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ABSTRACT 

The five basic axioms of Kolmogorov define the probability in the real set R and do not take into consideration 
the imaginary part which takes place in the complex set C, a problem that we are facing in applied 
mathematics. Whatever the probability distribution of the random variable in R is, the corresponding 
probability in the whole set C equals always to one, so the outcome of the random experiment in C can be 
predicted totally. This is the consequence of the fact that the probability in C is got by subtracting the chaotic 
factor from the degree of our knowledge of the system. In this study, I will evaluate the complex random 
vectors and their resultant that represents the whole distribution and system in the complex space C. I will also 
define imaginary and complex expectations and variances and I will prove the law of large numbers using the 
concept of the resultant complex vector. In fact, after extending Kolmogorov’s system of axioms, the new 
axioms encompass the imaginary set of numbers and this by adding to the original five axioms of Kolmogorov 
an additional three axioms. Hence, the concept of complex random vector becomes clear, evident and it 
follows directly from the new axioms added. This result will be elaborated throughout this study using discrete 
probability distributions. Moreover, any experiment executed in the complex set C is the sum of the real set R 
and the imaginary set M. Therefore, the whole probability distribution of random variables can be represented 
totally by the resultant complex random vector Z that is used subsequently to prove the very well known law 
of large numbers. In addition to my previous first paper, this second one elaborates the new field of “Complex 
Statistics” that considers random variables in the complex set C. Thus, the law of large numbers proves that 
this complex extension is successful and fruitful. 

 
Keywords: Kolmogorov’s Axioms, Random Variables, Real and Imaginary Sets, Complex Set, 

Probability Norm, Degree of Knowledge, Chaotic Factor, Bernoulli Experiment, Complex 
Random Vectors, Law of Large Numbers, Complex Expectation, Complex Variance 

I. INTRODUCTION 

Abou Jaoude et al. (2010); Abou Jaoude (2005; 
2007); Balibar (1980); Bell (1992); Benton (1996); 
Dalmedico Dahan et al. (1992); Ekeland (1991); 
Feller (1968); Gleick (1997); Hoffmann (1975) and 
Kuhn (1996) by defining the concept of probability 
using only five basic axioms, Kolmogorov was working 
in the set of real numbers and was not considering the 
imaginary part that takes place in the set of complex 
numbers. This is in fact a problem that occurs in many 
applications in mathematics and physics. By considering 

supplementary new imaginary dimensions to the event 
occurring in the “real” laboratory, the Kolmogorov’s 
system of axioms can be extended to encompass the 
imaginary set of numbers. This can be done by adding to 
the original five axioms of Kolmogorov a 
complementary three axioms. Thus, any experiment can 
hence be executed in the complex set C which is the sum 
of the real set R represented by a real probability and the 
imaginary set M represented by the imaginary 
probability. No matter what the probability distribution 
of the random variable in R is, the corresponding 
probability in the whole set C is always equal to one. 
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Therefore, the outcome of the random experiment 
occurring now in C is completely predictable. 
Consequently, chance and luck in R are replaced by total 
determinism in C. Actually the probability in C is 
evaluated by subtracting the chaotic factor from the 
degree of our knowledge of the system. This shows to be 
essential and leads always to a probability equals to one 
in the complex set.  

Formally, the three supplementary and 
complementary axioms are: 

• Let Pm = i(1-Pr) be the probability of an associated 
event in M (the imaginary part) to the event A in R 
(the real part). It follows that Pr + Pm/i = 1 where i2 = 
-1 (the imaginary number) 

• We construct the complex number z = Pr + Pm = Pr + 

i(1-Pr) having a norm  
2 2 2

r mz P (P / i )= +  

• Let Pc denote the probability of an event in the 
universe C where C = R + M. We say that Pc is the 
probability of an event A in R with its associated 
event in M such that: 2 2 2

r m r mPc (P P / i ) | z| 2iP P= + = −  

and is always equal to 1 

We can clearly see that the system of axioms defined 
by Kolmogorov could be hence expanded to take into 
consideration the set M of imaginary probabilities Pm. 

By defining the chaotic factor ‘Chf’ as being equal to 
2iPrPm and the degree of our knowledge |z|2 as being 
equal to 2 2

r mP (P / i)+ , it follows that: Pc2 = Degree of our 

knowledge-chaotic factor = 1, therefore Pc = 1. This 
means that if we succeed to eliminate the chaotic 
factor in an experiment, the outcome probability will 
always be equal to one. One consequence of the 
results above is that: 1/2≤|z|2≤1 and -1/2≤Chf≤0. 

Moreover, according to an experimenter tossing a 
coin in R, it is a game of luck: the experimenter 
doesn’t know the output. He will assign to each 
outcome a probability Pr and will say that the output is 
not deterministic. But in the universe C = R + M, an 
observer will be able to predict the outcome of the 
game since he takes into consideration the 
contributions of M, so we write: Pc2 = (Pr + Pm/i)2 = 
|z|2 -2iPrPm. So in C, all the hidden variables are 
known and this leads to a deterministic experiment 
executed in an eight dimensional universe (four real 
and four imaginary; where three for space and one for 
time in R and three for space and one for time in M). 
Hence Pc is always equal to 1. 

In fact, the addition of new dimensions to our 
experiment resulted to the abolition of ignorance and 

non-determinism. Consequently, the study of this 
class of phenomena in C is of great usefulness since 
we will be able to predict with certainty the outcome 
of experiments conducted. In fact, the study in R leads 
to non-predictability and uncertainty. Therefore, 
instead of placing ourselves in R, we place ourselves 
in C then study the phenomena, because in C the 
contributions of M are considered and therefore a 
deterministic study of the phenomena becomes 
possible. Conversely, by considering the contribution 
of the hidden forces, we place ourselves in C and by 
ignoring them we restrict our study to non-
deterministic phenomena in R. 

I will describe in this study a powerful tool based 
on the concept of complex random vectors which is a 
vector representing the real and the imaginary 
probabilities of an outcome, defined in the added 
axioms by the term z = Pr + Pm. Then express the 
resultant complex random vector as the vector which 
is the sum of all the complex random vectors in the 
complex space. I will illustrate this methodology by 
considering a Bernoulli distribution, then a discrete 
distribution with N random variables as a general 
case. Afterward, I will prove the very well known law 
of large numbers using this new powerful concept. 

2. THE RESULTANT COMPLEX 
RANDOM VECTOR Of A BERNOULLI 

DISTRIBUTION 

Boursin (1986); Dacunha-Castelle (1996); Dalmedico 
Dahan and Peiffer (1986); Gullberg (1997); Montgomery  
and Runger (2005); Poincaré (1968) and Walpole (2002) 
first, let us define the complex random vectors and 
their resultant by considering the following general 
Bernoulli distribution: 
 
xj x1 x2

 

Prj Prl=p Pr2=q 

Pmj Pml=i(1-p)=iq Pm2=i(1-q)=ip 
zj z1=Prl+Pml z2=Pr2+Pm2 
 
Where: 
x1 and x2 = The outcomes of the first and second 

random variables respectively 
Pr1 and Pr2 = The real probabilities of x1 and x2 

respectively 
Pm1 and Pm2 = The imaginary probabilities of x1 and x2 

respectively 
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We have: 
 

2

rj r1 r2
j 1

P P P p q 1
=

= + = + =∑  

 
And: 
 

2

mj m1 m2
j 1

P P P iq ip i(1 p) ip

i ip ip i i(2 1) i(N 1)

=

= + = + = − +

= − + = = − = −

∑
 

 
where, N is the number of random variables which is 
equal to 2 for this Bernoulli distribution. 

The complex random vector corresponding to the 
random variable x1 is: 

 
z1 = Prl + Pml = p + i(1-p) = p + iq 

 
The complex random vector corresponding to the 

random variable x2 is:  

 
2 r2 m2z P P q i(1 q) q ip= + = + − = +  

 
The resultant complex random vector is defined as 

follows:  

 

1 2

2 2

rj mj
j 1 j 1

Z z z (p iq) (q ip)

(p q) i(p q) 1 i  1 i(2-1) 1 i(N-1)

P P
= =

= + = + + +
= + + + = + = + = +

= +∑ ∑
  

The probability in the complex space C which 
corresponds to the complex random vector 1z is 1Pc  and 

is computed as follows:  
 

2 2 2 2 2
1 r1 m1

1 r1 m1

2 2
1 1 1

2 2 2 2

1

| z | P (P / i) p q

Chf 2P P / i -2pq

Pc | z | Chf

p q 2pq (p q) 1 1

Pc 1

= + = +
= − =

⇒ = −

= + + = + = =
⇒ =

 

 
This is coherent with the new complementary axioms 

defined for the extended Kolmogorov’s system. 
Similarly, Pc2 corresponding to z2 is: 

2 2 2 2 2
2 r2 m2

2 r2 m2

2 2
2 2 2

2 2 2 2

2

| z | P (P / i) q p

Chf 2P P / i -2qp

Pc | z | Chf

q p 2qp (q p) 1 1

Pc 1

= + = +
= − =

⇒ = −

= + + = + = =
⇒ =

 

 
The probability in the complex space C which 

corresponds to the resultant complex random vector Z = 
1+i is Pc and is computed as follows:  
 

2 2
2 2

2 2 2
rj mj

j 1 j 1

| Z| P P / i 1 1 2
= =

   
= + = + =   
   
∑ ∑

 
 

2 2

rj mj
j 1 j 1

Chf 2 P P / i 2(1)(1) 2
= =

= − = − = −∑ ∑
 2 2

2 2 2
2

2 2 2 2

Let S | Z| Chf 2 2 4 S 2

S | Z| Chf | Z| Chf
Pc

N N N N
S 2

Pc 1
N 2

= − = + = ⇒ =
−

⇒ = = = −

⇒ = = =

 

 
where, S2 is an intermediary quantity used in our 
computation of Pc.  

Pc is the probability corresponding to the resultant 
complex random vector Z in the universe C = R+M and 
is also equal to 1. In fact, Z represents both z1 and z2 that 
means the whole distribution of random variables in the 
complex space C and its probability Pc is computed in 
the same way as Pc1 and Pc2. 

By analogy with the case of one random variable jz  

where: 2 2
j j jPc |z | Chf    with  (N 1)= − = , then for the vector:  

 

Z: 
2

2
2 2

|Z| Chf
Pc (N 1)

N N
= − ≥  

 

where the degree of knowledge is equal to 
2

2

| Z|

N
 and its 

relative chaotic factor is
2

Chf

N
 .  

Notice, if N = 1 in the above formula, then: 
 

2 2
2 2 2

j2 2 2 2

|Z| Chf |Z| Chf
Pc  |Z|  Chf Pc

N N 1 1
= − = − = − =  

 
Which is coherent with the calculations already done. 
To illustrate the concept of the resultant complex 

random vector Z, I will use the following graph (Fig. 1). 
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Fig. 1. The resultant complex random vector Z = z1+z2 in the complex space C 
 

3. GENERALIZATION: THE 
RESULTANT COMPLEX RANDOM 

VECTOR Z OF A DISCRETE 
DISTRIBUTION 

Chan Man Fong et al. (1997); Greene (2000; 2004) 
and Warusfel and Ducrocq (2004) let us generalize 
what has been found above for a Bernoulli distribution 
by considering the general discrete probability 
distribution of N random variables with the resultant 
complex random vector Z: 
 

jx  1x  2x  …  Nx  

rjP  1r1 pP =  2r2 pP =  …  NrN pP =  

mjP  m1 1

1

P i(1-p )

iq

=
=

 m2 2

2

P i(1-p )

iq

=
=  …

 mN N

N

P i(1-p )

iq

=
=  

 
We have: 
 

N

rj r1 r2 rN 1 2 N
j 1

P P P P p p p 1
=

= + + + = + + + =∑ … …   

 
And: 

N

mj m1 m2 mN 1 2 N
j 1

1 2 N

1 2 N

P P P P iq iq iq

i(1-p ) i(1-p ) i(1-p )

iN i(p p p ) iN i(1) iN-i i(N-1)

=

= + + + = + + +

= + + +
= − + + + = − = =

∑ … …

…

⋯

 

 
The complex random vector corresponding to the 

random variable x1 is z1 = Prl + Pml = p1 + i(1-p1) = p1 + iq1. 
The complex random vector corresponding to the 

random variable x2 is  z2 = Pr2+Pm2 = p2+i(1-p2) = p2+iq2 
and so on … … … 

The complex random vector corresponding to the 
random variable xN is: 
 

N rN mN N N N Nz P P p i(1 p ) p iq= + = + − = +  
 

The resultant complex random vector is defined as 
follows:  
 

1 2 N

1 1 2 2 N N

1 2 N 1 2 N

1 2 N

1 2 N

N N

rj mj
j 1 j 1

Z z z z

(p iq ) (p iq ) (p iq )

(p p p ) i (q q q )

1 i (1 p ) i (1 p ) i (1 p )

1 iN i (p p p )

     1 iN i(1)

1 i (N 1) P P
= =

= + + +
= + + + + + +
= + + + + + + +
= + − + − + + −
= + − + + +

= + −

= + − = +∑ ∑

…

…

… …

…

…
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Pc1 corresponding to z1 is: 

 
2 2 2 2 2

1 r1 m1 1 1

1 r1 m1 1 1

2 2 2 2
1 1 1 1 1 1 1

2 2
1 1

1

| z | P (P / i ) p q

Chf 2P P / i 2p q

Pc | z | Chf p q 2p q

(p q ) 1 1

Pc 1

= + = +
= − = −

⇒ = − = + +

= + = =
⇒ =

 

 
Pc2 corresponding to z2 is: 

 
2 2 2 2 2

2 r2 m2 2 2

2 r2 m2 2 2

2 2 2 2
2 2 2 2 2 2 2

2 2
2 2

2

| z | P (P / i ) p q

Chf 2P P / i 2p q

Pc | z | Chf p q 2p q

(p q ) 1 1

Pc 1

= + = +
= − = −

⇒ = − = + +

= + = =
⇒ =

 

 
and so on ... ... ... 
PcN corresponding to zN is: 

 
2 2 2 2 2

N rN mN N N

N rN mN N N

2 2 2 2
N N N N N N N

2 2
N N N

| z | P (P / i ) p q

Chf 2P P / i 2p q

Pc | z | Chf p q 2p q

(p q ) 1 1 Pc 1

= + = +
= − = −

⇒ = − = + +

= + = = ⇒ =

 

 
Pc is the corresponding probability to the resultant 

complex random vector Z = 1+ i (N-1) and is equal to: 

 
2 2

N N
2

rj mj
j 1 j 1

2 2 2

N N

rj mj
j 1 j 1

2 2 2

2 2

2 2 2
2

2 2 2 2

| Z| P P / i

1 (N 1) 1 (N 1)

Chf 2 P P / i 2(1)(N 1) 2(N 1)

Let S | Z| Chf 1 (N 1) 2(N 1)

1 N 1 2N 2N 2 N S N

S | Z| Chf | Z| Chf
Pc

N N N N

= =

= =

   
= +   
   

= + − = + −

= − = − − = − −

= − = + − + −

= + + − + − = ⇒ =

−
⇒ = = = −

∑ ∑

∑ ∑  

 
S N

Pc 1
N N

⇒ = = = = The corresponding probability of 

the resultant complex random vector Z = 1 + i(N-1) that 
represents the whole distribution of random variables in 
the complex space C. 

4. EXAMPLE OF A DISCRETE RANDOM 
DISTRIBUTION 

Guillen (1995); Mandelbrot (1997) and Srinivasan 
and Mehata (1978) as an example, let us consider the 
following discrete random distribution with four random 
variables that means we have in this case N = 4: 

 

jx  1x  2x  3x  4x  

r jP  
1

4
 

1

4
 

1

6
 

1

3
 

jmP  

1
i 1

4

3i

4

 − 
 

=
 

1
i 1

4

3i

4

 − 
 

=
 

1
i 1

6

5i

6

 − 
 

=
 

1
i 1

3

2i

3

 − 
 

=
 

 
We have: 

 
4

rj r1 r2 r3 r4
j 1

1 1 1 1
P P P P P 1

4 4 6 3=
= + + + = + + + =∑  

 
And: 

 
4

mj m1 m2 m3 m4
j 1

3i 3i 5i 2i
P P P P P

4 4 6 3

3i (4 1)i (N 1)i
=

= + + + = + + +

= = − = −

∑  

 
where, N is the number of random variables.  
 The complex random vector corresponding to x1 is 

1 r1 m1

1 3i
z P P .

4 4
= + = +  

 The complex random vector corresponding to x2 is 

2 r2 m2

1 3i
z P P .

4 4
= + = +  

 The complex random vector corresponding to x3 is 

3 r3 m3

1 5i
z P P .

6 6
= + = +  

 The complex random vector corresponding to x4 is 

4 r4 m4

1 2i
z P P .

3 3
= + = +  

 The resultant complex random vector is: 
4 4 4

1 2 3 4 j rj mj
j 1 j 1 j 1

Z z z z z z P P 1 3i.
= = =

= + + + = = + = +∑ ∑ ∑  

 
Pc1 corresponding to z1 is: 
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2 2 2
1 r1 m1

1 r1 m1

2 2
1 1 1

1

1 9 10
| z | P (P / i )

16 16 16
1 3 6

Chf 2P P / i 2
4 4 16

10 6 16
Pc | z | Chf 1

16 16 16
Pc 1

= + = + =

−  = − = − =  
  

⇒ = − = + = =

⇒ =

 

 
Pc2 corresponding to z2 is: 
 

2 2 2
2 r2 m2

2 r2 m2

2 2
2 2 2

2

1 9 10
| z | P (P / i )

16 16 16
1 3 6

Chf 2P P / i 2
4 4 16

10 6 16
Pc | z | Chf 1

16 16 16
Pc 1

= + = + =

−  = − = − =  
  

⇒ = − = + = =

⇒ =

 

 
Pc3 corresponding to z3 is: 

 
2 2 2

3 r3 m3

3 r3 m3

2 2
3 3 3 3

1 25 26
| z | P (P / i )

36 36 36
1 5 10

Chf 2P P / i 2
6 6 36

26 10 36
Pc | z | Chf 1 Pc 1

36 36 36

= + = + =

−  = − = − =  
  

⇒ = − = + = = ⇒ =

 

 
Pc4 corresponding to z4 is: 

 
2 2 2

4 r4 m4

4 r4 m4

2 2
4 4 4 4

1 4 5
| z | P (P / i )

9 9 9
1 2 4

Chf 2P P / i 2
3 3 9

5 4 9
Pc | z | Chf 1 Pc 1

9 9 9

= + = + =

−  = − = − =  
  

⇒ = − = + = = ⇒ =

 

 
Pc corresponding to Z = 1+ (N-1)i = 1+3i is: 
 

2 2
4 4

2 2 2
rj mj

j 1 j 1

4 4

rj mj
j 1 j 1

| Z| P P / i 1 3 10

Chf 2 P P / i 2(1)(3) 6

= =

= =

   
= + = + =   
   

= − = − = −

∑ ∑

∑ ∑

 

2 2

2 2 2
2

2 2 2 2

S | Z | Chf 10 6 16 S 4

S | Z | Chf | Z| Chf
Pc

N N N N

⇒ = − = + = ⇒ =
−

⇒ = = = −
 

 
S 4

Pc 1
N 4

⇒ = = = and is the probability corresponding to 

the resultant complex random vector Z that represents 
the whole distribution of the four random variables in the 
complex space C. 

5. THE RESULTANT COMPLEX 
RANDOM VECTOR CONCEPT APPLIED 

TO THE LAW OF LARGE NUMBERS  

5.1. First Case: A Distribution with Three 
Random Variables 

Boltzmann (1995); Cercignani (2006); Thomas et al. 
(2003); Orluc and Poirier (2005); Planck (1945); 
Prigogine (1997); Prigogine and Stengers (1992); 
Science et Vie (1999); Stewart (1996; 2002); Van Kampen 
(2007) and Weinberg (1992) consider now this 
discrete probability distribution with three 
equiprobable random variables (N = 3): 
 

jx  1x  2x  3x  

r jP  
1

3
 

1

3
 

1

3
 

m jP  
1 2i

i 1
3 3

 − = 
 

 
1 2i

i 1
3 3

 − = 
 

 
1 2i

i 1
3 3

 − = 
 

 

 

We have here 1 2 3

1 2i
z z z

3 3
= = = +

 
and Z = z1 + z2 + z3 

= 1+2i and we can notice that: |z1| = |z2| = |z3|, hence, 
1 2 3 1 2 3| Z| |z z z | 3 | z | 3 | z | 3 | z |= + + = = =

2 2
1

1 4
| Z| 9 | z | 9 5

9 9
 

⇒ = = + = 
 

and Chf = -2(1)(2) = -4 

2
2 2 2

2

S 9
S | Z| Chf 5 4 9 Pc 1 Pc 1

N 9
⇒ = − = + = ⇒ = = = ⇒ =

 
 

What is important here is that we notice the 
following fact: 
 

2

2

| Z| 5
0.5555... 0.5

N 9
= = ≥  

 
We got 0.5 from the study done above of a 

probability distribution with two random variables. 

And 
2

Chf 4
0.444... 0.5

N 9

−= = − ≥ − . We got -0.5 from the 

study done above of a probability distribution with two 
random variables also. 
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5.2. Second Case: A Distribution with N 
Random Variables 

As a general case, let us consider then this 
probability distribution with N equiprobable random 
variables: 

 

jx  1x  2x  …  Nx  

r jP  r1

1
P

N
=  r2

1
P

N
=  …  rN

1
P

N
=  

m jP  m1

N 1
P i

N

− =  
 

 m2

N 1
P i

N

− =  
 

 …  mN

N 1
P i

N

− =  
 

 

 

We have here: 1 2 N

1 i (N 1)
z z z

N N

−= = = = +…  and 

1 2 NZ z z z 1 i (N 1)= + + + = + −…  

 
And we can notice that:  

 
|z||z||z| N21 === …  

Hence: 
 

1 2 N 1 2 N| Z| | z z z | N|z | N|z | N|z |= + + + = = = =… …  

 
2

2 2 2 2 2
j 2 2

1 (N 1)
| Z| N | z | N 1 (N 1)

N N

 −
⇒ = = + = + − 

 
 , where; 

1≤ j ≤ N; 
 

2 2
j r j m j

2

and Chf N Chf 2 P P N

1 N 1
2N 2(1)(N 1) 2(N 1)

N N

= × = − × ×

−  = − × = − − = − −  
  

 

2 2 2 2

2 2
2

2 2

S | Z| Chf 1 (N 1) 2(N 1) N

S N
Pc 1 Pc 1

N N

⇒ = − = + − + − =

⇒ = = = ⇒ =
 

 
Therefore, the degree of our knowledge 

corresponding to the resultant complex vector is = 
2 2

2 2

| Z| 1 (N 1)

N N

+ −=  and its relative chaotic factor = 

2 2

Chf 2(N 1)

N N

− −= and thus we can verify that we have 

always: 
2

2
2 2

| Z| Chf
Pc 1.

N N
= − =   

What is important here is that we notice the 
following: Take for example: 

2 2

2 2 2 2

| Z| 1 (2 1) Chf 2(2 1)
N 2 0.5and 0.5

N 2 N 2

+ − − −= ⇒ = = = = −  

 
2 2

2 2

2 2

| Z| 1 (4 1)
N 4 0.625 0.5and

N 4
Chf 2(4 1)

0.375 0.5
N 4

+ −= ⇒ = = ≥

− −= = − ≥ −
 

 
2 2

2 2

2 2

| Z| 1 (5 1)
N 5 0.68 0.625and

N 5
Chf 2(5 1)

0.32 0.375
N 5

+ −= ⇒ = = ≥

− −= = − ≥ −
 

 
2 2

2 2

2 2

| Z| 1 (10 1)
N 10 0.82 0.68 and

N 10
Chf 2(10 1)

0.18 0.32
N 10

+ −= ⇒ = = ≥

− −= = − ≥ −
 

 
2 2

2 2

2 2

| Z| 1 (100 1)
N 100 0.9802 0.82 and

N 100
Chf 2(100 1)

0.0198 0.18
N 100

+ −= ⇒ = = ≥

− −= = − ≥ −
 

 
2 2

2 2

2 2

| Z| 1 (1000 1)
N 1000 0.998002 0.9802

N 1000
Chf 2(1000 1)

and 0.001998 0.18
N 1000

+ −= ⇒ = = ≥

− −= = − ≥ −
 

 
We can deduce mathematically that: 

 
2 2

2 2N N

2 2N N

| Z| 1 (N 1)
lim lim 1

N N
Chf 2(N 1)

and lim lim 0
N N

→∞ →∞

→∞ →∞

+ −= =

− −= =
 

 
From the above, we can also deduce this conclusion: 
As much as N increases, as much as the degree of 

our knowledge in R corresponding to the resultant 
complex vector is perfect, that is, it is equal to 1 and 
as much as the chaotic factor that forbids us from 
predicting exactly the result of the random experiment 
in R approaches 0. Mathematically we say: If N tends 
to infinity then the degree of our knowledge in R 
tends to 1 and the chaotic factor tends to 0. 

Moreover: 
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2 2

2 2 2 2

| Z| 1 (1 1) Chf 2(1 1)
For N 1 1 and 0

N 1 N 1

+ − − −= ⇒ = = = =  

 
This means that we have a random experiment with 

only one outcome, hence, either Pr = 1 or Pr = 0, that 
means we have either a sure event or an impossible event 
in R. For this we have surely the degree of our 
knowledge is 1 and the chaotic factor is 0 since the 
experiment is either certain or impossible, which is 
absolutely logical. 

5.3. The Law of Large Numbers and the 
Resultant Complex Random Vector Z 

The law of large numbers says that: 
 

“As N increases, then the probability that the 
value of sample mean to be close to population 
mean approaches 1” 

 
We can deduce now the following conclusion related 

to the law of large numbers. 
We can see, as we have proved, that as much as N 

increases, as much as the degree of knowledge of the 

resultant complex vector 
2

2

| Z|

N
 tends to 1 and its relative 

chaotic factor 
2

Chf

N
 tends to 0. Assume now that the 

random variables jx 's correspond to the particles or 

molecules moving randomly in a gas or a liquid. So if 
we study a gas or a liquid with billions of such 
particles, N is big enough (e.g., Avogadro number) to 
allow that its corresponding temperature, pressure, 
energy tend to the mean of these quantities 
corresponding to the whole gas. This because the 
chaotic factor of the whole gas, that is, of the resultant 
complex random vector representing all the random 
particles or vectors, tends to 0, thus, the behavior of the 
whole system in R is predictable with great precision 
since the degree of our knowledge of the whole gas 
tends to 1. Figure 2 and 3 below illustrate this result. 

Hence we have joined here two different key 
concepts which are: the law of large numbers and the 
resultant complex random vector. The first one comes 
from ordinary statistics and probability theory and the 
second from the new theory of complex probability 
and statistics. This looks very interesting and fruitful 
and shows the validity and the benefits of extending 
Kolmogorov’s axioms to the complex set.  

6. EXPECTATIONS CORRESPONDING 
TO THE COMPLEX RANDOM VECTORS 

Montgomery and Runger (2005); Mũller (2005); 
Orluc and Poirier (2005) and Walpole (2002) let us 
now compute the real, imaginary and complex 
expectations of the random variables. For this purpose, 
let us consider the following Bernoulli distribution: 
 
 

jx  1x 1=  2x 2=  

rjP  r1

1
P p

3
= =  r2

2
P q

3
= =  

mjP  m1

2i
P i (1 p) iq

3
= − = =  m2

i
P i (1 q) ip

3
= − = =  

 
We can see that: 
 

we have 
2

rj r1 r2
j 1

1 2
P P P 1

3 3=

= + = + =∑  

 
And: 
 

2

mj m1 m2
j 1

2i i
P P P iq ip i

3 3

i (2 1) i (N 1)
=

= + = + = + =

= − = −

∑  

 
• The complex random vector corresponding to x1 is 

1

1 2i
z p iq

3 3
= + = +  

• The complex random vector corresponding to x2 is 

2

2 i
z q ip

3 3
= + = +   

• The resultant complex random vector is: Z = z1 + 
z2 = 1+i 

 
The expectation of the random variables with the real 

probability part is defined by: 
 

2

r j rj 1 r1 2 r2
j 1

1 2 1 4 5
E (x) x P x P x P 1 2

3 3 3 3 3=

   = = + = + = + =   
   

∑

 
 

The expectation of the random variables with the 
imaginary probability part is defined by: 
 

2

m j mj 1 m1 2 m2
j 1

2i i
E (x) x P x P x P 1 2

3 3

2i 2i 4i

3 3 3

=

   = = + = +   
   

= + =

∑
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Fig. 2. The degree of our knowledge, the chaotic factor and the Pc of Z, (1≤N≤40) 
 

 
 
Fig. 3. The degree of our knowledge and the chaotic factor of Z as functions of N (in red and in blue) and of each other (in 

green), (1≤N≤40) 
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Fig. 4. Graph of the complex expectation Ec(x) which is the sum of Er(x)

 
and Em(x)

 
in the complex space C 

 
The expectation of the random variables 

corresponding to the complex random vectors is defined 
by: Er(x) + Em(x) = (x1p + x2q) + (x1iq + x2ip): 

 

1 1 2 2

2

1 2 1 1 2 2 j j
j 1

r m

(x p ix q) (x q ix p)

x (p iq) x (q ip) x z x z x z Ec(x)

5 4i
Ec(x) E (x) E (x)

3 3

=

= + + +

= + + + = + = =

⇒ = + = +

∑  

 
Figure 4 illustrates the graphical relation between the 

three expectations: the real one, the imaginary one and 
the complex one. 

We can notice that: 

 
2 2

1 2

1 2 1 4 5
| z | | z |

3 3 9 9 3
   = = + = + =   
   

 

 
The fact that |z1| = |z2| is not a special case for this 

distribution but is always true for any Bernoulli 
distribution having any probability values. Actually 
and in general, |z1|2 = p2+q2 and |z2|2 = q2 + p2, hence 
|z1| = |z2|. 

Due to the previous property, it can be shown for any 
Bernoulli distribution that: 

1 2

1 2

2
1 2

2

1 2

(x x )ZZ ZEc(x) ZEc(x) 0

(x x )ZZ ZEc(x) ZEc(x)

(x x ) | Z| ZEc(x) ZEc(x)

ZEc(x) ZEc(x)
| Z|

(x x )

+ − − =

⇒ + = +

⇒ + = +

+
⇒ =

+

 

 
where, Z 1 i= −  is the conjugate of the resultant complex 
random vector Z = 1+i, r mEc(x) E (x) E (x)= −  is the 

conjugate of the complex expectation vector Ec(x) = 
Er(x)+Em(x). 

And 2| Z| Z Z= × , which derives from the well known 
theory of complex numbers. 
We can infer also that: 

 

[ ]r m2

1 2

2 E (x) iE (x)
| Z|

(x x )

−
=

+
 

 
It can be shown also, always for a Bernoulli 

distribution, that: 
 

r m 1 2

r 1 2

1 2 m

E (x) iE (x) (x x )

Ec(x) E (x)Z (x x )i

Ec(x) (x x ) ZE (x)

− = +

= + +
= + +

 

 
Moreover, in the same distribution, we can deduce also: 
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2
1 2

r

m

Ec(x) Ec(x) i Ec(x) Ec(x) (x x ) | Z|

Ec(x) Ec(x) 2E

Ec(x) Ec(x) 2E (x)

   + + − = +   

+ =

− = −
 

 
All these relations prove to be valid for any Bernoulli 

distribution. 
Numerically, our degree of our knowledge of the 

resultant complex random vector Z = 1+i is: 

 

[ ] [ ]

( )

2
r m r m

2 2
1 2

2 E (x) iE (x) 2 E (x) iE (x)| Z|

N (x x ) N (1 2) 4

5 / 3 i 4i / 3 5 / 3 4 / 3 9 / 3 1

6 6 6 2

− −
= =

+ × + ×
− += = = =

 

 
and its corresponding chaotic factor is = 

2

Chf 2(1)(1) 2 1

N 4 4 2

− − −= = = . 

Hence, 
2

2
2 2

| Z| Chf 1 1
Pc 1

N N 2 2
= − = + = , just as it is 

previously proved. 
It can be verified in all cases and for any 

distribution that: 

 
2

2 2

1 | Z| 1 Chf
1 and 0

2 N 2 N
≤ ≤ − ≤ ≤  

 
Thus, we conclude that for any Bernoulli distribution 

we have: 
2

2 2
1 2

| Z| ZEc(x) ZEc(x)

N (x x ) N

+=
+ ×

= degree of our 

knowledge of the resultant complex random vector in 
terms of Z and the complex expectation Ec of the 
random variable in the universe C = R + M and 

[ ]r m

2 2
1 2

2 E (x) iE (x)Chf
1

N (x x ) N

−
= −

+ ×
 = The chaotic factor of the 

resultant complex random vector Z. 
Consequently, the resultant probability in C is:  

 

[ ]

2
2

2 2 2
1 2

r m

2
1 2

| Z| Chf ZEc(x) ZEc(x)
Pc

N N (x x ) N

2 E (x) iE (x)
1 1 Pc 1.

(x x ) N

+= − =
+ ×

−
− + = ⇒ =

+ ×

 

7. VARIANCES CORRESPONDING TO 
THE COMPLEX RANDOM VECTORS 

7.1. Case 1: A General Distribution  

Let us now determine the other characteristics for a 
general discrete probability distribution which are the 
real, imaginary and complex variances of the random 
variables. For this purpose, let us consider the 
following general probability distribution for N 
random variables: 

 

jx  1x  2x  …  Nx  

rjP  r1 1P p=  r2 2P p=  …  rN NP p=  

mjP  m1 1

1

P i(1 p )

iq

= −
=

 m2 2

2

P i(1 p )

iq

= −
=

 …  mN N

N

P i(1 p )

iq

= −
=

 

 
We have: 

The expectation corresponding to the real probability 
part of the random variables xj is defined by: 

 
N

r j rj 1 r1 2 r2
j 1

N rN 1 1 2 2 N N

E (x) x P x P x P

x P x p x p x p
=

= = + +

+ = + + +

∑ …

…

 

  
The expectation corresponding to the imaginary part 

of the random variables xj is defined by: 

 
N

m j mj 1 m1 2 m2
j 1

N mN 1 1 2 2 N N

E (x) x P x P x P

x P x iq x iq x iq
=

= = + +

+ = + + +

∑ …

…

 

 
The expectation corresponding to the complex 

probability of the random variables xj can be computed by: 

 

r m 1 1 2 2 N N

1 1 2 2 N N

1 1 1 1 2 2 2 2 N N N N

1 1 1 2 2 2 N N N

N

1 1 2 2 N N j j
j 1

E (x) E (x) (x p x p x p )

(x iq x iq x iq )

(x p ix q ) (x p ix q ) (x p ix q )

x (p iq ) x (p iq ) x (p iq )

x z x z x z x z Ec(x)
=

+ = + + +
+ + + +
= + + + + + +
= + + + + + +

= + + + = =∑

…

…

…

…

…

 

 
Moreover: 
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2 2 2 2
r m 1 1 2 2

2 2 2 2
N N 1 1 2 2 N N

2 2 2 2 2 2
1 1 1 1 2 2 2 2 N N N N

2 2 2
1 1 1 2 2 2 N N N

N
2 2 2 2 2
1 1 2 2 N N j j

j 1

E (x ) E (x ) (x p x p

x p ) (x iq x iq x iq )

(x p ix q ) (x p ix q ) (x p ix q )

x (p iq ) x (p iq ) x (p iq )

x z x z x z x z Ec(x )
=

+ = + +

+ + + + +

= + + + + + +

= + + + + + +

= + + + = =∑

…

…

…

…

…

 

 
we have also. 

The variance of the real part of the random variables 

xj is defined by: [ ]22 2 2
r r r r rV (x) E (x ) E (x) E (x ) E (x)= − = − , 

which is the ordinary variance definition that we know. 
The variance of the imaginary part of the random 

variables jx  is defined by: 

 

[ ]22 2 2
m m m m mV (x) E (x ) E (x) E (x ) E (x)= − = −  

 
Similarly, the variance of the complex probability of 

the random variables jx is defined by: 

 

[ ]22 2 2Vc(x) Ec(x ) Ec(x) Ec(x ) Ec (x)= − = −  

 
• But r mEc(x) E (x) E (x)= +  

• And 2 2 2 2
1 1 2 2 N NEc(x ) x z x z x z= + + +…  

• And 1 1 1 2 2 2 N N Nz p iq ,z p iq ,...,z p iq= + = + = +   

 
Thus: 

 

[ ]

[ ]

[ ]

22

2 2 2 2
1 1 1 1 2 2 2 2

22 2
N N N N r m

2 2 2 2
1 1 2 2 N N 1 1

22 2
2 2 N N r m

2 2 2 2
r m r m r m

2 2
r r

Vc(x) Ec(x ) Ec(x)

(x p x iq ) (x p x iq )

(x p x iq ) E (x) E (x)

(x p x p x p ) (x iq

x iq x iq ) E (x) E (x)

E (x ) E (x ) E (x) E (x) 2E (x)E (x)

E (x ) E (x)

= −

= + + + +

+ + − +

= + + + +

+ + + − +

 = + − + + 

 = −

…

…

…

2 2
m m r m

r m r m

E (x ) E (x) 2E (x)E (x)

Vc(x) V (x) V (x) 2E (x)E (x)

 + − −  

⇒ = + −

 

  
7.2. Case 2: A Bernoulli Distribution 

To illustrate and verify what has been found above, 
let us consider now the following Bernoulli probability 
distribution that has two random variables (N = 2): 

jx  1x 1=  2x 2=  

rjP  r1

1
P p

6
= =  r2

5
P q

6
= =  

mjP  m1

5i
P i (1 p) iq

6
= − = =  m2

i
P i(1 q) ip

6
= − = =  

 
We have: 
 

( )

2

r j rj 1 r1 2 r2
j 1

2
22 2 2 2 2

r j rj 1 r1 2 r2
j 1

2
2 2

r r r

1 5 11
E (x) x P x P x P (1) (2)

6 6 6

1 5 21 7
E (x ) x P x P x P (1) 2

6 6 6 2

7 11 7 121 5
V (x) E (x ) E (x)

2 6 2 36 36

=

=

   = = + = + =   
   

   = = + = + = =   
   

 
⇒ = − = − = − = 

 

∑

∑  

 
And we have also: 
 

2

m j mj 1 m1 2 m2
j 1

2
2 2 2 2

m j mj 1 m1 2 m2
j 1

2 2

2
2 2

m m m

5i i 7i
E (x) x P x P x P (1) (2)

6 6 6

E (x ) x P x P x P

5i i 9i 3i
(1) (2)

6 6 6 2

3i 7i 49 3i
V (x) E (x ) E (x)

2 6 36 2

=

=

   = = + = + =   
   

= = +

   = + = =   
   

   
⇒ = − = − = +   

   

∑

∑
 

 
Therefore we get Equation 1: 
 

r m r mV (x) V (x) 2E (x)E (x)

5 49 3i 11 7i 3 25i
2

36 36 2 6 6 2 9

+ −

  = + + − = −  
  

 (1) 

 
Elsewhere, we have also Equation 2: 
 

1 1 2 2

r m

1 5i 5 i
Ec(x) x z x z (1) (2)

6 6 6 6

11 7i
E (x) E (x)

6 6

   = + = + + +   
   

= + = +  

2 2 2 2 2
1 1 2 2

2 2
r m

1 5i 5 i
Ec(x ) x z x z (1) (2)

6 6 6 6

21 9i 7 3i
E (x ) E (x )

6 6 2 2

   = + = + + +   
   

= + = + = +
 

[ ]
2

22 7 3i 11 7i
Vc(x) Ec(x ) Ec(x)

2 2 6 6

7 3i 121 49 154i 54 100i 3 25i

2 2 36 36 36 36 36 2 9

   = − = + − +   
   

= + − + − = − = −

  (2) 
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Therefore, we can directly see from Equations 1 and 
2 above that: 

 
[ ]22

r m r mVc(x) Ec(x ) Ec(x) V (x) V (x) 2E (x)E (x)= − = + −  

 
As it was proven in the general case of a probability 

distribution with N random variables. 

8. NUMERICAL SIMULATIONS  

Cheney and Kincaid (2004); Deitel and Deitel 
(2003); Gentle (2003); Gerald and Wheatley (1999); 
Liu (2001) and Christian and Casella (2005) numerical 

simulations verify what has been found earlier. We 
will use Monte Carlo simulation method with the help 
of the programming language C++ with its predefined 
pseudorandom function rand() that generates random 
numbers with a uniform distribution. Table 1-3, are 
simulations of a Bernoulli distribution where the 
complex random vectors are chosen randomly by 
C++. Table 4-6, are simulations of a uniform 
distribution with three random variables having their 
complex random vectors also chosen randomly by 
C++. Table 7 is a simulation that confirms the direct 
relation between the resultant complex vector Z and 
the law of large numbers. 

 
Table 1. Computation of Pc for different values of z1 and z2 which are the complex random vectors of a Bernoulli distribution and 

which are chosen at random. In this case, the resultant complex random vector is Z = z1+z2 and is always equal to 1+i. The 
corresponding probability of Z in C is always 1, just as expected 

 z1                                Pc1 z2 Pc2 Z Pc 

Simulation #1 0.8106 + i(0.1894) 1 0.1894 + i(0.8106) 1 1 + i 1 
Simulation #2 0.0084 + i(0.9916) 1 0.9916 + i(0.0084) 1 1 + i 1 
Simulation #3 0.4558 + i(0.5442) 1 0.5442 + i(0.4558) 1 1 + i 1 
Simulation #4 0.5225 + i(0.4775) 1 0.4775 + i(0.5225) 1 1 + i 1 
Simulation #5 0.3723 + i(0.6277) 1 0.6277 + i(0.3723) 1 1 + i 1 
Simulation #6 0.1908 + i(0.8092) 1 0.8092 + i(0.1908) 1 1 + i 1 
Simulation #7 0.208 + i(0.792) 1 0.792 + i(0.208) 1 1 + i 1 

 
Table 2. Computation of the real, imaginary and complex expectations for different values of z1 and z2 which are chosen at random 

and the verification that we have always Ec(x) = Er(x)+Em(x)  

 z1 z2 Z Er(x)        Em(x)                 Ec(x) 

Simulation #1 0.8106 + i(0.1894) 0.1894 + i(0.8106) 1 + i 1.189 i(1.811) 1.189 + i(1.811) 
Simulation #2 0.0084 + i(0.9916) 0.9916 + i(0.0084) 1 + i 1.992 i(1.008) 1.992 + i(1.008) 
Simulation #3 0.4558 + i(0.5442) 0.5442 + i(0.4558) 1 + i 1.544 i(1.456) 1.544 + i(1.456) 
Simulation #4 0.5225 + i(0.4775) 0.4775 + i(0.5225) 1 + i 1.478 i(1.522) 1.478 + i(1.522) 
Simulation #5 0.3723 + i(0.6277) 0.6277 + i(0.3723) 1 + i 1.628 i(1.372) 1.628 + i(1.372) 
Simulation #6 0.1908 + i(0.8092) 0.8092 + i(0.1908) 1 + i 1.809 i(1.191) 1.809 + i(1.191) 
Simulation #7 0.208 + i(0.792) 0.792 + i(0.208) 1 + i 1.792 i(1.208) 1.792 + i(1.208) 

 
Table 3. Computation of the real, imaginary and complex variances for different values of z1 and z2 which are chosen at random and 

the verification that we have always Vc(x) = Vr(x)+Vm(x) -2Er(x) Em(x) 

 z1 z2 Z   Vr(x)     Vm(x)                       Vc(x) 

Simulation #1 0.8106 + i(0.1894) 0.1894 + i(0.8106) 1 + i 0.1535 3.278 + i(3.432) 3.432 + i(-0.8753) 
Simulation #2 0.0084 + i(0.9916) 0.9916 + i(0.0084) 1 + i 0.008292 1.017 + i(1.025) 1.025 + i(-2.991) 
Simulation #3 0.4558 + i(0.5442) 0.5442 + i(0.4558) 1 + i 0.248 2.119 + i(2.367) 2.367 + i(-2.129) 
Simulation #4 0.5225 + i(0.4775) 0.4775 + i(0.5225) 1 + i 0.2495 2.318 + i(2.567) 2.567 + i(-1.931) 
Simulation #5 0.3723 + i(0.6277) 0.6277 + i(0.3723) 1 + i 0.2337 1.883 + i(2.117) 2.117 + i(-2.35) 
Simulation #6 0.1908 + i(0.8092) 0.8092 + i(0.1908) 1 + i 0.1544 1.418 + i(1.572) 1.572 + i(-2.736) 
Simulation #7 0.208 + i(0.792) 0.792 + i(0.208) 1 + i 0.1647 1.459 + i(1.624) 1.624 + i(-2.705) 
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Table 4. Computation of Pc for different values of z1, z2, z3 which are the complex random vectors of the distribution and which are 
chosen at random. In this case, the resultant complex random vector is Z = z1+z2+z3 and is always equal to 1+2i. The 
corresponding probability of Z in C is always 1, just as expected 

 z1 Pc1 z2 Pc2 z3               Pc3  Z Pc 

Simulation #1 0.636 + i(0.364) 1 0.136 + i(0.864) 1 0.228 + i(0.772) 1 1 + i(2) 1 
Simulation #2 0.8393 + i(0.1607) 1 0.0402 + i(0.9598) 1 0.1205 + i(0.8795) 1 1 + i(2) 1 
Simulation #3 0.7802 + i(0.2198) 1 0.0220 + i(0.978) 1 0.1978 + i(0.8022) 1 1 + i(2) 1 
Simulation #4 0.3619 + i(0.6381) 1 0.1381 + i(0.8619) 1 0.5 + i(0.5) 1 1 + i(2) 1 
Simulation #5 0.9909 + i(0.0091) 1 0.0015 + i(0.9985) 1 0.0076 + i(0.9924) 1 1 + i(2) 1 
Simulation #6 0.5205 + i(0.4795) 1 0.0533 + i(0.9467) 1 0.4262 + i(0.5738) 1 1 + i(2) 1 
Simulation #7 0.0651 + i(0.9349) 1 0.2349 + i(0.7651) 1 0.7 + i(0.3) 1 1 + i(2) 1 

 
Table 5. Computation of the real, imaginary and complex expectations for different values of z1, z2, z3 which are chosen at random 

and the verification that we have always Ec (x) = Er(x)+Em(x)  

 z1 z2 z3 Er(x) Em(x) Ec(x) 

Simulation #1 0.636 + i(0.364) 0.136 + i(0.864) 0.228 + i(0.772) 1.592 i(4.408) 1.592 + i(4.408) 
Simulation #2 0.8393 + i(0.1607) 0.0402 + i(0.9598) 0.1205 + i(0.8795) 1.281 i(4.719) 1.281 + i(4.719) 
Simulation #3 0.7802 + i(0.2198) 0.0220 + i(0.978) 0.1978 + i(0.8022) 1.418 i(4.582) 1.418 + i(4.582) 
Simulation #4 0.3619 + i(0.6381) 0.1381 + i(0.8619) 0.5 + i(0.5) 2.138 i(3.862) 2.138 + i(3.862) 
Simulation #5 0.9909 + i(0.0091) 0.0015 + i(0.9985) 0.0076 + i(0.9924) 1.017 i(4.983) 1.017 + i(4.983) 
Simulation #6 0.5205 + i(0.4795) 0.0533 + i(0.9467) 0.4262 + i(0.5738) 1.906 i(4.094) 1.906 + i(4.094) 
Simulation #7 0.0651 + i(0.9349) 0.2349 + i(0.7651) 0.7 + i(0.3) 2.635 i(3.365) 2.635 + i(3.365) 

 
Table 6. Computation of the real, imaginary and complex variances for different values of z1, z2, z3 which are chosen at random and 

the verification that we have always Vc(x) = Vr(x)+Vm(x) -2Er(x) Em(x) 
 

 z1 z2 z3 Vr(x) Vm(x) Vc(x) 

Simulation #1 0.636  i(0.364) 0.136+ i(0.864) 0.228+ i(0.772) 0.6975 19.43+ i(10.77) 20.13+ i(-3.267) 
Simulation #2 0.8393+ i(0.1607) 0.0402+ i(0.9598) 0.1205+ i(0.8795) 0.4431 22.27+ i(11.92) 22.71+ i(-0.1761) 
Simulation #3 0.7802+ i(0.2198) 0.0220+ i(0.978) 0.1978+ i(0.8022) 0.6388 21+ i(11.35) 21.64+ i(-1.64) 
Simulation #4 0.3619+ i(0.6381) 0.1381+ i(0.8619) 0.5+ i(0.5) 0.8428 14.91+ i(8.586) 15.76+ i(-7.929) 
Simulation #5 0.9909+ i(0.0091) 0.0015+ i(0.9985) 0.0076+ i(0.9924) 0.03162 24.83+ i(12.93) 24.86+ i(2.802) 
Simulation #6 0.5205+ i(0.4795) 0.0533+ i(0.9467) 0.4262+ i(0.5738) 0.9378 16.76+ i(9.431) 17.7+ i(-6.175) 
Simulation #7 0.0651+ i(0.9349) 0.2349+ i(0.7651) 0.7+ i(0.3) 0.362 11.32+ i(6.695) 11.69+ i(-11.04) 

 
Table 7. The resultant complex random vector Z = z1+z2+…zj+…+zN, with 1≤j≤N and the verification of the law of large numbers 

 N zj Z 2

2|Z|

N
 

2
Chf

N
 Pc

 

Simulation #1 1 1+i(0) 1+i(0) 1 0 1 
Simulation #2 2 0.5+i(0.5) 1+i 0.5 -0.5 1 
Simulation #3 3 0.3333 + i(0.6667) 1 + i(2) 0.5556 -0.4444 1 
Simulation #4 5 0.2 + i(0.8) 1 + i(4) 0.68 -0.32 1 
Simulation #5 10 0.1 + i(0.9) 1 + i(9) 0.82 -0.18 1 
Simulation #6 100 0.01 + i(0.99) 1 + i(99) 0.9802 -0.0198 1 
Simulation #7 1000 0.001 + i(0.999) 1 + i(999) 0.998002 -0.001998 1 
Simulation #8 10000 0.0001 + i(0.9999) 1 + i(9999) 0.9998 -0.0002 1 
Simulation #9 100000 1e-005 + i(0.99999) 1 + i(99999) 0.99998 -2.00E-05 1 
Simulation #10 1000000 1e-006 + i(0.999999) 1 + i(999999) 0.999998 -2.00E-06 1 
Simulation #11 1E+09 1e-009 + i(0.999999999) 1 + i(999999999) 0.999999998 -2.00E-09 1 
Simulation #12 1012 = le+12 le-012+i(1) 1+i(le+012) ≅1 -2e-012≅0 1 
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9. CONCLUSION 

In this study I have elaborated the new field of 
“Complex Statistics” which is an original paradigm that 
was initiated in my first paper on the expansion of 
Kolmogorov’s system of axioms. I have defined in this 
study a new powerful tool which is the concept of the 
complex random vector that is a vector representing the 
real and the imaginary probabilities of an outcome, 
identified in the added axioms as being the term z = 
Pr+Pm. Then I have defined and expressed the resultant 
complex random vector as the vector which is the sum of 
all the complex random vectors and representing the 
whole distribution and system in the complex space C. I 
have illustrated this methodology by considering a 
Bernoulli distribution, then a discrete distribution with N 
random variables as a general case. Afterward, I have 
determined the characteristics (expectation and variance) 
of discrete distributions corresponding to the imaginary 
probabilities and to the complex random vectors. Thus, I 
have showed that there is a correspondence among the 
real, imaginary and complex expectations as well among 
the real, imaginary and complex variances for any 
Bernoulli distribution as well for any probability 
distribution. Moreover, I have proven that there is a 
direct relation between the concept of the resultant 
complex vector and the very well known law of large 
numbers. Using this new concept and tool, I have 
succeeded to demonstrate the law of large numbers in a 
new way. Additional development of this new complex 
paradigm will be done in subsequent work. Hence, the 
first and second papers on complex probabilities 
written after extending Kolmogorov’s axioms establish 
so far a new field in mathematics which can be called 
verily: “Complex Statistics”. 

10. NOMENCLATURE 

It should be: 
C  = The complex set of numbers = the real set R + 
               the imaginary set M 
Pr = Probability in the real set R 
Pm = Probability in the imaginary set M 

corresponding to the real probability in the set R 
Pc = Probability of an event A in R with its 

associated event in M 
 = Probability in the complex set C = always 1 
z = complex number = sum of Pr and Pm= complex 

random vector 

|z|2 = The degree of our knowledge of the random 
experiment, it is the square of the norm of z. 

Chf = The chaotic factor of z 
Z =  The resultant complex random vector 

2

2

| Z|

N
 =    The degree of our knowledge of Z 

2

Chf

N  
=  The chaotic factor of Z 

i = The imaginary number where i2 = -1  
Er = Expectation in the real set R 
Em =  Expectation in the imaginary set M 
Ec =  Expectation in the complex set C 
Vr = Variance in the real set R 
Vm = Variance in the imaginary set M 
Vc = Variance in the complex set C 
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