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ABSTRACT 

The modeling between predictors and response in statistics sometimes deals with more than one 

response or multiresponse situation. Furthermore, it can be happen that some predictors have linear 

relationship with the responses and the others predictor have unknown relationship. To overcome this 

modeling problem we proposed multiresponse semiparametric regression model. This model has more 

than one response and contains both parametric and nonparametric model. This study focuses on how 

to estimate parameter in multiresponse semiparametric regression. The weighted penalized least 

squares method is used to fit the model. This method produce partial spline estimator for 

nonparametric model and by applying some assumptions the estimator is polynomial natural spline. 

The performance of this estimator depends on smoothing parameter. So, we also proposed G criteria as 

modification of generalized cross validation in the context of multiresponse semiparametric regression 

to choose the optimal smoothing parameter. Using simulation data, it can be shown that this model can 

work well to describe relationship between some predictors and several responses.  

 

Keywords: Weighted Penalized Least Square, Multiresponse Semiparametric Regression, Partial Spline, 

Generalized Cross Validation  

 

1. INTRODUCTION 

Statistical modeling especially in regression 

analysis sometimes deals with two or more response 

variables. For example, bank manager wants to know 

impact of credit size on company performance. 

Company performance can be measured based on hours 

of activity, labor, asset, revenue and benefit. Another 

example is from sport. A coach wants to measure 

impact of exercise duration on quality of fitness. 

Fitness can be measured using endurance, speed, power, 

strength, flexibility and balance. In addition, in the field of 

emission gas analysis, an engineer wants to know how 

impact of vehicle age on emission gas, which can be 

measured using concentration of CO2, CO, NOx and SOx.  

Several authors have developed multiresponse 

statistical modeling. Wegman (1981); Miller and 

Wegman (1987) and Fessler (1991) developed algorithm 

for spline smoothing. Yee and Wild (1996) used additive 

model for multireponse data from exponential family. 

Soo and Bates (1996) developed multiresponse spline 

regression by using Gauss-Newton algorithm as method 

for estimating model’s parameter. Wang et al. (2000) 

developed bivariate spline nonparametric regression 

using assumption that covariance matrix is unknown and 

they proved that the joint estimates have smaller 

posterior variances than those of function-by-function 

estimates and are therefore more efficient. You et al. 

(2007) used two stages estimation on nonparametric 

seemingly unrelated regression.  
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Semiparametric regression model is also called partially 

linear model. This model is fusion between parametric and 

nonparametric regression. It is more flexible than fully 

parametric or nonparametric model because some of the 

predictors are linear and the rest being modeled 

nonparametrically. Engle et al. (1986) used this model 

firstly and for several decades it has been developed 

extensively and its application spread in many field. Further 

detailed about application of semiparametric model can be 

seen in Hardle et al. (2000). Lin and Carroll (2001) used 

semiparametric model for data clustering by developing 

semiparametric partially generalized linear model. Next, 

Qin and Zhu (2008) and Qin et al. (2009) used 

semiparametric model for longitudinal data. You and Zhou 

(2009) used polynomial spline for semiparametric 

regression in panel data. In addition, Ruppert et al. (2009) 

reviewed semiparametric regression development and its 

application during 2003-2007. 
The estimator in semiparametric regression can be 

obtained by penalized least square method. This 

estimator is solution of optimization problem below 

Equation 1: 
  

m
2f W [a,b]

Min {R(f ) J(f )}
∈

+ λ  (1) 

 
where, R(f) and J(f) indicate goodness of fit and 

smoothness level respectively. The quantity λ controls 

the tradeoff between goodness of fit R(f) and smoothness 

J(f). The quantity λ is also called smoothing parameter.  
Wahba (1990) has showed that if the goodness of fit is 

sum of squares residual and smoothness level is integral of 

second derivative square, then the estimator which 

minimize (1) in the context of semiparametric regression is 

partial spline. However, this estimator still depends on 

smoothing parameter λ. If λ value is small (λ→0), then the 

estimator tend to interpolate the data, fitting every data point 

exactly. Conversely, if λ value is large (λ→∞), then the 

estimator tend to be forced linear regression. So, the optimal 

smoothing parameter must be chosen to get the best 

estimator. Several authors had developed method for 

choosing the optimal smoothing parameter, such as Wahba 

(1990) that proposed generalized cross validation method. 

Wang (1998) also proposed Unbiased Risk (UBR) criteria 

to choose the optimal smoothing parameter.  

 Motivated by applied of multiresponse statistical 
modeling and the result of partial spline as in Wahba 
(1990), in this study we proposed multiresponse 
semiparametric regression model. Regarding to this model, 
the study focused on how to estimate parameter of the 
model. After that, we consider G criteria as method to 

choose the optimal smoothing parameter. This criteria is 
modification of generalized cross validation in the context 
of multiresponse semiparametric regression. Then, 
parameter estimation and choosing of optimal smoothing 
parameter will be demonstrated using the simulation data.  

2. MATERIALS AND METHODS 

2.1. Statistical Model 

 Suppose there are n sample random and each sample is 

observed for r response and some predictors. Suppose yji 

denote response jth and observation ith, with j = 1, 2, …, r 

and i = 1, 2, …, n. It is assumed that response yji have linear 

relationship with some predictor and unknown relationship 

with one predictor. Denote ji ji1 ji2 jipx (x ,x ,..., x )=
%

 as vector 

dimension 1×p is predictor variable and have linear 

model with response yji as well as tji∈[a,b] as predictor 

variable have unknown relationship with response. 

 Based on above data construction, multiresponse 

regression model is constructed below Equation 2: 

  

ji ji j ji jiy f (t ) , j 1, , r ; i 1, ,n= β + + ε = =L L
% %

jx  (2) 

 

εji, i = 1, 2,…,n are random error independently with 

mean zero and variance 2

jσ . There is correlation between 

error εji and εki. 
T p

jj j1 j2 jp( , ,..., ) Rβ = β β β ∈
%

 is p × 1
 

parameter model as parametric component. Due to 

unknown relationship predictor tji and response yji is, so 

fj(tji) 
is unknown function as nonparametric component 

and is only assumed smooth and continuous on interval 

[aj, bj]. Now, model (2) can be stated in matrix notation 

Equation 3: 

 

y X f= β + + ε
% %%%

 (3) 

 

Where: 

 

( ) ( )
T T

T T T

1 2 r j j1 j2 jny y , y , , y , y y ,y , , y , j 1,2, , r= = =L L L

% % % % %

 

1 2 rX diag(X ,X , ,X ), j 1,2, , r where= =L L  

j11 j12 j1p

j21 j22 j2p

j

j21 j22 j2p

x x x

x x x
X

x x x

 
 
 

=  
 
 
 

L

L

M M O M

L

 

T T T T T

1 2 r j j1 j2 jp( , ,..., ) , ( , ,..., )β = β β β β = β β β
% % % % %
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( )
( )

( ) ( )

T
T T T

1 2 r

T

j j j j1 j j2 j jn

T T
T T T

1 2 r j j1 j2 jn

f f ,f , ,f , where

f (t ) f (t ),f (t ), , f (t )

, , , , , , , ,

j 1,2, , r

=

=

ε = ε ε ε ε = ε ε ε

=

L
% % % %

L
%

L L
% % % % %

L

 

 
2.2. Estimation Method 

 The estimation method of the model’s parameter 

is the weighted penalized least square. Based on this 

method and model (3), it is defined a goodness of fit 

( )R ,fβ
%%

 and smoothness J(f) respectively: 

 

( ) ( ) ( )
( )

T
1 2

T
2 2 2

1 1 1 2 1 r

R ,f y X f B ( ) y X f

J(f ) P f , P f , , P f

−β = − β − σ − β −

=

% % %%% % %% %

L
%  

 

where, fi ∈ H, j = 1, 2,…,r for some Hilbert space H. 

H can be decomposed to be H = H0 ⊕ H1 where H0 ⊥ 

H1, as in Wahba (1990). P1 is orthogonal projection fj 

onto H1 in H space. 1 2B ( )− σ
%

 is weighted for goodness 

of fit and it is from variance covariance matrix 

between response and its element is defined: 

 
2

11 1 12 12 1r 1r

2

1 2 21 21 22 2 2r 2r

2

r1 r1 r2 r 2 rr r

B ( ) B ( ) B ( )

B ( ) B ( ) B ( )
B ( )

B ( ) B ( ) B ( )

−

 σ σ σ
 

σ σ σ σ =  
 
 σ σ σ 

L

L

% M M L M

L

 

 

Where: 

 
2 2 2 2

1 2 r
( , , , )σ = σ σ σL

%
 

2

j

2

j2

jj j

2

j

0 0

0 0
B ( ) , j 1,2, , r

0 0

 σ
 

σ 
σ = = 

 
 σ 

L

L
L

M M L M

L

 
jk

jk

jk jk kj kj

jk

0 0

0 0
B ( ) B ( )

0 0

j k; j,k 1,2, , r

 σ
 

σ 
σ = σ =  

 
 σ 

≠ =

L

L

M M L M

L

K

  

 Next, using ( )R ,fβ
%%

 and J(f), it is defined Lagrange 

function Equation 4: 

 

( )R ,f J(f )β + λ
% %%%

 (4) 

 

Where: 

 

1 2 r( , , , )λ = λ λ λL
%

 

 Estimator of β
%

 and f
%  

are minimizers of 

optimization problem below Equation 5: 
 

( ) ( )T
2

r
2

j 1 j

j 1

y X f B( ) y X f

P f
=

− β − σ − β − +

λ∑
% %%% %% %  (5)

 

3. RESULTS  

3.1. Parameter Estimation 

 It would be shown that solutions of optimization (5) 

are estimator for β
%

 and f
%

. They are Equation 6 and 7: 

 

ˆ ˆ ˆf T= γ + Σα
% %%

 (6)  

 
T T 1 T Tˆ (X (I - A( )) BX) X (I - A( )) By−β = λ λ

% %% %

 (7) 

 

Where: 

 

1 2 r j jv jiT diag(T ,T , ,T ), T { (t )}= = φL ,  

j 1,2, , r;i 1,2, ,n;v 1,2, ,m= = =L K K
 

1 2 rdiag( , , , ); k,l 1,2, ,nΣ = Σ Σ Σ =L K ;  

{ }j jk jl, , M B nΣ = ψ ψ = ∑+ Λ   

1 n 2 n r ndiag( I , I , , I )Λ = λ λ λL
 

T T T T T -1 -1 T -1

1 2 r
ˆˆ ˆ ˆ ˆ( , , , ) (T M BT) T M B(y - X )γ = γ γ … γ = β

% % % % %%

 

T T T T

1 2 n

-1 T -1 -1 T -1

ˆ ˆ ˆ ˆ( , , , )

ˆM B(I - T(T M BT) T M B)(y - X )

α = α α … α

= β
% % % %

%%
 

T -1 -1 T -1

-1 T -1 -1 T -1
A( ) T(T M BT) T M B

M B(I - T(T M BT)) T M B
λ = +

Σ%  

 
 To show the result of (6) and (7), it was started from 

properties of element in Hilbert space. If fj ∈ H, j = 

1,2,…,r for some Hilbert space H, then fj can be stated fj 

= fj0 + fj1 where fj0 ∈ H0 and fj1 ∈ H1. The fj1 component 
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is orthogonal projection of f onto H1 in space H. Suppose 

that φj1, φj2,…,φjm are basis for H0 sub space, such that 

for each function fj0 ∈ H0 can be stated Equation 8: 

 

j0 j1 j1 j2 j2 jm jmf , j 1,2, , r= δ φ + δ φ + + δ φ =L K  (8) 

 

 Next, a n × m matrix Tj is defined, with: 

 

j jk jiT { (t )},   i 1,2, ,n ; k 1,2, ,m= φ = =K K  

 
 Meanwhile, consider ψj1, ψj1,…,ψjn as basis for H1. 

So, for each fj1 ∈ H1 , it can be expressed Equation 9: 
 

j1 j1 j1 j2 j2 jn jnf , j 1, , r= α ψ + α ψ + + α ψ =L K  (9) 

 

 Due to fj = fj0+fj1, then for every fj∈H, it can be stated: 
 

m n

j jk jk ji ji

k 1 i 1

f (t) (t) (t)
= =

= γ φ + α ψ∑ ∑  (10) 

 
 In matrix notation, the Equation (10) can be stated: 
 

j j j j jf T= γ + Σ α
% %%

 

 
Where: 
 

{ }j jk jl, ;k, l 1,2, ,nΣ = ψ ψ = K  

 
 Generally, for all j, the nonparametric component 

can be presented Equation 11: 
 
f T= γ + Σα
% %%

 (11) 

 
Where: 
 

( ) ( )
( ) ( )

1 2 r 1 2 r

T T
T T T

1 2 r j j1 j2 jn

T T
T T T

1 2 r j j1 j2 jm

T diag(T ,T , ,T ), diag( , , , ),

, , , , , , , ,

, , , , , , , , j 1,2, , r

= Σ = Σ Σ Σ

α = α α α α = α α α

γ = γ γ γ γ = γ γ γ =

L L

L L
% % % % %

L L L
% % % % %

 

  
 It should be noted that for quantity J(f )

%
 and j = 

1,2,…, r: 

 
2

1 j 1 j 1 j

1 j0 j1 1 j0 j1

T

j j j

Pf P f ,P f

P (f f ),P (f f )

=

= + +

= α Σ α
% %

 

 So, the quantity J(f )
%

 can be presented: 

 

( )T
T T T

1 1 1 2 2 2 2 r r rJ(f ) , , ,= α Σ α λ α Σ α α Σ αK
% % % % % % %

 (12) 

 

 Next, based on Equation (5), (11) and (12), it is 

defined Q( , , )β α γ
%% %

 equal to: 

 

( ) ( )T
2

T

y X T B( ) y X T= − β − γ − Σα σ − β − γ − Σα +

α ΛΣα
% % %% % % %% %

% %

 (13) 

 

Where: 
 

1 n 2 n r ndiag( I , I , , I )Λ = λ λ λL  

 
 Minimizing of Equation (13) can be done by 

differentiating over each parameter that will be 

estimated. Firstly, it will be derived estimator for f
%

. For 

this purpose, the z y X= − β
% %%

 is defined as constant. So, 

Equation (13) becomes: 

 
T T

T T T T T

T

Q( , ) (z T ) B(z T ) n

Q( , )
z B T B Bz BT

2 B 2n 0

BT (B n ) Bz

α γ = − γ − Σα − γ − Σα + α ΛΣα

∂ α γ
= − Σ + γ Σ − Σ + Σ γ +

∂α

Σ Σα + ΛΣα =

γ + Σ + Λ α =

% %% % % % %% % %

% %
% %% %

%

% %

%%%

 

 

 It is defined that M = B∑ + nΛ, so Equation 14: 
 

1M B(z T )−α = − γ
%% %

 (14) 

 

T T T

T T T

T T T

BT Bz M B(y X ) M

Q( , )
z BT T Bz 2T BT

T B BT 0

T BT T B T Bz

γ = − α = − β − α

∂ α γ
= − − + γ +

∂γ

Σα + α Σ =

γ + Σα =

% % %% %%

% %
% % %

%

% %

%%%

 

  

Due to M = B∑ + nΛ, then: 

  

B∑ = M - nΛ 

 

and: 

 
1 1 1B M (M n )M I n M− − −Σ = − Λ = − Λ  
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So: 

 
T 1 1 T 1

1

1 T 1 1 T 1

(T M BT) T M Bz

M B(z T )

M B(I T(T M BT) T M B)z

with z y X

− − −

−

− − − −

γ =

α = − γ

= −

= − β

%%

%% %

%

% %%

 

 

 It should be noted that solution for γ
%

 and α
%

 imply 

function f can be seen as smoothing result for y X− β
%%

. 

The estimator of f can be stated Equation 15: 

 
T -1 -1 T -1

-1 T -1 -1 T -1
f̂ [T(T M BT) T M B

M B(I - T(T M BT)) T M B](y - X )
A( )(y - X )

= +
Σ β

= λ β
%

%%
% %%

 (15) 

 

Where: 

 
T -1 -1 T -1

-1 T -1 -1 T -1
A( ) T(T M BT) T M B

M B(I - T(T M BT)) T M B
λ = +

Σ%
 

 

 In other side, substitute Equation (11) to (14) will 

produce: 

 
1 1f y X B M y - X - B n

n B(y - X - f )

B(I - A( ))(y - X )

− −= − β − α + Σα = β Λα
Λα = β

= λ β       

% % %% %% %
%% %%

% %%

 

 

 Next, it can be shown that Equation 16: 

 

 

T T 1 T 1 1 T 1

T T

T T

T T T T

T T

T T M B(I T(T M BT) T M B)z 0

f T A( )(y - X ) - T

n n (A( )(y - X ) T )

Q( ) (y X f ) (y X f ) n

Q( )
X (I A( )) By X (I A( )) BX 0

ˆ (X (I A( )) BX

− − − −α = − =

∑α = − γ = λ β γ

Λα ∑α = λα λ β − γ

β = − β − − β − + λα ∑α

∂ β
= − − λ + − λ β =

∂β

β = − λ

%%

%% %% % %%

% % % % % %%

% % % %% % %% %

%
% % %%

%

%%

1 T T) X (I A( )) By− − λ
% %

 (16)

 

 

 From (15) and (16), the multiresponse semiparametric 

regression can be written as Equation 17: 

 

ˆˆŷ X f H( )y= β + = λ
% %%% %

 (17) 

Where: 

 
T T 1

T T

H( ) (I A( ))X(X (I A( )) BX)

X (I A( )) B A( )

−λ = − λ − λ

− λ + λ
% % %

% %

 

 

 Next, consider special condition for nonparametric 

estimator f̂
%

when assumption for f is hold following 

condition: 

  

( )m

j 2 j jf W [a ,b ] , j 1,2,..., r∈ =
 

 Where: 

 ( )

( )
j

j

m (m 1)

2 j j j j j j

b
2

(m)

j j j

a

W [a ,b ] {f : f ,f , ,f , abs. cont.,

f (t ) dt }

−′=

< ∞∫

L

 

( )
j

j

b
22

(m)

1 j j j j

a

Pf f (t ) dt= ∫
 

v 1

v

t
(t) , v 1,2,...,m

(v 1)!

−

φ = =
−  

j

j

b m 1 m 1

j

j j j j j

a

(s u) (t u)
(s, t ) du s, t [a ,b ]

(m 1)!(m 1)!

− −
+ +− −

ψ = ∈
− −∫  

 

then the function f which minimize weighted penalized 

least square would be: 

 

( ) ( )

( )
j

j

T
2

b
r

2
(m)

j j j j

j 1 a

y X f B( ) y X f

f (t ) dt
=

− β − σ − β − +

λ∑ ∫

% %%% %% %
 

 

which is Natural Spline (NS) degree 2m-1. It is denoted by 

NS
2m-1

. From Wahba (1990), natural spline m

n
f (t) f (t)=  is a 

real-valued function on [a, b] defined with the aid of n knot 

1 na t t b−∞ ≤ < < < < ≤ ∞L with the following properties:  

 

• m 1

1 n
f , t [a, t ], t [x ,b]−∈π ∈ ∈  

• 2m 1

i i 1
f , t [t , t ],i 1,2, ,n 1−

+∈π ∈ = −K  

• 2m 2f C , t ( , )−∈ ∈ −∞ ∞  

 

Where: 
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πk
 = The polynomial of degree k or less  

C
k
 = The class of function with k continuous derivatives 

 For more detailed the reader can read that reference. 

 The following process shows that if f holds the 

above assumption, then estimator of f is natural spline 

degree 2m-1. For t∈[aj, tji]: 

 
j

j

j

b m 1 m 1

j

j j

a

2 m 1t
j j

2

a

(t u) (t u)
(t, t ) du

(m 1)!(m 1)!

[tt tu t u u ]
du

[(m 1)!]

− −
+ +

−

− −
ψ =

− −

− − +
=

−

∫

∫
 

 

Then: 

 
2m 1

j j ji(t, t ) , t [a, t ]−ψ ∈π ∈  

 

For: 

 

j

j

ji j

b m 1 m 1

j

j j

a

t [t ,b ],

(t u) (t u)
(t, t ) du

(m 1)!(m 1)!

− −
+ +

∈

− −
ψ =

− −∫
 

ji

j

t 2 m 1

j j

2

a

[tt tu t u u ]
du

[(m 1)!]

−− − +
=

−∫
 

 

Then: 

 
m 1

j j ji j(t, t ) ,s [t ,b ]−ψ ∈π ∈  

 

 Multiplying α̂
%

 by T
T
 from left will lead to: 

 
T ˆT 0α =
%  

 
 This implies: 

 
j j
ˆT 0, j 1,2, , rα = = K
%

 

 

 As a result: 

 
n

k

ji ji

i 1

t 0,k 0,1,2, ,m 1
=

α = = −∑ K  

 

 Next, for t < tj1: 

j

j

b m 1 m 1n n
ji

ji ji ji 2
i 1 i 1 a

(t u) (t u)
(t) du

[(m 1)!]

0

− −
+ +

= =

− −
α ψ = α

−

=

∑ ∑ ∫

 
 
 So: 
 

m 1

j j1f (t) , t t−∈π <  

 
For: 
 

ji

m 1 m 1b
ji

ji 2

a

t t , i 1,2, ,n,

(t u) (t u)
(t) du

[(m 1)!]

− −
+ +

< =

− −
ψ =

−∫

K

 

 
 By solving this integration: 
 

2m 1

ji (t)
−ψ ∈π  

 
So: 
  

2m 1

j ji j(i 1)f (t) , t [t , t ], i 1,2, ,n 1−
+∈π ∈ = −K  

 
 For: 
 

jn

m 1 m 1b
ji

ji 2

a

t t

(t u) (t u)
(t) du

[(m 1)!]

− −

>

− −
ψ =

−∫
 

 
 By solving this integration: 
 

m 1

ji (t)
−ψ ∈π  

 
 As a result: 
 

m 1

j jnf (t) , t [t ,b]−∈π ∈  

 
 Based on (i), (ii) and (iii), it can be inferred that fj(t) 

∈ NS
2m-1

.  

 3.2. Smoothing Parameter 

 The partial spline estimator still depends on 

smoothing parameters T

1 2 r
( , , , )λ = λ λ λL

%
. The following is 

steps to choose the optimal smoothing parameter. Recall 

Equation (17) and let: 
 

r

j

j 1

N n
=

=∑  

 
 Mean Square Error of this estimator is given by: 
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1 T 2ˆ ˆMSE( ) N (y y) B( )(y y)−λ = − σ −
% %% % % %

 

 
with simple algebra manipulation, the result will be: 
 

2
1 1/ 2 2N B ( )[(I H( )]y− σ − λ

% % %

 

 

 Matrix 1/ 2 2B ( )σ
%

 has properties: 

 

( )T
1/ 2 2 1/2 2 2B ( ) B ( ) B( )σ σ = σ

% % %
 

 
 Next, it is defined: 
 

( )

2
1 1/ 2 2

2
1

N B ( )[(I H( )]y
G( )

N trace I H( )

−

−

σ − λ
λ =

 − λ 

% % %
%

%

 

 
 The optimal smoothing parameter 

T

opt 1(opt ) 2(opt ) r (opt)( , ,..., )λ = λ λ λ
%

 was obtained by solving 

optimization problem: 
 

{ }

( )

j

j

opt (opt )
, j 1,2,...,r

2
1 1/ 2 2

2
1, j 1,2,...,r

G ( ) Min G( )

N B ( )[(I H( )]y
Min

N trace I H( )

+

+

λ ∈ =

−

−λ ∈ =

λ = λ

 σ − λ 
=  

 − λ   





% %

% % %

%

 

 

where, 2 2 2

1 2 rv v v ... v= + + +
%

is norm for some vector v
%

 

with dimension r, T

1 2 r
v (v ,v ,..., v )=
%

.  

 So, the optimal smoothing parameter 
T

opt 1(opt ) 2(opt ) r (opt)( , ,..., )λ = λ λ λ
%

 was obtained by minimizing 

quantity opt (opt )G ( )λ
%

 for each non negative smoothing 

parameter j ,+λ ∈ j = 1,2,…,r.  

3.3. Numerical Example 

 As example for multiresponse semiparametric 

regression, simulation data was generated using the 

following equation: 
 

2

1i 1i 1i 1i

2

2i 2i 2i 2i

2

3i 3i 3i 3i

y 5 2x 2sin(2 t )

y 3 4x 2sin(2 t )

y 1 6x 2sin(2 t )

i 1,2, ,100

= + + π + ε

= + + π + ε

= + + π + ε

= K

 

 
 This equation generates data for multiresponse 

semiparametric regression with three responses, linear 

parametric component and sinus pattern for 

nonparametric component. Predictor variable xji, j = 

1,2,3 as parametric predictor was generated from Normal 

(0,1). Predictor variable tji, j = 1, 2, 3 as nonparametric 

predictor was from Uniform(0,2). Random error 
T T T T

1 2 3
( , , )ε = ε ε ε

% % % %
 was from Multivariate Normal (0,Ω). ε1i, 

ε2i, ε3i are correlated with corr(ε1i, ε2i) = corr(ε1i, ε3i) = 

corr(ε2i, ε3i) = ρ = 0.5. Error variance 2

jσ  was generated 

from Unoform(0.1, 0.2), j = 1, 2, 3.  

 Figure 1 show partial scatter plot of above 

simulation. This figure is used to confirm what 

relationship between response and parametric predictor 

as well as response and nonparametric predictor for each 

response. The scatter plot shows that the relationship 

between parametric predictor (x) and response is linear 

as well as relationship between nonparametric predictor 

(t) that relatively follows the pattern of sinus function. 
 Figure 2 shows three dimension surface plot to 
describe relation between predictor and response in one 
picture. This surface plot is composed by combining 
predictor x and predictor t as horizontal axis as well as 
response y as vertical axis. We just present surface plot of 
response 1 due to limitation space. The surface plot of 
response 2 and 3 has the similar pattern with response 1. 
 Next, based on this data, the parametric and 

nonparametric estimator will be computed by 

implementing R software. Due to the limitation of space, 

the result of computing is presented simply in the 

following tables and figures. Table 1 shows various 

smoothing parameters and their G score. We can see the 

changing of G score from small (line 1) to large 

smoothing parameter (line 11) 

 As mentioned before that the partial spline estimator 

depends on the smoothing parameter. The following figures 

shows impact of smoothing parameter on the shape of 

surface plot between predicted value of response as vertical 

axis as well as predictor x and t as horizontal axis. We just 

also present surface plot of response 1 to avoid too many 

figure with the same information.  
 Figure 3 shows that for small smoothing parameter 
(line 1 of Table 1), the spline estimated imply the predicted 
value tend to interpolate the actual value of response. We 
can compare surface plot in Fig. 2 and surface plot in Fig. 3 
that show their shape is almost the same.  
 Figure 4 shows that for large smoothing parameter 
(line 11 of Table 1), the predicted value tend to be 
forced to fit the linear regression. It can be seen, as long 
both horizontal axis, the predicted value have the linear 
pattern. This mean both parametric and nonparametric 
have the linear pattern. We also conclude that for large 
smoothing parameter, the partial spline estimator tend to 
be forced linear regression fit. 
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Fig. 1. Partial scatter plot of predictor and response 

 

 
 
Fig. 2. Surface plot of response 1 based on actual data of 

predictor and response  

 

 Table 1 shows that the optimal condition is reached 

when the G score is minimum, equal to 0.320519 (line 6 

of Table 1) and the smoothing parameters of response 1, 

response 2 and response 3 are 2.667644e-08, 6.223154e-

09 and 2.962001e-09 respectively. Using the optimal 

smoothing parameter, the corresponding estimator for 

parametric component β is presented in Table 2. 

Table 1. The smoothing parameter and G value 

λ1
 λ2

 λ3
 

G (λ1, λ2, λ3)
  

2.66764e-13 6.2231e-14 2.9620e-14 0.5052072 

2.6676e-12 6.2231e-13 2.9620e-13 0.5047398 

2.6676e-11 6.2231e-12 2.9620e-12 0.5002114 

2.6676e-10 6.2231e-11 2.9620e-11 0.5695718 

2.6676e-09 6.2231e-10 2.9620e-10 0.3798685 

2.6676e-08 6.2231e-09 2.9620e-09 0.3205190 

2.6676e-07 6.2231e-08 2.9620e-08 0.5434078 

2.6676e-06 6.2231e-07 2.9620e-07 1.5095615 

2.6676e-05 6.2231e-06 2.9620e-06 2.6249815 

2.6676e-04 6.2231e-05 2.9620e-05 3.3163426 

2.6676e-03 6.2231e-04 2.9620e-04 3.5232653 
 
Table 2. Parametric estimator for each response 

Response 
0β̂  

1β̂  

1 5.245424 2.011274 

2 3.513463 3.750386 

3 1.418387 5.881660 

 

 Figure 5 shows the surface plot of predicted value 

of each response using the optimal smoothing parameter. 
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Fig. 3. Surface plot of predicted value response 1 using the small smoothing parameter 

 

 
 

Fig. 4. Surface plot of predicted value response 1 using the large smoothing parameter 

 

 
(a) 



Wahyu Wibowo et al. /Journal of Mathematics and Statistics 8 (4): 489-499, 2012 

 

498 Science Publications

 
JMSS 

 

 
(b) 

 

 
(c) 

 
Fig. 5. Surface plot of predicted value of response 1 (a), response 2 (b) and response 3 (c) using the optimal smoothing parameter 

 

4. DISCUSSION 

 There are several issues regarding the 

multiresponse semiparametric regression. The first one is 

about estimator of nonparametric component. In this 

study, the nonparametric estimator as in Equation (6) is 

general form of smoothing spline, which is produced by 

weighted penalized least square method. However, if we 

apply some assumptions for function f, the estimator will 

be special form of spline smoothing, such as polynomial 

natural spline in this study. In other words, the different 

assumption of f and its norm will produce different form 

of spline. We did not discuss further about this, but 

further discussion can be found in Wahba (1990). 

Another method also can be used to estimate parameter, 

such as penalized likelihood. Nevertheless, this method 

requires distribution assumption of residual. 

 The second issue is smoothing parameter 

especially method to choose the optimal smoothing 

parameter and how many smoothing parameter must 

be chosen. In this study, we modify generalized cross 

validation to choose the optimal smoothing parameter 

in the context of multiresponse semiparametric 

regression. Actually, there are other methods to select 

the optimal smoothing parameter, such as Unbiased 

Risk (UBR), Generalized Maximum Likelihood 

(GML) or Cross Validation (CV). Wang (1998) did 

comparison of these method. In our case, the model 

involves the multiple smoothing parameters and this 

situation will imply the complicated of optimization 

problem. Therefore, to make easier the optimization 

problem, we choose GCV methods that relatively easy 

to be modified and optimized.  
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5. CONCLUSION 

 Nonparametric and parametric estimator in 

multiresponse semiparametric regression model can be 

obtained by using weighted penalized least square. More 

specific, estimator for nonparametric component is 

partial spline function. Especially, if nonparametric 

component hold some assumption, then the kind of 

spline function is polynomial natural spline. This 

estimator depends on smoothing parameter and this 

imply that the predicted values also depend on 

smoothing parameter. However, the optimal smoothing 

parameter can be chosen by using G criteria. Numerical 

example shows that the model can be applied well using 

simulation data. The problem remaining is to find 

statistical properties of the estimator and to apply this 

model in real life problem. 
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