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Abstract: Problem statement: On a current operating condition of a laser beam welding process in 
the hard disk drive industry, it has been found that shear strength of the head support and suspension 
assembly is slightly higher than customers' specification. This situation leads to an inspection with a 
large sample size and a high frequency. Shear strength is not only one quality characteristic for this 
assembly, but other critical physical specifications of welding diameter and depth need to be also 
considered. Approach: A hybridization strategy, based on linear and nonlinear Constrained Response 
Surface Optimization Methods (CRSOM), has been developed for this process refinement. The 
hybridization is having a provision to include both explicit constraints of influential process variables 
as well as implicit constraints of physical specifications. Results: The proposed levels of influential 
process variables have been successfully implemented in terms of shear strength and satisfied both 
welding diameter and depth specifications. Conclusion: The advantage of the hybridization compared 
with individually CRSOM is that all the data from the experiment is collected together to make a final 
decision. When engineering problems are large and complicated, an effective finite sequence of 
instructions from the hybridization can be very useful and practical in setting industrial processes such 
as semiconductor or automotive manufacturing systems. 
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INTRODUCTION 

 
 This research explains the current operating 
condition and engineering technologies in laser beam 
welding applications for a Hard Disk Drive (HDD) 
industry. HDD is originally introduced as efficient and 
reliable data storage in general computers although 
currently its usages are expanded into various consumer 
applications. HDD records and reads data by 
directionally magnetizing magnetic material and 
detecting the magnetization of the material, 
respectively. Typical HDD parts consist of a platter, an 
actuator and a recording or read-and-write head 
including its support and suspension assembly. 
 In the hard disk drive, information is stored in the 
form of magnetically polarized bit positions on the 
magnetic disk surface. Information is written to and 
read from the disk by a transducer which is mounted on 
an air bearing slider called as the head. The head will 
closely fly over the disk's surface. Its performance is 
due to the precise balance between design forces 

developed by the slider and a precisely controlled 
preload spring force to the head. While the head 
efficiently pitches, rolls and moves perpendicularly to 
the disk surface, the head could be rigidly fixed in the 
disk surface plane in order to avoid error reading. 
 In information storage systems of a magnetic disk 
drive the present invention mainly relates to a head 
support and suspension assembly or HSSA (Fig. 1). 
HSSA which moves and positions the recording head 
consists of three components. The first is a light and 
rigid support arm. It pivots on a servo spindle, firmly 
supporting the rest of the assembly as well as precisely 
controlling the head movement in a radial direction over 
the disk surface. Secondly, a load beam is attached to the 
rigid support arm. The proximal end of the load beam is 
resilient to provide a preload spring force in a direction 
normal to the disk surface. On a rigid portion of the load 
beam the preload spring force is transmitted to the distal 
end of the load beam where the gimbal and head are 
attached. The third HSSA component is a gimbal. It 
connects the distal end of  the   load   beam  to  the  head. 
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Fig. 1: Head support and suspension assembly 
 
The gimbal is resilient in the head's pitch and roll 
directions to allow the slider to follow the disk 
topography. 
 In general, HSSA processes consists of etching, 
forming, gimbal aperture cutting, laser beam welding 
assembly, gram forming, separation and aqueous 
precision cleaning including an adjustment of gram 
load and static attitude. The processing variations can 
induce various undesirable quality measures in the 
HSSA. In particular, it relates to a deformation of a load 
beam and a gimbal or low levels of shear strength 
induced by a laser beam welding process used to join 
these components together.  
 

MATERIALS AND METHODS 
 
Laser Beam Welding Process (LBWP): In the 
welding process, laser beam with the high density is 
often focused and delivered to melt the work pieces and 
fill a material to form the weld pool that cools to 
become  a   strong  joint  to  produce the weld (Habibi 
et al., 2009). There are two alternatives that the laser 
beam is delivered to the work piece. These involve the 
uses of hard optics and a fiber optic cable. For hard 
optics use, the laser beam is basically deflected and 
focused through only the use of mirrors and lenses. 
There are some practical limitations in the distance of 
the work piece from the laser source of this method. 
Work piece needs to be moved into the right position 
and angle to perform the weld. For the second use of a 
fiber optic cable, the laser energy can be focused into 
one end of the cable and emerge at the other end at 
some distance with a minor loss of energy. This use of a 
fiber optic cable allows for the laser beam to be 
precisely delivered to the needed area and even allows 
for movement of the focusing optics itself.  
 The laser power supply is capable of delivering a 
light pulse that consists of accurate and repeatable 
energy and duration. When the pulse of laser energy is 
focused into a small diameter spot onto the work piece, 

the energy density becomes quite large. The work piece 
absorbs the light and the focused beam vaporizes and 
melts some metal. As the pulse terminates the liquefied 
metal flows back in, solidifying and creating a small 
spot weld. The laser spot size or diameter ranges 
between 0.2 and 13.0 mm, though only smaller sizes are 
practically used for welding. The penetration depth of 
the weld is proportional to the amount of power 
supplied and the location of the focal point. 
 There are various largest advantages of a laser 
beam welding process when compared. This process 
offers minimal amount of heat added during 
processing. Cooling between each spot weld allows 
during the repeated pulsing of the beam, resulting in a 
very small heat affected area. This suits for welding in 
thin sections or products that require welding near 
glass-to-metal seals or electronics such as the HSSA. 
A process with low heat input brings greater flexibility 
in tooling design and materials. It almost always 
offers a cost advantage in both tooling and production 
pricing. However, successful laser welding process 
variables which are developed for a particular 
application seem impractical for others. This issue 
then becomes a critical matter of process control, 
especially in a hard disk drive industry. 
 In a laser beam welding process for the HSSA, 
some defects or unsuccessful weld results such as 
burning, incorrect welding depth and diameter are of 
the most common and detrimental issues. Not only 
those physical defects but unsuccessful performance 
results on welding as mentioned above would be 
considered as well. One major concern is a variation in 
shear strength of the HSSA. On the current operating 
conditions of the laser beam welding process, the 
process capability in shear strength is at the low level. 
The quality inspections are then set at high sample size 
and high frequency. Via the skill of the product and 
process engineers these unsuccessful weld and 
performance results on the HSSA could be affected by 
some compressive spring force from the fixture 
remaining after the laser beam welding process 
application with some preset levels of energy and gas 
flow rate. Another process variable is related to the 
laser beam pulse which is its sufficient intensity and 
width to heat through the metal.  
 An objective of this study is to determine the 
proper levels of influential process variables to 
maximize shear strength of the HSSA subject to 
satisfied physical specifications of welding diameter 
and depth via a hybridization of constrained response 
surface optimization based on the linear and nonlinear 
functions of variables from the laser beam welding 
process achieved by the regression analysis. The 
optimal levels of influential variables could be 
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eventually implemented to the actual process to reduce 
the cost associated with quality inspections. 
 
Constrained Response Surface Optimization 
Method (CRSOM): The optimal operating condition 
of a process response is usually determined after the 
sequential experiments have been conducted and a 
series of empirical models obtained (Al-Taweil et al., 
2009). Different techniques can be applied in this 
process response optimization (AL-Marshadi, 2010). 
The optimization of response surfaces is different from 
conventional optimization techniques in various ways 
(Chen et al., 2010). Response surface optimization is an 
iterative procedure that is experiments performed in one 
set of experiments result in fitted models that indicate 
where to find improved levels of influential variables in 
the next experiment. Thus, the coefficients in the fitted 
model may change during the optimization process.  
 Moreover, the response surfaces are fitted from 
current experimental design points that usually contain 
random variability due to unknown or uncontrollable 
causes (Lan and Wang, 2009). If an experiment is 
repeated, the result will bring a different fitted response 
surface that may lead to different optimal levels of 
influential variables. Therefore, sampling variability 
should be concerned in the response surface 
optimization. It differs from the conventional 
optimization in which the functions to be optimized are 
fixed and given. 
 The response surface optimization is 
conventionally conducted in two main phases, 
excluding the screening experiment (Luangpaiboon, 
2009). In the first phase a sequence of line searches is 
performed in the direction of optimal improvement. 
Each sequential gradient search in this steepest ascent 
(descent) path is terminated if there is no evidence that 
the direction chosen results in further improvements. 
The sequence of line searches is continued as long as 
there is no curvature effect. The second phase is 
performed with a second-order or quadratic polynomial 
regression model when there is lack of linear fit in the 
first phase (Ismail et al., 2009). 
 Practically, a first-order approximation will be used 
as a proper local search in a small region close to the 
initial operating conditions and far from where the 
process determines a curvature effect. It therefore 
makes sense for fitting a simple first-order or linear 
polynomial model from available design points. This 
mathematical model in forms of the search direction or 
path of steepest ascent (or descent) is measured to 
locate the new design points with a preset step length 
until there is no further improvement in the response. 
When there is a lack of fit or significant pure quadratic 

curvature effect, it can be implied that influential 
variable levels are close to where the maximum or 
minimum occurs. A second-order polynomial model or 
a canonical analysis of the surface can be used as a 
local approximation of the response in a small region 
where the optimal levels of influential variables exist. 
 There are some problems associated with various 
responses (Zandieh et al., 2009; Jeong et al., 2010; Pal 
and Gauri, 2010). One can be assigned as the primary 
or the most important response and others return to be 
merely secondary responses or problem constraints 
(Jailani et al., 2009; Luangpaiboon, 2010). Costa 
(2010) introduced the dual response surface 
optimization procedure focusing on the case of target 
value is the best. This case means keeping the mean at a 
specified target value whilst minimizing the standard 
deviation. A Constrained Response Surface 
Optimization Method (CRSOM) is then proposed to 
find optimal levels of k influential variables leading to 
the highest level of the primary response (yP) and 
satisfying all other constraints of secondary responses 
(yS). Moreover, lower and upper bounds of influential 
variables can be included in order to avoid solutions 
that extrapolate too far outside the feasible region of the 
experimental design points.  
 In order to achieve mathematical models of 
CRSOM, a regression analysis is used to estimate 
primary and associated secondary responses of pŷ  and 

Sŷ , respectively. Both types are functions of 
influential variables. Linear and nonlinear 
programming models are then formulated with a 
consideration of the feasible ranges in terms of lower 
(LB) and upper (UB) bounds of secondary responses 
and influential variables (x), namely: 
 
Optimize pŷ  

 
Subject to: 
 

SˆLB y UB
LB  x UB 

≤ ≤
≤ ≤

 

 
 The new setting of influential variables will be 
determined to optimize the primary response, while all 
constraints of secondary responses and influential 
variables are kept in feasible ranges. Additional 
experiments should be performed at the optimal operating 
condition, estimated from the model, to confirm the 
satisfied levels of actual responses as expected. 
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Table 1: Primary and secondary responses and their feasible ranges  
Classes Responses Feasible ranges 
Primary (yP) Shear strength >0.460 
Secondary 1(yS1) Welding depth <0.102 
Secondary 2 (yS2) Welding diameter 0.18-0.26 
 
CRSOM procedures: In this study, iterative strategies 
of linear and nonlinear CRSOM have shear strength 
(yP) as a moving trigger or primary response whereas 
other physical specifications return to be merely 
process constraints or secondary responses (yS) as 
shown in Table 1. The generation of the initial CRSOM 
begins with determining initial feasible design points 
that satisfy both implicit and explicit constraints. 
Implicit constraints are those that limit the values of 
secondary responses and explicit constraints limit the 
values of influential variables.  
 The CRSOM parameter is 10% of the significance 
level for tests of significance of slopes (α). The 
iterations replicate until the termination criteria is at the 
satisfaction state. Whilst continually checking 
termination criteria, following steps below would be 
carried out. 
 
Step 1: Generate an initial set of a 2k factorial design 

for k process variables located possibly near the 
current operating condition. 

Step 2: Determine estimated regression coefficients on 
both primary and secondary responses by using 
a principle of least squares: 

 
• Test whether there is evidence that any regression 

coefficient of yP ( P
iβ ) and yS ( S

iβ ) is different from 
zero at the α level of significance 

• If the result is significant, formulate a linear 
programming model of the constrained response 
surface optimization method (LCRSOM) as follows 

 
Maximize: 
 

p p p p
P 0 1 1 2 2 k kŷ x x ... x=β +β + β + +β  

 
Subject to: 
 

S1 S1 S1 p
S1 0 1 1 2 2 k k

S2 S2 S2 S2
S2 0 1 1 2 2 k k

i

ˆLB y or x x ... x UB
ˆLB y or x x ... x UB

LB  x  UB;  i 1,  2,  ...,  k

≤ β + β + β + β ≤

≤ β + β + β + β ≤
≤ ≤ =

 

 
 Similarly, a nonlinear programming model of the 
constrained response surface optimization method 
(NLCRSOM) is formulated with additional estimated 
regression coefficients of yP ( P

ijβ ) and yS ( S
ijβ ). 

 From both mathematical models, determine the 
estimated design points from the CRSOM, received by 
the Generalized Reduced Gradient algorithm (GRG) 
and go to Step 3. 
 
Step 3: If design points from the CRSOM are feasible 

an implementation will be carrying out via the 
most preferable of the mean primary responses 
and replace the previous operating condition by 
the fitted values of the CRSOM, if more 
preferable when compared. Check for the 
CRSOM termination rule or there is an evidence 
of curvature effect. If it does not meet, continue 
and go to Step 1. 

 
RESULTS 

 
 Consider an experiment in which interest lies in 
examining three specifications of a laser beam welding 
process of the head support and suspension assembly in 
a hard disk drive industry. A screening experiment has 
identified four important process variables: laser energy 
(x1), laser pulse width (x2), gas flow rate (x3) and 
fixture spring force (x4). Changing the gas flow rate is a 
very simple procedure and merely makes an adjustment 
on a control panel while the laser beam welding process 
is still running. Therefore, this is the easy-to-change 
process variable in the experiment. Changing laser 
energy, laser pulse width and fixture spring force, on 
the other hand, requires the precise adjustment. Thus, 
these three variables are hard-to-change process 
variables. The (low, high) levels in the natural variables 
for x1, x2, x3 and x4 are coded as (295, 305), (450, 600), 
(20, 40) and (3, 7), respectively. 
 A preliminary study via the normal probability plot 
of effects allows experiments to be more efficient and 
use fewer runs. It aims to reduce many candidate 
process variables to a relatively few potentially 
important variables that influence the responses. The 
results showed that influential variables of x1, x2 and x4 
affect the primary response of shear strength (Fig. 2). 
However, only process variables x1 and x2 are 
influential to the secondary responses of welding depth 
and diameter at the approximate 95% confidence 
interval throughout. Obtained information is used to 
move through the experimental region in an attempt to 
get closer to the process optimum. 
 A hybridization of linear and nonlinear 
constrained response surface optimization is applied to 
derive the new expected operating design points based 
on the group structure of the design point arrays. The 
first iteration provided three cases of estimated levels 
of influential variables. 
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Fig. 2: Normal probability plot of effects on a primary 

response of shear strength 
 

 
 
Fig. 3: Melted work piece from the LBWP via the 

LCRSOM 
 
These design points will be used to analyze the highest 
average primary responses whilst satisfying all 
constraints of secondary responses and influential 
variables. In each of these settings, some applicable 
replicates are run. The average of these runs will serve as 
the response value for the preferable alternative. On the 
LCRSOM the estimated setting was impractical whereas 
the nonlinear model gave the new setting of influential 
variable with the highest average responses. The variable 
setting from the NLCRSOM could be used as the new 
operating condition of a laser beam welding process for 
any given periods of follow-up experimentation. 
Continue performing the new setting until the next 
iteration of experimentation is determined.  
 During the second iteration, changing the levels of 
the laser energy, laser pulse width and fixture spring 
force according to the estimated results from the 
LCRSOM, required the process to be stopped because 
the melted work piece occurred (Fig. 3). Typically, 
there were some improvements before the response 
started to drop off. For useful information the 
previously determined settings for two iterations could 
be used for any follow-up experimentation of the 
LCRSOM or as alternative of the NLCRSOM. The 
values of the process variable levels via the NLCRSOM 
led to the better shear strength, welding diameter and 
depth when compared. 

 
 (a) 
 

 
 (b) 
 
Fig. 4: Marginal plot of primary response against 

secondary responses of welding depth (a) and 
welding diameter (b) 

 
Table 2: Regression coefficients and their P-Values categorized by 

responses for the nonlinear CRSOM 
Influential      
Variables Constant x1 x2 x1x2 
Shear Strength  
Coefficient -13.260 0.043602 0.022790 -0.00007161 
P-Value  0.000 0.000 0.000  
Welding Depth 
Coefficient 1.819 -0.006241 -0.004651 0.00001615 
P-Value  0.000 0.000 0.018 
Welding Diameter 
Coefficient -2.019 0.007177 0.0028841 -0.00000911 
P-Value  0.000 0.008 0.025 
 
 In the third iteration, more settings of factorial design 
points were used, all with the centre from the previous 
operating condition. The responses of all the settings were 
used to determine the regression coefficients for 
formulating the NLCRSOM (Table 2), with the preset 
level of a compressive spring force (x4) at 8.  
 Consider the nonlinear model of the CRSOM fit with 
the coefficients from Table 2. Then, the new estimated 
design points, achieved by GRG, was x1 = 314.97, x2 = 
554.74 and x4 = 8. The LCRSOM and NLCRSOM were 
repeated and the results appeared in Table 3. 
 After an implementation of the hybridization, it has 
been found that the results on shear strength seem to be 
better and remaining secondary responses are still 
within their specifications as shown in forms of a 
scatter plot with box plots in the margins called as the 
marginal plots (Fig. 4).  
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Table 3: Iterative experiments on the LBWP via a hybridisation of 
LCRSOM and NLCRSOM, where x3 fixed at 30 

Iteration Alternatives      (x1, x2, x4, Actual yP) 
1                  LCRSOM  (84.75, 2837.15, 8.00, -) 
 NLCRSOM (314.50, 545.92, 8.00, 0.607) 
2                  LCRSOM  (303.77, 663.13, 8.00, 0.627) 
 NLCRSOM (315.12, 535.42, 8.00, 0.611) 
3                 LCRSOM  (305.03, 600.25, 8.00, 0.608) 
 NLCRSOM (314.97, 554.74, 8.00, 0.625) 
 

DISCUSSION 
 
 It is important to keep in mind the nature in 
continually determining the iterations in a context of 
evolutionary operations. The sequential procedures of 
the proposed strategy needed to further improve the 
process. However, the investigation in this particular 
example terminates with the preset number of iterations 
of the hybridization of linear and nonlinear CRSOM is 
three. Moreover, from a practical point of view if the 
largest standardized regression coefficient belongs to 
the most influential variables with satisfied levels of P-
Values, the NLCRSOM seems like an obvious 
alternative to be chosen. This would allow the 
experimenter to make the great step length in the most 
influential variables toward the optimum and then 
minor refinements in the less influential variables. 
 In contrast to this, if the largest standardized 
regression coefficient belongs to the most influential 
variables with undesirable levels of P-Values, the 
LCRSOM seems to be better because its movement 
should provide the quicker step towards the optimum. 
Each method has its own advantages and disadvantages. 
The best method will rely on the particular 
experimental circumstances, the starting design points 
used, the nature or shape of the true response surface, 
experience and results from previous experiments. 
However, in some iteration it is possible to combine or 
switch between these two methods.  
 When the main and interaction effects are 
considered, they indicate some relationships of a 
primary response of shear strength and other secondary 
responses on influential variables (Table 4). Shear 
strength and welding diameter have similar effects on 
influential variables. Both responses increase as moving 
from the low to the high levels of influential variables. 
In contrast to this, when moving from the low to the 
high levels of influential variables shear strength 
increases, but welding depth decreases. 
 Despite the shortcomings of conventional 
response surfaces of influential variables and each 
process response, the relationship of all responses is 
useful for our research. Experimental results from 
three iterations are then used to form a typical contour 
plot of three responses (Fig. 5). This enables our 
exploration of the primary response that similarly 
influences other physical measures of secondary 
responses as previously described on Table 3. 

Table 4: Relationships between responses and influential variables 
                Main effects Interaction effects 
Responses            x1, x2, x4                 x1 x2 
Primary Shear    
 Strength +, +, +  - 
Secondary Welding    
 Depth  -, -   + 
 Welding   
 Diameter   +, +   - 
 

 
 
Fig. 5: Contour plot of primary against secondary 

responses 
 

CONCLUSION 
 
 Various sequential tools in terms of response 
surface methods are widely used in industrial 
optimizations to determine the most preferable 
conditions of influential variables. Nowadays many of 
these industrial optimizations involve one or more 
responses and some restrictions on the feasible ranges 
of influential variables. Changing the level of one 
influential variable for one response may affect other 
variables or other responses on the tool. Therefore, it is 
important to efficiently collect and analyze all of the 
data at one time. In a case of no dominant response to 
be classified, the desirability function should be 
applied. Almost inevitably, some effective trade-off has 
to be made in order to determine process operating 
conditions that are satisfactory for all responses. In 
contrast to this, when one response can be clearly 
chosen as the primary and bounds or targets can be 
defined on all other responses, a programming model 
based approach can be taken.  
 Under the latter circumstances, a hybridization of 
linear and nonlinear constrained response surface 
optimization methods are proposed in this research. A 
preliminary study is required to indicate the dependence 
on the responses and process variables. An 
investigation of the performance of the hybridization is 
then carried out to enhance the possibility of moving 
towards the optimum of the laser beam welding 
process. There is no simple selection to choose between 
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them in a constrained problem manner, where, by the 
optimal condition, the preferable method would lead to 
the most rapid movement to the feasible region of the 
optimum. Two alternatives of mathematical models of 
CRSOM are applied to determine the estimated design 
point to meet all the constraints with the most preferred 
level of the primary response. However, applying linear 
and nonlinear programming models on CRSOM to this 
process resulted in little significant difference in terms 
of the mean actual yields received.  
 As stated earlier, the proposed strategy in this 
research was restricted to three influential variables and 
three responses and the error standard deviation was at 
higher levels. The improvement via these sequential 
procedures seems to be slightly slow. Other stochastic 
subprocedures from heuristics such as ant colony 
optimization or harmony search algorithms could be 
applied to this strategy to increase its performance, 
especially in terms of speed of convergence. 
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