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Abstract: The scope of this review article is to present and discuss various aspects of discrete 
nonlinear age- and stage-structured population models. We show that such models cover species which 
exhibit a wide range of different life histories and that one may use them in order to deduce fairly 
general ecological principles with respect to stability and dynamical outcomes. From a mathematical 
point of view, we give several examples of the fact that the nonstationary dynamics generated by such 
maps is indeed rich as a result of different types of bifurcations of various nature as well as other 
mechanisms like frequency locking and crises that may occur. 
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INTRODUCTION 

 
 In an influential review article “Simple 
mathematical models with very complicated dynamics” 
Sir May (1976) presented an analysis of a first order 
nonlinear difference equation often referred to as the 
logistic equation or the quadratic map. Both in May 
(1976) as well as in Sarkovskii (1964); Li and Yorke 
(1975); May and Oster (1976); Guckenheimer et al. 
(1977); Feigenbaum (1978) and Singer (1978) it was 
demonstrated that simple one-dimensional nonlinear 
maps of biological relevance could exhibit an 
extraordinary rich dynamical behaviour ranging from 
stable fixed points, periodic points to chaotic behaviour. 
An excellent summary of results, in particular results 
from the quadratic map, may be obtained in Thunberg 
(2001), see also Jost (2005). 
 However, from a biological point of view there is a 
variety of cases where one-dimensional population 
models are not sufficient modelling tools. A more 
realistic approach is to apply age-structured models. 
Such matrix models (often referred to as Leslie matrix 
models) were independently developed in the 1940’s by 
Bernardelli (1941); Lewis (1942) and Leslie (1945; 
1948) but perhaps somewhat strange not widely 
adopted by ecologists until the 1970’s. Originally, the 
models were linear and various dynamical outcomes 
may be found in Cull and Vogt (1973; 1974) and 
Hallam and Levin (1986), Later, density dependent or 
nonlinear terms were considered too, cf. the classical 
papers by Guckenheimer et al. (1977) and the striped 
bass fishery model by Levin and Goodyear (1980). As 
accounted for by Caswell (2001), state variables others 
than age (for example size) were introduced in 

population models by Patten (1976); Boling (1973); see 
also Metz and Diekmann (1986); Hallam et al. (1990) 
and Gurney et al. (1990). Such models are called stage-
structured models and have been applied on several 
different species as well as being analysed from 
theoretical perspectives. Cushing (1998) and Caswell 
(2001) the analysis of a wide range of stage-structured 
matrix models is included. 
 In this review study focus is mainly on three 
different topics. First we will discuss the models and 
the prerequisites they rest upon and together with lots 
of references show how the models may and have been 
applied to a large number of cases of ecological 
relevance. In another direction focus is on possible 
nonstationary and chaotic dynamics. Avoiding 
mathematical details and proofs we present several 
examples involving bifurcations of different type and 
nature as well as other mechanisms like frequency 
locking and crisis and show that the dynamics found in 
these multidimensional maps is much richer than we 
may find in one-dimensional cases. Finally we discuss 
ecological implications. In particular we address the 
question whether it is possible to formulate some 
general ecological principles with respect to stability 
and nonstationary behaviour of populations who 
possess different life histories. 
 
Models: We start by presenting the age-structured 
model. At time t we split the population xt into n 
distinct nonoverlapping age classes xt = (x1,t,…,xn,t)

T 
where the total population x is given by x = x1 + ٠٠٠ + 
xn. The relation between x at two consecutive time steps 
may be expressed as a map Eq. 1: 
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x Ax→   (1) 
 
where, the Leslie matrix A is on the form Eq. 2: 
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 Moreover, fi is the average fecundity (number of 
daughters born per female) of a member of the ith age 
class at time t and pi may be interpreted as the (year to 
year) survival probability. In maps like (1) there is an 
implicit assumption that sexual maturity is linked to age 
or that other properties than age are irrelevant. Another 
possibility is that if such relevant properties exist they 
must be highly correlated with age. 
 The matrix elements may be nonlinear (density 
dependent) or not. Considering two age classes where 
members of the oldest age class prey upon members of 
the youngest class (cannibalism) a natural assumption 
could be p = p(x2). In fishery models it is often assumed 
that older individuals contribute more than younger 
individuals to density effects, therefore one may 
suppose (Levin and Goodyear, 1980) f = f(y) where y = 
α1x1 + ··· + αnxn (a weighted sum of age classes). A 
third possibility is that f (or p) depends on the total 
population x. This is a natural choice in this study since 
one of our main goals is to compare dynamics of 
species who possess very different life histories. 
 Frequently used density functions are members of 
the Deriso-Schnute family fi = Fi(1 - γβx)1/γ, β > 0 
(Bergh and Getz,1988; Tuljapurkar et al., 1994) but see 
Getz (1996) for other examples. Thus, we write the 
fecundity (or and the survival) as a product of a 
constant term Fi and a density dependent term (1 - 
γβx)1/γ. If γ = -1 we have the well-known compensatory 
Beverton and Holt relation, if γ → 0 then we arrive at fi 
= Fi exp(-βx) (or pi = Pi exp(-βx)) which is called the 
overcompensatory Ricker relation inspired by the 
seminal study by Ricker (1954). In this review we shall 
deal exclusively with the Ricker case. 
 The dynamics of a large number of ecological 
populations has been modelled by (1). Linear age-
structured models (constant fecundities and constant 
survivals) have for example been applied on rabbits 
(Darwin and Williams, 1964), great tits (Pennycuick, 
1969) and trout (Beland, 1974). In case of nonlinear 
models we refer to Cooke and Leon (1976) (birds), 
Longstaff (1977) (beetles), Levin and Gooodyear 
(1980) (striped bass), see also Hastings (1984); 

Desharnais and Liu (1987); Burkey and Stenseth (1994) 
and Nisbet and Onyiah (1994). References to lots of 
other examples may be found in Caswell (2001). 
Guckenheimer et al. (1977); Silva and Hallam (1993) 
and Wikan and Mjolhus (1995; 1996) have paid 
attention to the dynamics of (1) in unstable and chaotic 
parameter regions. Wikan (1997); Davydova et al. 
(2003); Mjolhus et al. (2005) and Cushing (2006) focus 
is on the dynamics of species who reproduce only once 
at the end of their lifes. Ergodic results may be obtained 
in Cushing (1988; 1989) and Crowe (1994). 
 Unlike (1), in stage-structured models we do not 
divide the population into nonoverlapping age classes. 
Instead, we split the population into stages, for example 
one sexual immature stage and one sexual mature stage. 
The motivation for doing so is that there may be other 
factors which are more important with respect to 
maturity than age. As already mentioned, one such 
factor is body size. Indeed, following Caswell (2001) 
“size dependent demography is probably the rule rather 
than the exception”. Examples which link body size to 
sexual maturity may be found among plants 
(Klinkhamer et al., 1987a; 1987b), crabs (Campbell and 
Eaglis, 1983; Botsford, 1986; 1992). See also lots of 
references in Caswell (2001). Among several 
alternatives we will in this study consider the two-stage 
model, first proposed by Neubert and Caswell (2000): 
 
x Bx→  (3) 
  
where, the transition matrix B is on the form: 
 

1

1 2

(1 p) f
B

p

µ − 
=  µ µ 

 (4) 

 
 The meaning of the entries in (4) is as follows: µ1 
and µ2 are the fractions of the immature population x1 
and the mature (adult) population x2 respectively, which 
survive from time t to t + 1. x = x1 + x2 is the total 
population. p is the fraction of the immature population 
which survives to become adult and f is the fecundity. 
Just as in (2) the elements of (4) may be nonlinear or 
not. Neubert and Caswell (2000) consider several 
submodels. In one submodel it is assumed that µ1 = µ1 
exp(-x) while the other parameters are constant. In 
another, p = p exp(-x) is the only nonlinear term and so 
on. One some occasions it may be convenient to apply 
three-stage models. Indeed, in the celebrated 
collembolan study, Cushing et al. (1996); Costantino et 
al. (1997) and Dennis et al. (1997) divided the 
population into three stages, larvae L, pupae P and adult 
insects A and in fact showed that their LPA model 
could not only describe but even predict chaotic 
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behaviour in laboratory insect populations. More on this 
model, model as well as properties of other stage-
structured models may be found in Cushing (1998) and 
regarding permanence, cf. Kon et al. (2004). 
 Although (1) and (3) rest on different prerequisites 
both of them cover species with several life histories. 
Indeed, if Fi = 0, i < n and Fn > 0 in (2) or µ2 → 0 in (4) 
the population is semelparous (i.e., reproducing only 
once). If several Fi > 0 or µ2 → 1 the population is 
iteroparous (repeated reproduction). The subclass F1 = 
0, F2 > 0 (two age classes) or µ2 → 0, p → 1 is often 
referred to as precocious semelparity which covers 
species with rapid development followed by only one 
reproduction, for example biennials and annual plants. 
Delayed semelparity occurs when n is larger Fi > 0, i < 
n, Fn > 0 or µ2 → 0 and 0 < p < 1. Typical examples are 
periodical cicadas, Behncke (2000) and Davydova et al. 
(2003) and several salmon species that live for many 
years before they become mature and reproduce only 
once. We may also divide the iteroparous case into two 
subclasses. The subclass Fi > 0, i ≤ n (F1 = 0, Fi > 0, 2 ≤ 
i ≤ n) or µ2 → 1, p → 1 is classified as precocious 
iteroparity and covers several small mammals species 
(small rodent species) which start to reproduce at young 
age and may survive to reproduce for several years. The 
fourth subclass, delayed iteroparity, is characterized by 
several nonfertile age classes followed by several age 
classes who are fertile, for example Fi = 0, i ≤ n/2, Fi > 
0, n/2 < i ≤ n or 0 <µ2 <1, 0 < p < 1. In this subclass we 
find humans and other large mammals. 
 Finally, we will also like to mention some other 
model strategies. Difference delay equation models are 
models on the form xt+1 = g(xt, xt-T) where x is the size 
of the population and T the time from birth to maturity. 
Such models may be regarded as aggregated versions of 
(1) where detailed information of the dynamics within 
age classes is neglected, cf. the Baleen model by Clark 
(1976). In case of other species we refer to Botsford 
(1986; 1992); Tuljapurkar et al. (1994) and Higgins et 
al. (1997). One may also incorporate spatial structure in 
matrix models, see for example Gyllenberg et al. 
(1993). In wildlife protection studies one often divides 
the habitat of a species in a reserve and a harvest zone. 
Regarding fish populations several interesting 
properties of such a strategy is discussed in Hastings 
and Botsford (1999). There are also discrete time 
growth dispersal models, i.e., models where growth is 
modelled in discrete time while dispersal is modelled in 
continuous time. Kot and Schaffer (1986); Neubert et 
al. (1995) and Lutscher and Lewis (2004) provide 
excellent examples. 
 
Analysis and examples: Under the assumption that all 
density dependent terms are on Ricker form and 

functions of the total population both (1) and (3) 
possess a unique nontrivial fixed point. In (1) we 
express the fixed point as (x1

*,…,xn
*) where x* = x1

* + 
··· + xn

*  is the total equilibrium population. In (3) we 
denote the fixed point as (x1

*, x2
*). Stability analysis is 

performed by linearizing about the fixed point which in 
turn gives birth to an nth degree eigenvalue equation. 
Provided all eigenvalues λ are located in the inside of 
the unit circle in the complex plane the fixed point is 
stable. If we increase a parameter (in this study we will 
restrict the analysis to an increase of the fecundity) such 
that an eigenvalue leaves the unit circle the fixed point 
becomes unstable. The parameter value at which this 
takes place may be termed the threshold. As is well-
known, the location where an eigenvalue leaves the unit 
circle has crucial impact on the nonstationary dynamics 
at parameter values just beyond threshold. Just as in 
one-dimensional maps an eigenvalue may leave through 
λ = 1 or λ = −1. If λ = 1, the general case is that the 
fixed point will undergo a saddle node bifurcation at 
threshold. The other possibilities are the pitchfork and 
the transcritical bifurcations. λ = -1 results in a flip 
(period doubling) bifurcation. The third possibility is 
that a pair of modulus 1 complex valued eigenvalues 
leave the unit circle at threshold. Then the fixed point 
will go through a Hopf (Neimark Sacker) bifurcation. A 
detailed description of all bifurcations referred to above 
may be obtained in Devaney (2003) or Guckenheimer 
and Holmes (1983). We shall now provide several 
examples where focus is on the nonstationary 
dynamics. 
 
Example 1 (Precocious iteroparity): Assuming 
constant fecundities (indicated by capital letters Fi) F1 = 
0, F2 = … = Fn > 0 and density dependent survivals pi = 
Pi exp(−αx), α > 0, 0 < Pi ≤ 1 we may express (1) as: 
 

1 n 2 2 n n 1 1 2 2 n 1 n 1(x ,...,x ) (F x F x ,p x ,p x , ,p x )− −→ + +L K  (5) 

 
 Now, using the fact that F is large at instability an 
asymptotic argument (Wikan and Mjolhus, 1995; 
Wikan, 1998) shows that the solution of the nth order 
eigenvalue equation (at instability) is very close to the 
solution of the eigenvalue equation when n = 2. This 
has the immediate consequence that the dynamics of 
the n age class model (5) is maintained already in the 
two age class case. Hence, in (5), it suffices to consider 
n = 2. Then x*  = α-1 ln(FP1) and whenever F is small 
we find from the Jury criteria (Murray, 2003) that the 
fixed point (x1

*,x2
*) is stable. By increasing F we also 

increase x*  and when F = FH where FH is defined 
through FH

−1 exp[2(1 + FH)/ FH] = P1 the fixed point 
undergoes a supercritical Hopf bifurcation.  
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 (a)  (b) 

   
 (c) (d) 
 
Fig. 1: (a) A quasistationary (almost 4 periodic) orbit (solid line) restricted to an invariant curve (dashed line). 

Parameter values α = 0.02, P = 0.6 and F = 15. Only the 20 last iterations are shown; (b) An exact 4 -periodic 
orbit generated by map (5). Parameter values as in Fig. 1a but F = 20; (c) An exact 8-periodic orbit. F = 22; 
(d) Map (5) in the chaotic regime. F = 27. The attractor has been divided into 4 disjoint subsets which are 
visited once every fourth iteration 

  
Thus, if F > FH and |F-FH| is small the dynamics is 
restricted to an attracting invariant curve which 
surrounds the unstable fixed point as displayed in Fig. 
1a. On such a curve (5) is topological equivalent to a 
circle map which means that (5) does nothing but move 
or rotate points around the curve. Associated with a 
circle map there is also a rotation number σ which in 
this context (see Guckenheimer and Holmes (1983) can 
be expressed as σ = c + (bd/a)(FH-F) where c = arg λ. If 
σ is irrational an orbit of a point is often referred to as a 
quasistationary orbit. If σ = 1/n rational, the dynamic 
outcome is an orbit of period n. Also, note that 
whenever σ is rational for a given parameter value F = 
Fr it follows from the implicit function theorem that 
there exists an open interval about Fr where the 
periodicity is maintained. This phenomenon is known 
as frequency locking of periodic orbits. 

 Now, returning to our example, λ is close to the 
imaginary axis at bifurcation threshold (i.e., c = arg λ ≈ 
π/2. Consequently, close to the bifurcation σ ≈ ¼ which 
is clearly seen in Fig. 1a and if we continue to increase 
F an exact 4-period orbit (frequency locking) is 
established. This is shown in Fig. 1b. When F becomes 
even larger we find that the fourth iterate of (5) 
undergoes a flip bifurcation which results in an 8-period 
orbit which is illustrated in Fig. 1c. Through further 
enlargement of F new flip bifurcations occur which result 
in orbits of period 16, 32 and 64 respectively. From a 
mathematical point of view the dynamics in this part of 
parameter space is similar to what one finds in one-
dimensional maps, see the review papers by May (1976) 
and Thunberg (2001). Eventually the dynamics becomes 
chaotic as displayed in Fig. 1d. Note that the attractor is 
divided in 4 disjoint subsets and that each of the subsets 
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are visited once every fourth iteration so there is a kind 
of 4 -periodicity preserved even in the chaotic regime. In 
Fig. 2 we show a “4-period” chaotic attractor generated 
by (5) in case of n = 3. A detailed analysis of (5) may be 
obtained in Wikan and Mjolhus (1995). 
 
Example 2 (Delayed semelparity): A slightly different 
situation occurs in the 3-age class map: 
 

1 2 3 3 1 2(x ,x ,x ) (Fx ,px ,px )→  (6) 
 
where, p = P exp(−x). In case of small and “moderate” F 
values the dynamics of (6) is similar to what we found 
from (5). Whenever F is small, (x1

*,x2
*,x3

*) is stable and 
when we increase F to a level FH a supercritical Hopf 
bifurcation occurs. Moreover, σ ≈ ¼ at threshold and here 
too we experience the existence of a fecundity interval 
beyond FH where the dynamics is exact 4-periodic.  
 However, if we continue to increase F the result is 
not a flip bifurcation which creates an exact 8-period 
orbit. Instead we find that the fourth iterate of (6) 
undergoes a supercritical Hopf bifurcation at a 
threshold F = FH2. Therefore, beyond FH2 and in case if 
|F − FH2| small the dynamics is restricted to 4 disjoint 
invariant attracting curves which are visited once every 
fourth iteration. This is displayed in Fig. 3a. As we 
continue to increase F the curves become twisted which 
signal that we are on the onset to chaos. In Fig. 3b we 
show the chaotic attractor in case of F = 55. 
 
Example 3 (Precocious iteroparity): Next, consider: 
 

1 n 1 n 1 2 n 1(x , , x ) (fx fx ,Px ,Px , ,Px )−→ + +K L K  (7) 
 
where, f = F exp(−x) and constant year-to-year survival 
probabilities P, 0 < P ≤ 1. The unique nontrivial fixed 
point is: 
 

n 1
* * * * * *
1 2 n

1 P P
(x ,x , , x ) x . x ,. , x

K K K

− 
=  
 

K K  (8) 

 
n 1

i

i 0

K P
−

=

=∑ and x* = ln(FK) and the eigenvalue equation 

may be cast in the form: 
 

* n 1
n i n 1 i

i 0

(1 x )
P 0

K

−
− −

=

−λ − λ =∑  (9) 

 
Here, we concentrate on the case n = 2. Then from (9) 
and the Jury criteria we find that (x1

*,x2
*) is stable in 

case of F small and will undergo supercritical 
bifurcations at the thresholds: 
 

FF { F (1 / (1 P))exp[2 / (1 P)]       0 P 1 / 2= = + − < <  (10a) 

HF {F (1 / (1 P))exp[(1 2P) / P]   1 / 2 P 1= = + + < <  (10b) 
 
where, the subscripts F and H refer to a flip and a Hopf 
bifurcation respectively. From a mathematical point of 
view the most interesting interval is ½ < P < 1 and in 
the bifurcation diagram, Fig. 4, we have summarized 
the result when P = 0.9. For small values of F there is 
one stable attractor, namely the fixed point (x1

*,x2
*). 

When F is increased to 10.036 the third iterate of (7) 
undergoes a saddle node bifurcation which gives birth 
to a stable 3-cycle but also an unstable 3-cycle (not 
visible in the diagram). Thus, if 10.036 < F < 12.20 
there are two stable attractors and the ultimate fate of an 
orbit depends on the initial condition. At the threshold F 
= 11.81 (cf. (10b)) the fixed point undergoes a 
supercritical Hopf bifurcation and an attracting invariant 
curve is established. Due to the fact that λ is close to third 
root of unity at bifurcation there is an almost 3-period 
orbit restricted to the curve. Hence, in the interval 11.81 
< F < 12.20 a 3-cycle of large amplitude coexists with an 
almost 3-cyclic attractor of small amplitude. At F = 
12.20 the invariant curve is hit by the unstable 3-cycle 
created at the earlier value 10.036. This makes the 
invariant curve disappear, hence when F > 12.20 there is 
only one attractor, the 3-cycle. At even higher F values 
successive flip bifurcations take place generating orbits 
of period 3٠2k, k = 1,2,… Eventually the dynamics 
becomes chaotic. For details and further analysis of (7), 
cf. Wikan and Mjolhus (1996). 
 

 
 
Fig. 2: A chaotic attractor generated by (5) in case of 3 

age classes 
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(a) 
 

 
(b) 

 
Fig. 3: (a) Map (6) after the secondary Hopf bifurcation 

(P,F) = (0.6, 48); (b) Map (6) in the chaotic 
regime (P,F) = (0.6, 55) 

 
 As we have seen bifurcations can be of both 
supercritical and subcritical nature. If a fixed point 
undergoes a supercritical bifurcation when the 
parameter µ is increased to a value µ0 there is 
established an attracting orbit (stable 2-cycle in the flip 
case, a quasiperiodic orbit restricted to an invariant 
attracting curve in the Hopf case) above µ0. In the 

subcritical case such attractors do not exist. Now, if we 
shall prove that a Hopf bifurcation which occurs in a 
two-dimensional map is super- or subcritical we first 
write the map on complex form and provided λ

3 ≠ 1, λ4 
≠ 1 (that means we are outside the strong resonance 
cases) we may through a series of near identity 
transformations (normal form calculations) express it as 
(Govaerts and Ghaziani, 2006): 
 

0i 2 4z ze (1 d | z | ) O(| z | )θ→ + µ + +  (11) 
 
and the sign of a = Re(d) will determine the nature of 
bifurcation (a < 0 implies supercritical, a > 0 
subcritical). a is a complicated formulae which first was 
established by Wan (1978). Wikan (1998) it is proved 
that the fixed point of a map like the one considered in 
Example 1 where the density dependent survivals 
belong to the Deriso-Schnute family undergoes a 
supercritical Hopf bifurcation at instability. The nature 
of flip bifurcations in two-dimensional maps can be 
studied by first performing a center manifold restriction 
and then express the map as: 
 

3 4w (1 )w aw O(w )→ − + µ + +  (12) 
 
where, w is real. Details and stability formulaes may be 
found in Guckenheimer and Holmes (1983). Finally, it 
should also be mentioned that there exist several numerical 
packages designed for studying bifurcation phenomena, 
see for example Ueta et al. (1999); Kuznetsov (2004) and 
Kuznetsov and Meijer (2005). In particular, confer 
Govaerts and Ghaziani (2006) where they use the 
MATLAB package CL_MatCont on bifurcation 
problems in a stage-structured cannibalism model. Our 
experience is that supercritical bifurcations dominate in 
age and stage-structured models like (1) and (3). 
 Next, let us briefly focus on possible routes to 
chaos. Referring to Example 1 we have the route: 
Stable fixed point → Invariant curve, quasiperiodic 
orbit (Hopf) → Periodic orbit (frequency locking) → 
Periodic orbits where the periods are doubled 
(successive flip bifurcations) → chaos. Hence, once a 
periodic orbit is established the route to chaos is similar 
to what one finds in one-dimensional maps as 
summarized in Thunberg (2001). Another possibility is 
that once a periodic orbit is established there may be a 
secondary Hopf bifurcation and chaotic behaviour may 
evolve when the disjoint subsets start to get twisted, cf. 
Example 2 and Fig. 3b. A third scenario is that one 
from the periodic orbit may return to quasiperiodicity 
again as the bifurcation parameter increases. It is also 
possible to go directly from quasiperiodicity (invariant 
curve) to chaos. This may happen as the invariant curve 
starts to break up. An example may be found in Wikan 
(2012) by use of the Neubert and Caswell map (3) 
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(density dependent µ1 values). We may also face the 
situation that the invariant curve becomes kinked so 
that it is not topologically equivalent to a circle 
anymore (see Wikan (1998) by use of small positive γ 
values in the Deriso-Schnute model). A comprehensive 
study of crises (collisions of attractors and unstable 
periodic orbits) in Leslie matrix models may be obtained 
in Ugarcovici and Weiss (2004) (see also Example 3). 
Crises as well as subcritical bifurcations may lead to 
large and discontinuous population changes. 
 
Example 4 (Precocious and delayed semelparity): First 
we consider the precocious case where both fecundity and 
survival probability is density dependent, i.e.: 
 

1 2 2 1(x ,x ) (fx ,px )→  (13) 

 
where, f = F exp(-αx) and p = P exp(-βx). The model 
possesses a unique nontrivial fixed point (x1

*,x2
*) and it 

is stable provided: 
 

* *
1( )[1 Pexp( x )]x 0β − α − −β >  (14a) 

 
* *
1 22 ( x x ) 0− β + α >  (14b) 

 
(Wikan, 2012). Now, if β > α it is obvious that (x1

*,x2
*) 

is stable in case of small equilibrium populations x*. 
Regarding the nonstationary dynamics, β >> α gives the 
same qualitative picture as accounted for in Example 1, 
3-periodic dynamics is also a possibility. If β > α and β-
α small we detect quasistationary orbits. Next, assume β 
≤ α. Then the left hand side of (14a) is always negative 
(or equal to zero if β = α). Consequently, the nontrivial 
fixed point is always unstable. Since (14a) is associated 
with the possibility that (x1

*,x2
*) shall undergo a flip 

bifurcation at instability threshold it is natural to seek 
for a stable 2-cycle in case of x* small. Indeed, such a 
stable 2-cycle exists and the points in the cycle are on the 
form 1 2ˆ ˆ(x ,x ) (A,0)=  or (0,B) which implies that only one 
age class is populated at each time. (If α = 1 and β = 0 
then A = P−1 ln(FP) and B = ln(FP)). Dynamics in which 
only one age class is populated at each time has been 
referred to as SYC (Single Year Class) dynamics, cf. 
Mjolhus et al. (2005). It has also been termed 
synchronization, see Bulmer (1977). As far as we know 
Bulmer (1977) appears to be the first to have noticed 
SYC dynamics in theoretical models, see also Wikan and 
Mjolhus (1996); Behncke (2000); Mjolhus et al. (2005) 
and Cushing (2006). Precise results of conditions which 
lead to SYC dynamics and conditions where age classes 
can coexist may also be obtained in a slightly different 

model analysed by Davydova et al. (2003). Turning to 
delayed semelparity we consider: 
 

1 n n 1 n 1(x , , x ) (fx ,Px , ,Px )−→K K  (15) 

where, f = F exp(−x), see Mjolhus et al. (2005). The 
only dynamics we find in case of x* = ln(FPn−1) small is 
an attracting n-cycle of SYC form: 
 

1 n * i n * *(P x ,0, ,0), ,(0, ,0,P x ,0, ,0) (0, ,0,x )− −
K K K K K K  (16) 

 
 Assuming n even, as x*  becomes larger successive 
flip bifurcations create stable SYC cycles of period 2kn. 
Also in the chaotic regime we only find SYC dynamics. 
When n is odd much of the same picture emerges. The 
only difference is that in case of intermediate values of 
x* there may exist small parameter windows where the 
fixed point is stable, cf. Mjolhus et al. (2005). 
 However, note that SYC dynamics is not a very 
likely outcome in stage-structured models, see the 
discussion in Kon (2005). Indeed, Neubert and Caswell 
(2000) present by use of (3) an interesting analysis of 
the precocious semelparous case σ2 = 0.1, p = 0.9. They 
found a stable nontrivial equilibrium in case of F small 
and when F was increased (they considered F values as 
large as 107) the dynamics alternated between stable 
orbits of low period and chaotic regions in the sense 
that prior to a chaotic region the period of an orbit was 
q and after the region the period was found to be q + 1. 
This phenomenon is known as period adding cycles and 
may also be found in the age-structured model by 
Guckenheimer et al. (1977). (We urge the reader to 
extend the bifurcation diagram in Fig. 4 and see if the 
same happens there too). 
 

 
 
Fig. 4: Bifurcation diagram generated by (7). n = 2 and 

P = 0.9 
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Fig. 5: The equilibrium population x* (map (3)) at 

instability threshold. Upper curve corresponds to 
µ2 = 0.9, middle curve µ2 = 0.5 and bottom curve 
µ2 = 0.1. The stable region is below the curves 

 
Ecological implications: We start by considering 
density dependent survivals. The asymptotic argument 
referred to in the beginning of Example 1 shows that 
precocious iteroparous species possess qualitatively the 
same dynamics independent of number of age classes 
both with respect to the size of the stability region and 
nonstationary behaviour. Additionally, we may also 
argue that precocious iteroparous species on the whole 
show much of the same dynamics as precocious 
semelparous species. Moreover, see Example 2, by 
performing a rigorous analysis of (6) we may conclude 
that species with delayed semelparous as well as 
delayed iteroparous life histories exhibit poorer stability 
properties than species who possess precocious 
(iteroparous or semelparous) life histories. However, as 
is shown by Neubert and Caswell (2000), the analysis 
of the stage-structured model (3) (µ1 = µ1 exp(-x) and 
all other parameters constant) does only support parts of 
the findings reported above. Indeed, they conclude that 
there are no qualitative differences between populations 
with precocious or delayed life histories with respect to 
stability. On the other hand, regarding the nonstationary 
dynamics, pronounced 4-periodic behaviour has been 
detected by use of (3) in species which possess 
precocious semelparous life histories and there are also 
several examples of 4-periodicity in the delayed 
semelparous case. Therefore, beyond instability 
threshold there is an excellent agreement between the 
outcomes of (1) and (3). Hence, these observations 
seem to imply that it is a fairly general ecological 
principle that density dependent growth (µ1) in the 
stage-structured model which in the age-structured 
model corresponds to density dependent year-to-year 
survival leads to periodic behaviour of low period. In 
nature one may find several examples of species who 
possess cyclic behaviour of low period (Stenseth et al., 

1977; Stenseth and Antonsen, 1988; Burkey and 
Stenseth, 1994). Especially among lemmings, cf. 
Stenseth and Ims (1993) this is the case. Lemming 
cycles are not very well understood. Thereforeriod 
(Stenseth et al., 1977; Stenseth and Antonsen, 1988; 
Burkey and Stenseth, 1994). Especially among 
lemmings, cf. Stenseth and Ims (1993) this is the case. 
Lemming cycles are not very well understood. 
Therefore, an interesting and challenging task could be 
to apply some of the density dependent survival models 
presented here on small rodent populations.  
 Next, consider precocious iteroparous species 
under the assumption of density dependent fecundity 
terms. From Example 3 we found that (x1

*,x2
*) is stable 

in case of x* small. Regarding the nonstationary 
dynamics there were two scenaria, if 0 < P < ½ an 
increase of x* (or F) leads to the period doubling route 
to chaos. If ½ < P ≤ 1 the result is given through Fig. 4. 
Now, following Wikan and Mjolhus (1996) or Wikan 
(2012) assuming an odd number of age classes n it is 
possible to show that the value of x* at instability 
threshold is an increasing function of both n and P. In 
particular, if P = 1 then x*  = n + 1 at threshold. 
Nonstationary dynamics is introduced when λ = −1. 
Hence, for all 0 < P < 1 the dynamics beyond instability 
threshold is in many respects similar to what we found 
in the 0 < P < ½ case when n = 2. When n is even and 
small, x* is not an increasing function of P at instability 
but as n becomes larger (n ≥ 8) the dynamics becomes 
similar to what we find when n is odd. These findings 
clearly suggest that in case of large or moderate P 
values an increase of n acts stabilizing. See also Levin 
and Goodyear (1980); Vincent and Skowronski (1981) 
and Bergh and Getz (1988). Delayed iteroparous 
species may be studied through the map (Wikan, 2012): 
 

1 n i i n n 1 2 n 1(x , , x ) (f x f x ,Px ,Px , ,Px )−→ + +K L K  (17) 

 
where, i = (n + 1)/2 in case of n ≥ 3, n odd and i = n/2 + 
1 in case of n ≥ 4 and n even. fi = Fi exp(-x). By 
comparing the size of the stable parameter region found 
from (17) with the precocious situation (7) we find that 
it is always smaller in the delayed case. 
 Neubert and Caswell (2000) support the findings 
above by use of (3) (f = F exp(-x) and all other 
parameters constant). In Fig. 5 we show x* = x*(p) in 
the cases µ2 = 0.9 (upper curve), µ2 = 0.5 (middle 
curve) and µ2 = 0.1 (bottom curve). The stable region is 
below the curves. Hence, the combined findings from 
the age-structured models and the stage-structured 
model (large µ2) makes it natural to propose that it is a 
fairly general principle that species with precocious 
iteroparous life histories are more stable than species 
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with delayed iteroparous life histories. Moreover, on 
the whole, iteroparous species have better stability 
properties than semelparous species. Still assuming 
density dependent fecundities our analysis of the 
semelparous maps (13) and (15) shows that the 
nontrivial fixed point is unstable (β ≤ α) both in the 
delayed and precocious case. Instead, the dynamics is 
on SYC form. From a biologically point of view it is 
not obvious how such dynamics should be interpreted.  
Bulmer (1977) interprets its presence as “competition is 
more severe between than within age classes”. Mjolhus 
et al. (2005) argue along the following line: 
Considering (15) recruitment acts as a birth pulse and 
juveniles have the same weight as older individuals. 
Moreover, at equilibrium FPn−1 exp(-x) = 1, i.e., the 
relation concerns the SYC population when it is in a 
reproductive phase. In other phases x = x0 + [pic] + xn 
is larger. Therefore, small populations inserted into 
empty age classes will experience a larger value of x in 
their reproductive phase than the main population which 
again will lead to a subcritical recruitment. Wikan (2012) 
where (13) is analysed, we conclude that it is the strength 
of density dependence which will decide if the two age 
classes will coexist or not. Coexistence occurs whenever 
the strength of density dependence in the survival is 
stronger (β > α) than the density dependence in the 
fecundity. SYC dynamics is the outcome when β ≤ α. 
Davydova et al. (2003) who perform a thorough analysis 
of biennials arrive at a similar conclusion. Also, confer 
Ebenman (1987; 1988) and Roos et al. (1990) and the 
papers on cicada cycles by Hoppensteadt and Keller 
(1976); Heliovaara et al. (1994); Yoshimura (1997); 
Behncke (2000) and Webb (2001). 
 

CONCLUSION 
 
 As we have seen, nonlinear age- and stage-
structured population models serve as excellent tools in 
order to study the dynamical outcomes of ecological 
populations who possess different life histories ranging 
from biennials to species who may live for many years. 
Depending on parameter values and location on density 
dependent elements the dynamics may vary from stable 
fixed point to chaotic behaviour of stunning 
complexity. Hence, the models at hand which are easily 
understandable also for readers outside the biological 
and ecological communities provide excellent examples 
of nonlinear phenomena. Although the models rest on 
different prerequisites we find on several occasions that 
they qualitatively generate much of the same dynamics. 
This enables us to suggest important general principles 
with respect to stability and nonstationary behaviour of 
ecological populations. 
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