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Abstract: In this study, an integral two space-variables condition for a class of parabolic equations. 
The existence and uniqueness of the solution in the functional weighted Sobolev space were proved. 
The proof is based on two-sided a priori estimates and on the density of the range of the operator 
generated by the considered problem. 
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INTRODUCTION 
 
 In the domaine Ω = {(x, t) ∈(0, 1)×(0,T),T>0}, we 
consider the equation: 
 

t x xLu u (a(x, t)u ) f (x, t)= − =  (1) 

 
where the function a(x, t) and its derivative are bounded 
on the interval  [0. T]: 
 

0 1

2 x 3

0 a a(x, t) a

0 a a (x, t) a

< < ≤

< ≤ ≤
 

 
 To Eq. 1 and 2 we add the initial conditions: 
 

u u(x,0) (x), x (0,1)= = ϕ ∈ℓ  (2) 
 
 The boundary condition Eq. 3: 
 
u(0, t) (1, t)t (0,T)= ∈  (3)                            
 
 And integral condition Eq. 4: 
  

a

0

1

u( , t)d

u( , t)d 0 a 0, 0,a a 1 t (0, t)
β

ξ ξ +

ξ ξ = > β > < β + β = ∈

∫

∫
 (4)                            

 
 Here, we assumed that the known function ϕ 
satisfy the conditions given in (3) and (4), i.e., 
 

a 1

0
(0) (1), (x)dx (x)dx 0

β
ϕ = ϕ ϕ + ϕ =∫ ∫  

 When considering the classical solution of the 
problem (1)-(4), along with the condition (4) should be 
fulfilled the conditions: 
 

x0
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x

a 1

0
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{a (x,0) '(x) a(x,0) "(x)}dx

{a (x,0) '(x) a(x,0) "(x)}dx
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α

β

β

− =

ϕ + ϕ +

ϕ + ϕ =

+

∫

∫

∫ ∫

 

 
 Mathematical modeling of different phenomena 
leads to problems with nonlocal or integral boundary 
conditions. Such a condition occurs in the case when 
one measures an averaged value of some parameter 
inside the domaine. This problems arise in plasma 
physics, heat conduction, biology and demography, 
modelling and technological process, see for example 
(Samarskii, 1980; Hieber and Pruss, 1997; Ewing and 
Lin, 2003; Shi, 1993; Marhoune, 1990). 
 Boundary-value problems for parabolic equations 
with integral boundary condition are investigated by 
Batten (1963); Bouziani and Benouar (1998); 
Cannon (1963); (1984); Cannon et al. (1987); Ionkin 
(1977); Kamynin (1964); Field and Komkov (1992); 
Shi (1993); Marhoune and Bouzit (2005); Marhoune 
and Hameida (2008); Denche et al. (1994); Denche 
and Marhoune (2001); Marhoune and Latrous 
(2008); Yurchuk (1986) and many references therein. 
The problem with integral one space-variable 
(respectively two space-variables) condition is 
studied in Fairweather and Saylor (1991) and Denche 
and Marhoune (2000) (respectively in Marhoune 
(2007) and Marhoune and Lakhal (2009)). 
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 The present paper is devoted to the study of a 
problem with boundary integral two-space-variables 
condition for a partial differential equation. 
 We associate to problem (1)-(4) the operator L = 
(L, l), defined from E into F, where E is the Banach 
space of functions u∈L2 (Ω), satisfying (3) and (4), with 
the finite norm Eq. 5: 
 

2 22

t xxE

1 2

x0

2a 1 2

0

u (x)[ u u

sup
]dxdt (x) u dx

0 t T

sup sup
u dx u dx

0 t T 0 t T

Ω

β

= θ +

+ θ
≤ ≤

+
+

≤ ≤ ≤ ≤

∫

∫

∫ ∫

 (5) 

 
 And F is the Hilbert space of vector-valued 
functions F = (f, ϕ) obtained by completion of the space  
L2(Ω)× 2

2W  (0, 1) with respect to the norm Eq. 6: 

 
2 12 2

F F 0

2 2a 1

0

F (f , ) (x) f dxdt (x) 'dx

dx dx

Ω

β

= ϕ = θ + θ ϕ

+ ϕ + ϕ

∫ ∫

∫ ∫
 (6) 

 
Where: 
 

2

2

2

x 0 x a

(x) (1 ) a x

(1 x) x 1

 < ≤


θ = −β ≤ ≤ β
 − β ≤ <

 

 
 Using the energy inequalities method proposed in 
(Yurchuk, 1986), we establish two-sided a priori 
estimates. Then, we prove that the operator L is a linear 
homeomorphism between the spaces E and F. 
 
Two-sided a priori estimates: 
Theorem1:  For any function u∈E we have the a priori 
estimate Eq. 7: 
  

F E '
Lu k u≤  (7) 

 
where the constant k is independent of u. 
 
Proof:  Using Eq. 1 and initial conditions (2) we obtain 
Eq. 8-10: 
 

22 2 2
1 xx

212
3 x0

(x) Lu dxdt 2 (x) ut 4a u

sup
dxdt 4 (x) u dx

0 t T

Ω Ω
 θ ≤ θ +  

+ α θ
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∫ ∫

∫
 (8) 

1 1 22

x0 0

sup
(x) ' dx (x) u dx

0 t T
θ ϕ ≤ θ

≤ ≤∫ ∫  (9) 

 
2 2 2 2a a 1 1

0 0

sup sup
dx u dx, dx u dx,

0 t T 0 t Tβ β
ϕ ≤ ϕ ≤

≤ ≤ ≤ ≤∫ ∫ ∫ ∫ (10) 

 
 Combining the in equalities (8), (9) and (10), we 
obtain (7) for u∈E  
 
Lemma 2: Marhoune (2007) for u∈E we have Eq. 11: 
  

a a a 22 2
t t0 x 0

1
u ( , t)d dx x u dx

4
ξ ξ ≤∫ ∫ ∫  (11) 

 
Theorem 3: For any function u∈E, we have the a priori 
estimate Eq. 12: 
  

E F'
u k Lu≤  (12) 

 
 With the constant: 
 

2
0

2

a4 1
k min , ,

exp(cT)( 136) 2 2 16

 δδ δ=  δ +  
 

  
where c  and δ is such that Eq. 13: 
  

2
20 1 3

0 0 32
1 0

a 4a a
0,c 0and 8ca (40 a )a

2a a

−δ = > < − ≥ + δ  (13) 

 
Proof: Define: 
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 We consider for u∈E the quadratic formula Eq. 14: 
  

1

0 0
Re exp( ct)LuMudxdt

τ
−∫ ∫  (14) 

 
 with the constant c satisfying (14), obtained by 
multiplying the Eq. 1  
by exp (-ct) Mu , by integrating over  Ωτ, where  Ωτ = 
(0, 1) × (0, τ), , with  0≤ τ ≤ T,  and by taking the real 
part. Integrating by parts in (14) with the use of 
boundary conditions (3) and (4), we obtain Eq. 15: 
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 On the other hand, by using the elementary 
inequalities, we get Eq. 16: 
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 Again, using the elementary inequalities and 
lemma 1 we obtain: 
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 Integrating by parts the second, third and forth 
terms of the right-hand side of the inequality (17) and 
taking into account the initial condition (2) and the 
condition (13) give Eq. 18: 
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 By using the elementary inequalities on the first 
integral in the left-hand side of (18) we obtain: 
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 Now, from Eq. 1 we have: 
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 Combining inequalities (19), (20) we get Eq. 21: 
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 As the left-hand side of (21) is independent of  τ , 
by remplacing the right-hand side by its upper bound 
with respect to  τ  in the interval [0, T], we obtain the 
desired inequality. 
 
Solvability of the problem: The proof of existence of 
solution is based on the following lemma. 
 
Lemma 4: Let: D0 (L) = {u∈E: ϕu=0} If for u∈D0 and 
some ω∈L2 (Ω), we have Eq. 22: 
  

(x)Lu dxdt 0
Ω

φ ϖ =∫  (22) 

 
where 
 

x 0 v a

(x) (1 ) a x

(1 x) x 1

< ≤
φ = −β ≤ ≤ β
 − β ≤ <

 

 
 Then, ω = 0. 
 
 Proof:  From (22) we have: 
  

t x x(x)u dxdt (x)(a(x, t)u ) dxdt
Ω Ω

φ ϖ = φ ϖ∫ ∫  (23)                                                         

 
 Now, for given ω, we introduce the function: 
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d 0 x a
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( , t)
d x 1

1β
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 Integrating by parts with respect to  ξ , we obtain: 
 

a

x

x

xv v( , t)d 0 x a

Nv (x) (1 )v a x

(1 x)v v( , t)d x 1
β
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 Which implies that Eq. 24: 
 

a 1

x
v( , t)d v( , t)d 0

β
ξ ξ = ξ ξ =∫ ∫  (24) 

 
 Then, from equality (23) we obtain Eq. 25: 
 

tu Nudxdt A(t)uvdxdt
Ω Ω

− =∫ ∫  (25) 

Where: 
 

x xA(t)u ( (x)a(x, t)u )= − φ  

 
 If we introduce the smoothing operators with 
respect to t (Yurchuk, 1986; Marhoune and Lakhal, 

2009), 1 12
J (I )

t
− −
ε = + ε

∂
 and 1(J ) *−

ε , then these operators 

provide the solutions of the respective problems Eq. 26:  
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And Eq. 27: 
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0 3
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 Integrating by parts each term in the left-hand side 
of (28) and taking the real parts yield Eq. 29 and 30: 
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 Using ε-inequalitiesweobtain Eq. 31: 
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 Combining (29) and (31) we get Eq. 32: 
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exp( ct) (x) ca a u dxdt 0

2a

εΩ

Ω

− ≥

 ε− φ − − ≥ 
 

∫

∫
 (32) 

 
 Now, using (32), we have: 
 

*Re exp(ct)v Nvdxdt 0εΩ
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 Then, for ε→0 we obtain: 
 

2Re exp(ct)vNvdxdt exp(ct) (x) | v | dxdt 0
Ω Ω

= φ ≤∫ ∫  
 
 We conclude that v = 0; hence, ω = 0, which ends 
the proof of the lemma. 
 
Theorem 5: The range R (L) of L coincides with F. 
Proof: Since F is a Hilbert space, we have R (L) = F if 
and only if the relation Eq. 33: 
 

1 a 1

0 0

(x)Lufdxdt

dlu d
(x) dx lu dx lu dx 0

dx dx

Ω

β

θ +

ϕθ + ϕ + ϕ =

∫
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 For arbitrary u∈E and (fϕ)∈ F, implies that f = 0,   
and  ϕ = 0. Putting u∈D0 (L) in (33), we conclude from 
the lemma 3 that Ψf = 0, then f = 0 where: 
 

xf 0 x a

f (1 )f a x

(1 x)f x 1

< ≤
ψ = − β ≤ ≤ β
 − β ≤ <

 

 
 Taking u∈E in (33) yield:  
 

( )1 a 1

0 0

dlu d
x dx lu dx lu dx 0

dx dx β

ϕθ + ϕ + ϕ =∫ ∫ ∫  

 
 The range of the trace operator l is everywhere 
dense in Hilbert space with the norm: 
  

1
2 21 a 12 2

0 0

d
(x) dx dx ; hence, 0

dx β

 ϕθ + ϕ + ϕ ϕ = 
  
∫ ∫ ∫  

CONCLUSION 
 
 From estimates (7) and (11) it follows that the 
operator L: E→F is continuous and its range is closed 
in F. Therefore, the inverse operator L-1 exists and is 
continuous from the closed subspace R (L) onto E, 
which means that L is a homeomorphism from E onto R 
(L). The theorem 5 chow that R (L) = F. So the 
existence and uniqueness of the solution of the problem 
is proved.   
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