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Abstract: Problem statement: The Container Loading Problem (CLP) considers packing a subset of 
given rectangular boxes into a rectangular container of fixed dimensions in the most optimum way. 
This was very important in the logistics industries and warehousing problems, since the cost can be 
reduced by increasing the space utilization ratio. Approach: This problem was solved in a two-
phased Ant Colony Optimization (ACO) where a tower building approach was used as the inner 
heuristic. In the first phase, ACO with its probabilistic decision rule was used to construct a 
sequence of boxes. The boxes were then arranged into a container with the tower building heuristic 
in the second phase. The pheromone feedback of ACO using pheromone updating rule helped to 
improve the solutions. Results: Computational experiments were conducted on benchmark data set 
and the results obtained from the proposed algorithm are shown to be comparable with other 
methods from the literatures. Conclusion: ACO has the capability to solve the CLP. 
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INTRODUCTION 
 
 The Container Loading Problem (CLP) involves 
loading a subset of given three-dimensional rectangular 
boxes of different sizes into a three-dimensional 
rectangular container of fixed dimensions in such a way 
that optimum use is made of the available container 
space. This problem is NP-hard and belongs to the class 
of combinatorial optimization problems. 
 The CLP can be classified in several ways based on 
the classification by (Dyckhoff, 1990; Wascher et al., 
2007). Firstly, the problem can be differentiated in 
which some of the boxes given are tolerable to be left 
behind and in another case, the boxes given have to be 
completely stowed. The problem of the first type is 
known as a three-dimensional knapsack problem while 
the problem of the second type is known as a three-
dimensional bin-packing problem. Another kind of 
differentiation is based on the number of different box 
types. These can be defined as the homogeneous 
problem with one type of box only, the weakly 
heterogeneous problem with relatively few box types 
but many boxes of each type and the strongly 

heterogeneous problem with many different types of 
boxes and few boxes of each type. 
 The problem considered in this study is the CLP 
of the knapsack type with a single container which is 
applied on the cases from the weakly to the strongly 
heterogeneous problems. The CLP can be defined as: 
 “Given a set of n three-dimensional rectangular 
box types j∈ {1, 2,.., n}, each with given height hj, width 
wj, length lj and quantity mj and a three-dimensional 
rectangular container with height H, width W and length 
L. The objective is to pack a subset of the given boxes into 
the container in such a way that it is optimal in terms of 
the available container space and additional constraints 
must be met where necessary”. 
 The main aim of the CLP is to find the best Space 
Utilization Ratio (SUR) as formulated as Eq. 1: 
 

b

aa 1
V

max  SUR ,
C
== ∑  (1) 

 
Where: 
b = Quantity of packed box 



J. Math. & Stat., 8 (2): 169-175, 2012 
 

170 

Va = Volume of the ath packed box 
C = Volume of the container 
 
 Numerous requirements must be considered to 
ensure the feasibility of a stowed box, such as, a box 
must be positioned parallel to the side wall of the 
container, lies completely within the container and does 
not overlap with other boxes. Moreover, the following 
constraints must be met for each stowed box. 
 
Orientation constraint: One or two dimension(s) of 
the box may not be oriented in a vertical way. 
 
Stability constraint: The stability is calculated by the 
ratio of the bottom area of the above box in contact 
with the boxes below. It demands that the stability of all 
boxes does not fall below a given percentage. 
 The CLP has already been solved by many scholars 
with different heuristic and metaheuristic approaches. 
Examples of the numerous heuristics that had been used 
to solve the CLP are wall-building and layering heuristic, 
stack building heuristic and cuboid arrangement heuristic. 
Wall-building and layering heuristic was first introduced 
by (George and Robinson, 1980) which is to fill the 
container with a number of layers of boxes and had been 
used by (Loh and Nee, 1992; Bischoff et al., 1995; 
Bischoff and Ratcliff, 1995). The stack building heuristic 
is proposed by (Gilmore and Gomory, 1965) which fills 
the container with the towers of boxes. However, the 
cuboid arrangement is to fill the container with cuboid 
arrangement of similar boxes. Ngoi et al. (1994) designed 
a spatial representation technique to solve the CLP. 
 In the recent years, metaheuristic incorporated with 
heuristic had been widely used to solve the CLP. 
(Gehring and Bortfeldt, 1997) proposed a hybrid 
Genetic Algorithm (GA) with a stack building heuristic. 
First, towers of boxes will be generated by a greedy 
algorithm. Then the towers are arranged into the 
container by a GA. (Bortfeldt and Gehring, 2001) and 
(Moura and Oliveira, 2005) implemented the wall building 
heuristic in the GA and GRASP respectively. A Tabu 
Search (TS) with cuboid arrangement heuristic had been 
used by (Bortfeldt and Gehring, 1998) to solve the CLP. 
(Zhuang et al., 2007) used an Ant Colony Optimization 
(ACO) to search the solution space in the CLP and Liang 
et al. (2007) solved the problem with a hybrid ACO with a 
GA and the stack building heuristic in a two-phased 
method. Towers of boxes are generated by the ACO in the 
first phase and to arrange the towers into the container is 
solved by the GA in the second phase. 
 Since there is less attention given on the ACO for 
the CLP, this study aims to propose a Hybrid ACO with 
tower building heuristic (HACO) to solve the problem. 

MATERIALS AND METHODS 
 
Tower building heuristic: The proposed tower 
building heuristic is inspired by the stack building 
heuristic proposed by (Gilmore and Gomory, 1965) and 
has been used by (Gehring and Bortfeldt, 1997) and 
Liang et al. (2007). In the stack building heuristic, after 
a box is placed on the base box, this next leads to three 
new tower spaces which are above, beside and in front 
of the placed box as illustrated in Fig. 1. However, in 
the proposed tower building heuristic, each layer of the 
boxes can only lead to no more than two spaces which 
are less complex. 
 The boxes are packed by stacking them one by one 
according to the sequence given until the container is 
full. There is always a base box for each tower and the 
base box is oriented in such a way that the least amount 
of space will be wasted. The box is placed with its 
bottom left back corner in the bottom left back corner 
of the empty space. While building a tower, the boxes 
above are not allowed to protrude over the base box and 
each layer can have no more than two boxes. Figure 2 
explains the flow of the proposed tower building 
heuristic which is illustrated in Fig. 3-6. While loading 
the empty space in the container, the heuristic always 
chooses the innermost and leftmost available empty 
space as the next empty space. 
 
Hybrid Ant Colony Optimization with tower 
building heuristic (HACO): The ACO was first 
introduced by (Dorigo and Stutzle, 2004), which is a 
population-based metaheuristic for hard combinatorial 
optimization problems. 
 

 
 
Fig. 1: Illustration of new tower spaces (source: 

(Gehring and Bortfeldt, 1997) 
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Fig. 2: Flowchart of the tower building heuristic 
 
It is inspired by the foraging behavior of real ants where 
most ants use the shortest route from the nest to the 
food source after a few transitory phases. This is due to 
an indirect form of communication among the 
“artificial ants” based on a chemical substance called 
pheromone. The ants select the best feasible arc 
according to a probabilistic rule which is based on the 
pheromone trail level τij and heuristic information ηij of 
each arc (i, j) at each step of constructing a solution. 
The higher the pheromone trail and heuristic value of 
the arc, the higher the probability it will be selected. 
The heuristic value represents a priori information 
about the problem or run time information provided 
by a source different from the ants (Dorigo and 
Stutzle, 2004). The ants update the “artificial 
pheromone” trail and its amount is estimated to be 

proportional to the utility of the arc which is used to 
build the solution. The pheromone evaporation will 
help to avoid a rapid convergence to a sub-optimal 
solution and consequently to diversify the search 
space. Figure 7 shows the procedure of the proposed 
HACO for the CLP. 
 The procedure begins with the initialization of 
the pheromone trails, τ0. The first ant in the M ants 
constructs the sequence of boxes starting with a 
random box. At each step of constructing the 
sequence of boxes, the ant applies the probability 
function Eq. 2: 
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Where: 
τij = Pheromone trails 
ηij = The bottom area of box j 
D = Set of boxes that have yet to be chosen to choose 

a box j ∈ D as the next box when the current box 
is box i 

 
 Equation 2 is adopted from the probability function 
used by (Alaya et al., 2004) in the multidimensional 
knapsack problem. However, (Liang et al., 2007) used a 
different probability function, Pij

* as in Eq. 3 to 
construct the tower set, where, ηij is the contact area 
between box above and box below.  
 

 
 
Fig. 3: Illustration of new empty spaces when there is 

only 1 placed box 
 

 
 
Fig. 4: Illustration of new empty spaces when there are 

two placed boxes 

In this study, however, we will use ηij as the bottom 
area of box j when we conduct the comparison 
experiments in the results section Eq. 3: 
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Fig. 5: Illustration of new empty space when there is 

only 1 placed box and no suitable box to place at 
the space beside and in front of the placed box 

 

 
 
Fig. 6: Illustration of new empty space when there are 

only 2 placed boxes and no suitable box to place 
at the space above placed box 1 (lower box) 
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Fig. 7: The procedure of the HACO for the CLP 

 
  After the ant has built a sequence of all the boxes, 
tower building heuristic is applied to pack the boxes 
into the container until it is full. The SUR is then 
evaluated based on the Eq. 1. After that, the pheromone 
trails between the box i and box j will be reduced 
through evaporation at a rate,  ρ by Eq. 4: 
 

ij ij(1 )τ = − ρ τ    (4) 
  
where: 
 
i ≠ j and ρ= (0, 1]. 
 
Finally, the pheromone trails of the boxes that have 
been packed in the container are updated by Eq. 5: 
 

ij ij SURτ = τ + .  (5) 
 
Each ant represents a solution and the procedure is 
repeated by using the updated pheromone until the 
termination criterion is met. The termination criterion 
adopted in this study is when there is no improvement 
in the solution for the next 2000 ants. 
 

RESULTS 
 
 The computational experiments are conducted on 
two benchmark data set from the literature. The first data 
set consists of 15 problem instances from LN named 
LN1 to LN15 proposed by (Loh and Nee, 1992), each 
with a different number of box type and container’s 
dimensions. The second data set contains 15 problem 
sets from THPACK named THPACK1 to THPACK15, 
each with 100 problem instances proposed by Bischoff 
and Ratcliff (1995) and (Davies and Bischoff, 1999). 
Each problem set in the second data set corresponded to 
a different number of box type which are ranging from 3-

100 different box types. The characteristic of the 
problems change from weakly to strongly heterogeneous. 
The proposed HACO was coded in ANSI-C using 
Microsoft Visual C++ version 6 as the compiler and 
performed on a desktop computer running on Intel (R) 
Core2 Duo CPU 3.0GHz with 3.0GB of RAM. 
 

DISCUSSION 
 
 In the proposed HACO algorithm, there are some 
parameters to be considered. These are: i) the number 
of ants, M, ii) the initial pheromone, τ0 and iii) the 
pheromone evaporation rate, ρ. In this study, the M is 
always set to be 20000 for all experiments. A 
preliminary experiment is conducted on a range of 
benchmark problem instances as to find the appropriate 
values for τ0 and ρ. The tested values are: τ0 ∈{0.5, 
1.0, 2.0} and ρ∈{0.1, 0.3, 0.5, 0.7, 0.9}. The 
experiment is tested on the first 10 problem instances 
from each THPACK1 to THPACK15 by using the 
combinations of the parameters and also different 
probability functions of Eq. 2-3. Each problem 
instance from the combination of the parameters is 
ran for 5 times to find the average. The 
computational results are listed in Table 1 where (a) 
represent Eq. 2 and (b) represent Eq. 3. 

 Each entry in column (a) and (b) is the average 
value of 750 runs (i.e., 150 problem instances × 5 runs). 
The execution time for each entry in column (a) and (b) 
are approximately 2.39,1.39s respectively. The 
differences in the execution time for both equations are 
insignificant. By comparing the results in column (a) 
and (b), the best result is found using the Eq. 2 with τ0 = 
2.0 and ρ = 0.1. Hence, we will set the τ0 = 2.0, ρ = 0.1 
and use the Eq. 2 for the remaining of the 
computational experiments. 
 In the second part of computational experiments, 
we assessed the performance of the Tower Building 
(TB) heuristic and the HACO compared to other 
approaches proposed in the literatures using the two 
benchmark data sets mentioned earlier. Note that for the 
TB heuristic, the sequence of boxes that need to be 
packed is following the sequences listed in the 
benchmark data set. 
 Table 2 shows the THPACK test problems results 
compared to the other methods. Note that each entry in 
column 5 and 6 is the average value of 500 runs (i.e., 
100 problem instances × 5 runs). The values in bold 
represent the best results for the benchmark data set. 
From the results showed, the HACO is always better 
than TB and has better results while compared to 
(Bischoff et al., 1995) and (Bischoff and Ratcliff, 
1995). While our results cannot be compared directly 
with (Liang et al., 2007) who only conducted the test 
problems from THPACK1 to THPACK7. 
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Fig. 8: A loading layout from an output of THPACK2, 

problem number 1 

  
Table 1: Results using different probability function 
  Space/volume utilization  
Initial Evaporation Ratio (SUR) (%) 
Pheromone Rate -------------------------------------- 
τ0 ρ (a) (b) 
0.5 0.1 82.85 81.99 
 0.3 82.16 82.01 
 0.5 81.71 82.00 
 0.7 81.28 82.00 
 0.9 81.41 81.99 
1.0 0.1 82.85 82.00 
 0.3 82.16 82.01 
 0.5 81.57 82.01 
 0.7 81.19 82.00 
 0.9 81.43 81.98 
2.0 0.1 82.92 82.00 
 0.3 82.19 82.00 
 0.5 81.59 82.00 
 0.7 81.25 82.00 
 0.9 81.42 81.98 
Note: (a) represents Eq. 2; (b) represents Eq. 3 

 
Table 2: THPACK test problem results with different methods 
 Space/Volume Utilization Ratio (SUR) (%) 
 ----------------------------------------------------------------------- 
Problem Bischoff Bischoff and  Liang et al. 
Set et al. (1995) Ratcliff (1995)  (2007)  TB  HACO 
T1 81.76 83.37 88.70 79.15 86.28 
T2 81.70 83.57 90.70 77.38 86.59 
T3 82.98 83.59 91.60 76.47 86.66 
T4 82.60 84.16 91.80 75.74 85.87 
T5 82.76 83.89 91.70 75.47 85.29 
T6 81.50 82.92 91.30 75.05 84.32 
T7 80.51 82.14 90.80 72.78 83.28 
T8 79.65 80.10 - 72.18 81.96 
T9 80.19 78.03 - 71.41 81.22 
T10 79.74 76.53 - 70.67 80.74 
T11 79.23 75.08 - 70.47 80.43 
T12 79.16 74.37 - 70.20 80.23 
T13 78.23 73.56 - 69.87 80.02 
T14 77.40 73.37 - 69.70 79.87 
T15 75.15 73.38 - 69.90 79.75 
Average 80.17 79.20 - 73.10 82.83 
Note: Problem Set T1 to T15 represents THPACK1 to THPACK15 

Table 3: LN test problem results with different methods 
  Packing Space/volume utilization ratio (SUR) % 
  density (%)  
 ------------------------------------------------------------------------------------ 
 Loh Ngoi Bischoff  Bischoff Liang  
Prob and Nee et al. et al. and Ratcliff et al. 
no (1992)  (1994) (1995) (1995 ) (2007) TB HACO 
LN1 78.1 62.5 62.5 62.5 62.5 62.5 62.5 
LN2 76.8 80.7 89.7 90.0 89.7  77.6 87.9 
LN3 69.5 53.4 53.4 53.4 53.4  53.4 53.4 
LN4 59.2 55.0 55.0 55.0 55.0  55.0 55.0 
LN5 85.8 77.2 77.2 77.2 77.2  68.3 77.2 
LN6 88.6 88.7 89.5 83.1 91.4  81.1 91.0 
LN7 78.2 81.8 83.9 78.7 84.6  75.0 83.8 
LN8 67.6 59.4 59.4 59.4 59.4  59.4 59.4 
LN9 84.2 61.9 61.9 61.9 61.9  61.9 61.9 
LN10 70.1 67.3 67.3 67.3 67.3  67.3 67.3 
LN11 63.8 62.2 62.2 62.2 62.2  62.2 62.2 
LN12 79.3 78.5 76.5 78.5 78.5  75.9 78.5 
LN13 77.0 84.1 82.3 78.1 85.6  77.0 85.6 
LN14 69.1 62.8 62.8 62.8 62.8  62.8 62.2 
LN15 65.6 59.6 59.5 59.5 59.5  59.5 59.5 
Average 74.2 69.0 69.5 68.6 70.0  66.6 69.9 

 
 Table 3 shows the computational results of LN test 
problem instances. Each entry in column 7, 8 is the 
average value of 5 runs. The values in bold represent 
the best results for the data set. Note that the packing 
density cannot be compared directly with the SUR 
because these are calculated by the basis of the smallest 
rectangular enclosure of the loaded boxes instead of the 
actual container size which usually overstates the 
volume utilization achieved. From the results showed, 
the HACO is again always better than TB and has better 
results while compared to (Ngoi et al., 1994; Bischoff 
et al., 1995; Bischoff and Ratcliff, 1995). Furthermore, 
the results of HACO are quite comparable with (Liang 
et al., 2007). Figure 8 shows a loading layout from an 
output of THPACK2 for problem instance number 1 
which is a 5 box type problem. 
 

CONCLUSION 
 
 This study solved the CLP by applying ACO with 
its probabilistic rule and pheromone feedback to 
hybridize with the tower building heuristic. From the 
computational experiments, the proposed HACO 
generally yield comparable results. Therefore, the 
developed method has the capability to solve the CLP. 
Future work will focus on the exploration of the 
probability function which might further increase the 
space utilization ratio. 
 

ACKNOWLEDGEMENT 
 
 This research is supported by Fundamental Research 
Grant Scheme (FRGS) 01-04-10-886FR (Ministry of 
Higher Education, Malaysia) The authors are also grateful 
to Universiti Putra Malaysia for providing the excellent 
research facilities. 



J. Math. & Stat., 8 (2): 169-175, 2012 
 

175 

REFERENCES 
 
Alaya, I., C. Solnon and K. Ghedira, 2004. Ant 

algorithm for the multi-dimensional knapsack 
problem. Proceedings of the International 
Conference on Bioinspired Optimization Methods 
and their Applications (BIOMA’ 04), pp: 63-72.  

Bischoff, E.E. and M.S.W. Ratcliff, 1995. Issues in the 
development of approaches to container loading. 
OMEGA: The Int. J. Manage. Sci., 23: 377-390. 
DOI: 10.1016/0305-0483(95)00015-G 

Bischoff, E.E., F. Janetz and M.S.W. Ratcliff, 1995. 
Loading pallets with non-identical items. Eur. J. 
Operat. Res., 84: 681-692. DOI: 10.1016/0377-
2217(95)00031-K  

Bortfeldt, A. and H. Gehring, 1998. Applying tabu 
search to container loading problems. Operations 
Research Proceedings: 533-538. ftp://ftp.fernuni 
hagen.de/pub/fachb/wiwi/winf/forschng/publi/bf 

Bortfeldt, A. and H. Gehring, 2001. A hybrid genetic 
algorithm for the container loading problem. Eur. J. 
Operat. Res., 131: 143-161. DOI: 10.1016/S0377-
2217(00)00055-2 

Davies, A.P. and E.E. Bischoff, 1999. Weight 
distribution considerations in container loading. 
Eur. J. Operat. Res., 114: 509-527. DOI: 
10.1016/S0377-2217(98)00139-8 

Dorigo, M and T. Stutzle, 2004. Ant Colony 
Optimization. 1st Edn., The MIT Press, 
Cambridge, ISBN-10: 0262042193, pp: 305. 

Dyckhoff, H., 1990. A typology of cutting and packing 
problems. Eur. J. Operat. Res., 44: 145-159. DOI: 
10.1016/0377-2217(90)90350-K 

Gehring, H. and A. Bortfeldt, 1997. A genetic 
algorithm for solving the container loading 
problem. Int. Trans. Operat. Res., 4: 401-418. DOI: 
10.1111/j.1475- 3995.1997.tb00095.x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

George, J.A. and D.F. Robinson, 1980. A heuristic for 
packing boxes into a container. Comput. Operat. 
Res., 7: 147-156. DOI: 10.1016/0305-
0548(80)90001-5 

Gilmore, P.C. and R.E. Gomory, 1965. Multistage 
cutting stock problems of two and more 
dimensions. Operat. Res., 13: 94-120.  

Liang, S.C., C.Y. Lee and S.W. Huang, 2007. A hybrid 
meta-heuristic for the container loading problem. 
Commun. IIMA, 7: 73-84.  

Loh, T.H. and A.Y.C. Nee, 1992. A packing algorithm 
for hexahedral boxes. Proceedings of the 
Conference of Industrial Automation, (CIA’ 92), 
Singapore, pp: 115-126.  

Moura, A. and J.F. Oliveira, 2005. A GRASP approach 
to the container-loading problem. IEEE Intel. Syst., 
20: 50-57. DOI: 10.1109/MIS.2005.57 

Ngoi, B.K.A., M.L. Tay and E.S. Chua, 1994. Applying 
spatial representation techniques to the container 
packing problem. Int. J. Prod. Res., 32: 111-123. 
DOI: 10.1080/00207549408956919 

Wascher, G., H. Haubner and H. Schumann, 2007. An 
improved typology of cutting and packing 
problems. Eur. J. Operat. Res., 183: 1109-1130. 
DOI: 10.1016/j.ejor.2005.12.047 

Zhuang, F.T., L. Zhang, C.X. Zhang and S. Gao, 2007. 
Research on solution to container loading problem 
based on ant colony optimization. J. Jiangnan 
Univ., 6: 795-799.  

 


