On (2, 3, t)-Generations for the Conway Group Co_{2}

Mohammed A. Al-Kadhi and Faryad Ali
Department of Mathematics, Faculty of Science, Al-Imam Mohammed Bin Saud Islamic University, P.O. Box 90950, Riyadh 11623, Saudi Arabia

Abstract

Problem statement: In this article we investigate all the ($2,3, \mathrm{t}$)-generations for the Conway's second largest sporadic simple group Co_{2}, where t is an odd divisor of order of Co_{2}. Approach: An (l, m, n)-generated group G is a quotient group of the triangle group $\mathrm{T}(\mathrm{l}, \mathrm{m}, \mathrm{n})=(\mathrm{x}, \mathrm{y}$, $\left.z \mid x^{1}=y^{m}=z^{n}=x y z=1\right)$. A group G is said to be (2,3,t)-generated if it can be generated by two elements x and y such that $\mathrm{o}(\mathrm{x})=2, \mathrm{o}(\mathrm{y})=3$ and $\mathrm{o}(\mathrm{xy})=\mathrm{t}$. Computations are carried out with the aid of computer algebra system GAP-Groups, Algorithms and Programming. Results and Conclusion: The Conway group Co_{2} is $(2,3, \mathrm{t})$-generated for t an odd divisor of order of Co_{2} except when $\mathrm{t}=5,7,9$.

Key words: Conway group, sporadic simple group, generation, subject classification, sporadic group

INTRODUCTION

This study is intended as a sequel to author's earlier work on the determination of (2, 3, t)generations for the sporadic simple groups. In a series of papers (Al-Kadhi, 2008a; 2008b; Al-Kadhi and Ali, 2010; Conway, 1985), the author with others established the ($2,3, \mathrm{t}$)-generations for the sporadic simple groups $\mathrm{He}, \mathrm{HS}, \mathrm{J}_{1}, \mathrm{~J}_{2}$ and Co_{3}. Recently, the study of the Conway groups has received considerable amount of attention. Moori (1991) determined the (2, 3 , p)-generations of the smallest Fischer group Fi_{22}. Ganief and Moori (1995) established (2, 3, t)generations of the third Janko group J_{3}. More recently, Ali and Ibrahim (2012) computed the (2, 3, t)generations for the Held's sporadic simple group He.

The present paper is devoted to the study of $(2,3$, t)-generations of the Conway's sporadic simple group Co_{2}, where t is any odd divisor of $\left|\mathrm{Co}_{2}\right|$. For more information regarding the study of $(2,3, t)$-generations as well as the computational techniques, the reader is referred to (Ali and Ibrahim, 2005a; 2005b; Al-Kadhi, 2008a; 2008b; Al-Kadhi and Ali, 2010; Ganief and Moori, 1995; Moori, 1991; Liebeck and Shalev, 1996).

A group G is said to be $(2,3)$-generated if it can be generated by an involution x and an element y of order 3 . If $o(x y)=t$, we also say that G is $(2,3, t)$-generated. The (2,3)-generation problem has attracted a vide attention of group theorists. One reason is that $(2,3)$ generated groups are homomorphic images of the modular group PSL $(2, \mathrm{Z})$, which is the free product of
two cyclic groups of order two and three. The connection with Hurwitz groups and Riemann surfaces also play a role. Recall that a (2, 3, 7)-generated group G which gives rise to compact Riemann surface of genus greater than 2 with automorphism group of maximal order, is called Hurwitz group.

MATERIALS AND METHODS

Throughout this study our notation is standard and taken mainly from (Ali and Ibrahim, 2005a; Al-Kadhi and Ali, 2010; Moori, 1991). In particular, for a finite group G with $C_{1}, C_{2}, \ldots, C_{k}$ conjugacy classes of its elements and g_{k} a fixed representative of C_{k}, we denote $\Delta(\mathrm{G})=\Delta_{\mathrm{G}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right)$ the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with $g_{i} \in C_{i}$ such that $g_{1} g_{2} \ldots g_{k-1}=g_{k}$. It is well known that $\Delta_{G}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right)$ is structure constant for the conjugacy classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$ and can easily be computed from the character table of G by the following formula:

$$
\begin{aligned}
& \Delta_{G}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right)=\frac{\left|\mathrm{C}_{1} \| \mathrm{C}_{2}\right| \ldots\left|\mathrm{C}_{\mathrm{k}-1}\right|}{|\mathrm{G}|} \times \\
& \sum_{\mathrm{i}=1}^{\mathrm{m}} \frac{\mathrm{X}_{\mathrm{i}}\left(\mathrm{~g}_{1}\right) \mathrm{X}_{\mathrm{i}}\left(\mathrm{~g}_{2}\right) \ldots X_{\mathrm{i}}\left(\mathrm{~g}_{\mathrm{k}-1}\right) \overline{\mathrm{X}_{\mathrm{i}}\left(\mathrm{~g}_{\mathrm{k}}\right)}}{\left[\mathrm{X}_{\mathrm{i}}\left(\mathrm{l}_{\mathrm{G}}\right)\right]^{\mathrm{k}-2}}
\end{aligned}
$$

where, $X_{1}, X_{2}, \ldots, X_{m}$ are the irreducible complex characters of G. Further let $\Delta^{*}(\mathrm{G})=\Delta^{*}{ }_{\mathrm{G}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right)$ denote the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with $g_{i} \in C_{i}$ and $g_{1}, g_{2} \ldots g_{k-1}=g_{k}$ such that $G=<g_{1}, g_{2}, \ldots$,
$\mathrm{g}_{\mathrm{k}-1}>$. If $\Delta^{*}{ }_{\mathrm{G}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right)>0$, then we say that G is $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$-generated. If H any subgroup of G containing the fixed element $\mathrm{g}_{\mathrm{k}} \in \mathrm{C}_{\mathrm{k}}$, then $\Sigma_{\mathrm{H}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}-1}, \mathrm{C}_{\mathrm{k}}\right)$ denotes the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right) \in\left(C_{1} \times C_{2} \times \ldots \times C_{k-1}\right)$ such that $\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{k}-1}=\mathrm{g}_{\mathrm{k}}$ and $\left\langle\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{k}-1}\right\rangle \leq \mathrm{H}$ where $\Sigma_{\mathrm{H}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right)$ is obtained by summing the structure constants $\Delta_{\mathrm{H}}\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}\right)$ of H over all H -conjugacy classes $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}-1}$ satisfying $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{H} \cap \mathrm{C}_{\mathrm{i}}$ for $1 \leq \mathrm{i} \leq$ $\mathrm{k}-1$.

The following results in certain situations are very effective at establishing non-generations.

Theorem 1.1: (Scott's Theorem (Scott, 1977): Let x_{1}, x_{2}, \ldots, x_{m} be elements generating a group G with $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}=1_{\mathrm{G}}$ and V be an irreducible module for G of dimension $n \geq 2$. Let $C_{V}\left(x_{i}\right)$ denote the fixed point space of $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle$ on V and let d_{i} is the codimension of $\mathrm{V} / \mathrm{C}_{\mathrm{V}}$ $\left(\mathrm{x}_{\mathrm{i}}\right)$. Then $\mathrm{d}_{1}+\mathrm{d}_{2}+\ldots+\mathrm{d}_{\mathrm{m}} \geq 2_{\mathrm{n}}$.

Lemma 1.2: (Conder et al., 1992): Let G be a finite centerless group and suppose $1 \mathrm{X}, \mathrm{mY}, \mathrm{nZ}$ are Gconjugacy classes for which $\Delta^{*}(\mathrm{G})=\Delta^{*}{ }_{\mathrm{G}}(\mathrm{lX}, \mathrm{mY}, \mathrm{nZ})<$ $\left|\mathrm{C}_{\mathrm{G}}(\mathrm{z})\right|, \mathrm{z} \in \mathrm{nZ}$. Then $\Delta^{*}(\mathrm{G})=0$ and therefore G is not ($\mathrm{lX}, \mathrm{mY}, \mathrm{nZ}$)-generated. $(2,3, \mathrm{t})$-Generations for Co_{2}.

RESULTS AND DISCUSSION

The Conway group Co_{2} is a sporadic simple group of order $2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11.23$ with 11 conjugacy classes of maximal subgroups. It has 60 conjugacy classes of its elements including three conjugacy classes of involutions, namely $2 \mathrm{~A}, 2 \mathrm{~B}$ and 2 C . The group Co_{2} acts primitively on a set of 2300 points. The points stabilizer of this action is isomorphic to $\mathrm{U}_{6}(2): 2$ and the orbits have length 1,891 and 1408. The permutation character of Co_{2} on the cosets of $\mathrm{U}_{6}(2): 2$ is given by $\mathrm{XU}_{6}(2): 2=$ $1 \mathrm{a}+275 \mathrm{a}+2024 \mathrm{a}$ for basic properties of Co_{2} and computational techniques, the reader is encouraged to consult (Ali and Ibrahim, 2005a; 2005b; Ganief, 1997; Ganief and Moori, 1995).

We now compute the $(2,3, t)$-generations for the second Conway group Co_{2}. It is well know that if the group Co_{2} is $(2,3, \mathrm{t})$-generated then $\frac{1}{2}+\frac{1}{3}+\frac{1}{\mathrm{t}}<1$. Further since we are concerned only with odd divisor of the order of Co_{2}, we only need to consider the cases when $t=7,9,15,23$. However, the case when t is prime has already been studied in Ganief (1997) so the remaining cases are $t=9,15$.

Lemma 2.1: The Conway group Co_{2} is not ($2 \mathrm{X}, 3 \mathrm{Y}$, 9A)-generated where $X \in\{A, B, C\}, Y \in\{A, B\}$.

Proof: Using GAP we compute the algebra structure constants and obtain that:

$$
\begin{aligned}
& \Delta_{\mathrm{Co}_{2}}(2 \mathrm{~A}, 3 \mathrm{Y}, 9 \mathrm{~A})=\Delta_{\mathrm{Co}_{3}}(2 \mathrm{~B}, 3 \mathrm{Y}, 9 \mathrm{~A}) \\
& <\left|\mathrm{C}_{\mathrm{Co}_{2}}(9 \mathrm{~A})\right|
\end{aligned}
$$

Now by applying Lemma 2.2, we obtain:

$$
\Delta_{\mathrm{Co}_{2}}^{*}(2 \mathrm{~A}, 3 \mathrm{Y}, 9 \mathrm{~A})=0=\Delta_{\mathrm{Co}_{2}}^{*}(2 \mathrm{~B}, 3 \mathrm{Y}, 9 \mathrm{~A})
$$

Therefore ($2 \mathrm{~A}, 3 \mathrm{Y}, 9 \mathrm{~A}$) and ($2 \mathrm{~B}, 3 \mathrm{Y}, 9 \mathrm{~A}$) are not the generating triples for Co_{2}.

The group Co_{2} acts on a 275-dimensional irreducible complex module V . Let $\mathrm{d}_{\mathrm{nX}}=$ $\operatorname{dim}\left(\mathrm{V} / \mathrm{C}_{\mathrm{V}}(\mathrm{nX})\right)$, the co-dimension of the fix space (in V) of a representative in nX . Using the character table of Co_{2} and with the help of Scott's Theorem (Theorem 2.1) we compute that the values of $d_{n x}$. Our investigation conclude that the triple ($2 \mathrm{C}, 3 \mathrm{Y}, 9 \mathrm{~A}$) violates the Scott's Theorem and thus Co_{2} is not generated by (2C, 3Y, 9A)-generated. This completes the lemma.

Theorem 2.2: The sporadic simple group Co_{2} is (2X, $3 Y, 15 Z$)-generated where $X, Z \in\{A, B, C\}$ and $Y \in$ $\{A, B\}$ if and only if $(X, Y, Z) \in\{(2 C, 3 Y, 15 B),(2 C$, $3 \mathrm{Y}, 15 \mathrm{C})\}$.

Proof: Since $\quad \Delta_{\mathrm{Co}_{2}}(2 \mathrm{~A}, 3 \mathrm{Y}, 15 \mathrm{Z})=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{~B}, 3 \mathrm{Y}, 15 \mathrm{Z})$ $<\left|\mathrm{C}_{\mathrm{Co}_{2}}(15 \mathrm{Z})\right|=30$, by Lemma 2.2, the group Co_{2} is not (2A, 3Y, 15Z)-, (2B, 3Y, 15Z)-generated.

Further an application of Theorem 2.1 implies that the triples $(2 \mathrm{C}, 3 \mathrm{Y}, 15 \mathrm{~A})$ are not generating triples for Co_{2}.

Next we consider the triples (2C, 3A, 15B) and (2C, 3A, 15C). We compute that the structure constants:

$$
\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~A}, 15 \mathrm{~B})=90=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~A}, 15 \mathrm{C})
$$

Up to isomorphism, the maximal subgroups of Co_{2} having non-empty intersection with the classes $2 \mathrm{C}, 3 \mathrm{~A}$ and 15 B or 15 C (respectively) are $\mathrm{L} \cong\left(2^{4} \times 2^{1+6}\right)$. A_{8}, $\mathrm{M} \cong 3^{1+6}: 2^{1+4} \cdot \mathrm{~S}_{5}$ and $\mathrm{N} \cong 5^{1+2}: 4 \mathrm{~S}_{4}$. However, we obtain algebra constants as:

$$
\begin{aligned}
& \sum_{L}(2 C, 3 A, 15 B)=\sum_{M}(2 C, 3 A, 15 B) \\
& =\sum_{N}(2 C, 3 A, 15 B)=0 \\
& \sum_{L}(2 C, 3 A, 15 C)=\sum_{M}(2 C, 3 A, 15 C) \\
& =\sum_{N}(2 C, 3 A, 15 C)=0
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \Delta_{\mathrm{Co}_{2}}^{*}(2 \mathrm{C}, 3 \mathrm{~A}, 15 \mathrm{~B})=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~A}, 15 \mathrm{~B})=90>0 \\
& \Delta_{\mathrm{Co}_{2}}^{*}(2 \mathrm{C}, 3 \mathrm{~A}, 15 \mathrm{C})=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~A}, 15 \mathrm{C})=90>0
\end{aligned}
$$

proving generation of Co_{2} by these triples.
Finally, we consider the triples (2C, 3B, 15B) and $(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{C})$. For these triples we have $\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~B}$, $15 \mathrm{~B})=75=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{C})$. The only maximal subgroups of Co_{2} which contains ($2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{~B}$)-, (2 C , $3 \mathrm{~B}, 15 \mathrm{C}$)-generated proper subgroups, up to isomorphism, are $L \cong\left(2^{4} \times 2^{1}+{ }^{6}\right) \cdot \mathrm{A}_{8}$ and $\mathrm{M} \cong$ $3^{1+6}: 2^{1+4} . S_{5}$. Further, since $\Sigma_{M}(2 C, 3 B, 15 B)=0=\Sigma_{M}$ (2C, 3B, 15C) we obtain:

$$
\begin{aligned}
& \Delta_{\mathrm{Co}_{2}}^{*}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{~B})=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{~B})- \\
& \sum_{\mathrm{L}}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{~B})=75-15>0 \\
& \Delta_{\mathrm{Co}_{2}}^{*}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{C})=\Delta_{\mathrm{Co}_{2}}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{C})- \\
& \sum_{\mathrm{L}}(2 \mathrm{C}, 3 \mathrm{~B}, 15 \mathrm{C})=75-15>0
\end{aligned}
$$

Thus, Co_{2} is (2C, 3B, 15B)- and (2C, 3B, 15C)generated and the proof is complete.

CONCLUSION

In this article we proved the following theorem.
Theorem 3.1: The Conway's second sporadic simple group is $(2,3, t)$-generated for t is an odd divisor of order of Co_{2}, except when $\mathrm{t}=5,7,9$.

Proof: This follows from Lemma 2.1, Theorem 2.2, results from Ganief (1997) and Ganief and Moori (1998) and the fact that triangle group $T(2,3,5)$ is isomorphic to A_{5}.

ACKNOWLEDGEMENT

This research was supported by the Deanship of Academic Research, Al-Imam Mohammed Ibn Saud

Islamic University, Riyadh, KSA under Project No. 281204. The authors are grateful to Al-Imam University for their support.

REFERENCES

Ali, F. and M.A.F. Ibrahim, 2012. On the generations of Held group He by $(2,3)$ generators. Bull. Malay. Math. Soc., 35: 745-753.
Ali, F. and M.A.F. Ibrahim, 2005a. On the ranks of Conway group C_{ol}. Proc. Japan Acad. Ser. A Math. Sci., 81: 95-98. DOI: 10.3792/pjaa.81.95
Ali, F. and M.A.F. Ibrahim, 2005b. On the ranks of the conway groups Co_{2} and Co_{3}. J. Algebra Appli., 4: 557-566.
Al-Kadhi, M.A. and F. Ali, 2010. (2,3,t)-Generations for the Conway group Co_{3}. Int. J. Algebra, 4: 13411353.

Al-Kadhi, M.A., 2008a. On (2, 3, t)-Generations for the Janko groups J_{1} and J_{2}. Far East J. Math. Sci., 29: 379-388.
Al-Kadhi, M.A., 2008b. (2, 3, t)-generations of the higman-simssporadic simple group HS. Int. J. Pure Appl. Math., 46: 57-64.
Conder, M.D.E., R. A. Wilson and A.J. Woldar, 1992. The symmetric genus of sporadic groups. Proc. Am. Math. Soc., 116: 653-663.
Conway, J.H., 1985. ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple. 1st Edn., Oxford University Press, USA,, ISBN-10: 0198531990 , pp: 250.
Ganief, M.S., 1997. 2-generations pf the sporadic simple groups. Ph.D thesis, University of Natal, Pietermaritzburg.
Ganief, S. and J. Moori, 1995. (2, 3, t)-Generations for the Janko group J_{3}. Comm. Algebra, 23: 44274437.

Ganief, S. and J. Moori, 1998. Generating pairs for the Conway groups Co_{2} and Co_{3}. J. Group Theory, 1: 237-256. DOI: 10.1515/jgth. 1998.016
Liebeck, M.W. and A. Shalev, 1996. Classical groups, probabilistic methods and the (2, 3)-generation problem. Annals Math., 144: 77-125.
Moori, J., 1991. (2,3,p)-generations for the fischer group f_{22}. Comm. Algebra, 22: 4597-4610. DOI: 10.1080/00927879408825089

Scott, L.L., 1977. Matrices and cohomology. Ann. Math., 105: 473-492.

