0, where 2

=1

= ( )
T

T i Y
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W Y - µ∑ . It follows easily that 

Equation 13: 
 

* 2
2

( ) ( )
2a

Y
Y T T Y

Y

T
U W T

a a a

β
β σ βσ ξ σ

σ
− = − + −  (13) 

 
For a>0, where: 
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Substituting (13) in (12) yields Equation 14: 
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Say. Let Sn = Y1+…+Yn, n≥1. Then Equation 15: 
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as a→∞, by Hölder’s inequality, the fact 

that ( / 0β β β

* Y * Y YT σ T - σ T a - σ→ ≤ → w.p.1 since 

T / a Y
βσ→ , T Y

β

Y

S - µ T

aσ
 converges in distribution to a 

Standard Normal random variable by Anscombe’s theorem, 
the facts that 2 2

aE[U ] E[U ] <→ ∞  and [ ] = (1)2
TE ξ O  a→∞ 

and (2.3), (2.8) and (2.9) of Martinsek (1983). To 
evaluate E[I2(a)], observe that Equation 16: 
 

2
1/ 2

2 *

2
2

1/ 2
*

2
2

1/ 2
*

2

1/ 2
*

1 2 2

1 2 2

  

2 ( )( )
( )   

2

2

2

  2 (2 )

2

Y T Y T Y

Y

T Y T Y
Y

Y Y

T Y
Y

Y

T Y
Y

Y

Y

Y

in distribution

a W T S T
I a T

T a

a W T S T
T

T a a

a W T
T

T a

a S T
T

T a

Z

Z

β
β

β

β β
β β

β β
β

β β
β

β

β

σ σ µ
σ

σ µσ
σ σ

σσ
σ

µσ
σ

σ
σ

−

−

−

−

−

−

− −=

 − −
 = +
 
 

 −
 −
 
 

 −
 −
 
 

→

− 1 2 2 1 2 22 4Y YZ Zβ βσ σ− −− =

 (16)  

As a→∞, by Anscombe’s theorem and the fact that 
β

* YT ® σ  w.p.1 as a→∞ where Z is a random variable 

having the Standard Normal distribution. Thus Equation 17: 
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As a→∞, by (16) and (2.3) and (2.4) of Martinsek 

(1983). Taking expectation in (14) and using (15) and 
(17) yields Equation 18: 
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a→∞. The lemma follows by taking the limit, as 
a→∞, in (10) and using (11) and (18). 

Theorem 1. Let T be defined by (3) with ma being 
such that δ√a ≤ma = o(a) as a→∞ for some δ>0 and β>1. 
Let the regret of the biased-corrected procedure ( )*

TT,θ  be 

as in (6). Then: 
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Proof 

First Equation 19: 
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As a→∞ if δ>1, by Martinsek (1988). Next, take the 
limit, as a→∞,  in (9) and use (19), Lemma 2 and the fact 
that: 
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as a→∞ if δ>1, by the first assertion of Lemma 1 and 

(2.2) of Martinsek (1983), to complete the proof. 

3. NEGATIVE ASYMPTOTIC REGRET 

Theorem 1 shows that the biased-corrected procedure 
( )*

TT,µ has a lower asymptotic regret than the procedure 

T( )T,Y . Also, the asymptotic regret of the procedure 

( )*
TT,µ  is negative if Equation 20: 

 

6
4 4

0
3.25 1 β

βθ θ
β
−< < ≡

+
 (20) 



Mohamed Tahir / Journal of Mathematics and Statistics 10 (2): 275-280, 2014 

 
279 Science Publications

 
JMSS 

Table 1. Asymptotic regret for various choices of β>1 and 0<θ<θβ (see (20)) 
b qb q Asymptotic regret 
1.5 0.836 0.2 -46866.1880000 
1.5 0.836 0.3 -4106.4138000 
1.5 0.836 0.4 -723.6093800 
1.5 0.836 0.5 -183.1875000 
1.5 0.836 0.7 -16.6870790 
2.0 0.901 0.2 -124985.0000000 
2.0 0.901 0.3 -10958.9370000 
2.0 0.901 0.4 -1938.1250000 
2.0 0.901 0.5 -497.0000000 
2.0 0.901 0.8 -15.5175780 
2.0 0.901 0.9 -0.0534114 
5.0 0.988 0.3 -109653.12.00000 
5.0 0.988 0.4 -19445.0000000 
5.0 0.988 0.6 -1628.4276000 
5.0 0.988 0.7 -593.7387800 
5.0 0.988 0.9 -64.2841140 
10 1.012 0.2 -5624665.0000000 
10 1.012 0.4 -87555.6250000 
10 1.012 0.7 -2724.9495000 
10 1.012 0.8 -1038.2910000 
10 1.012 0.9 -342.4035100 
10 1.012 1.0 -25.0000000 
15 1.020 0.2 -13124254.0000000 
15 1.020 0.3 -1151517.1000000 
15 1.020 0.5 -53013.7500000 
15 1.020 0.7 -6393.6322000 
15 1.020 0.9 -834.3582000 
15 1.020 1.0 -93.7500000 
 

This means that for the values of θ in the interval (0, 
θβ) with β>1, the sequential procedure ( )*

TT,µ performs 

better, for large values of a, than the best fixed-sample-
size procedure ( ),*

a *na
n ,Y  where *

an  is the greatest integer 

less than or equal to na = aθ2β (see Table 1). 

4. CONCLUSION 

We have proposed a sequential procedure for 
estimating the square of the shape parameter of the 
Rayleigh distribution and provided a second-order 
asymptotic expansion for the incurred regret. It is seen 
that the proposed procedure performs better than the best 
fixed-sample-size procedure if the shape parameter lies 
in a specific subinterval of the positive real numbers. 

For future research, it would be worth considering 
Bayesian sequential estimation of a function of the shape 
parameter of the Rayleigh distribution, in which the 
focus will be on finding a sequential procedure and 
approximating the Bayes regret, as well as comparing the 
proposed procedure with existing procedures. 
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