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Abstract: Problem statement: High-dimensional repeated measures data are increasingly 
encountered in various areas of modern science since classical multivariate statistics, e.g,. Hotelling’s 
T2, are not well defined in the case of high-dimensional data. Approach: In this study, the test statistics 

with no specific form of covariance matrix for analyzing high-dimensional two-sample repeated 
measures designs with common equal covariance are proposed. The asymptotic distributions of the 
proposed test statistics also were derived. Results: A simulation study exposes the approximated Type I 
errors in the null case very well even though the number of subjects of each sample as small as 10. 
Numerical simulations study indicates that the proposed test have good power. Application of the new 
tests is demonstrated using data from the body-weight of male Wistar rats example. Conclusion: The 
proposed test statistics have an asymptotically distributed as standard normal distributions, under 
the null hypothesis. Simulation studies show that these test statistics still accurately control Type 
I error and have quite good power for any the covariance matrix pattern considered. 
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INTRODUCTION 

 
 Repeated measurements across time (occasion, 
drug or treatment) on the same subject (e.g., patient, 
animal, cell culture, block) are frequently observed in 
several scientific fields, for example in medicine, 
pharmaceutical, agriculture, industrial and social 
sciences (Zangiabadi and Ahrari, 2005; Sharifi et al., 
2008; Arbabi et al., 2009; Tu and Koh, 2010; 
Mosallanejad et al., 2011). This type of data commonly 
called univariate repeated measures data (Davis, 2002). 
A design contain such a data is called repeated 
measures design. A main advantage of this design is 
that test results are more powerful since subjects serve 
as their own controls and then variability among the 
subjects due to individual differences is eliminated. The 
simplest repeated measures design is when data is 
collected as a sequence of equally spaced points in 
time. There exist several methods of analyzing repeated 
measurement data. For an overview see Everitt (1995) 
and Keselman et al. (2001). However, these studies 
pertain only to the case when the dimension of repeated 
measurements is not exceeds the number of subjects. 

 Let x1k = (x1k1, x1k2, …, x1kp)
T and x2l = (x2l1, x2l2, 

…, x2lp)
T be multivariate random vectors each of p 

repeated observations measured (times) on kth subject 
in sample 1 and lth subject in sample 2, respectively, 
where the samples are drawn independently from two 
populations (groups) and k = 1, 2, …, n1, l = 1, 2, …, 
n2. Suppose E(x1k) = µ1, E(x2l) = µ2, Var(x1k) = Σ1 and 
Var(x2l) =Σ2, where µi is the population mean vector 
and Σi is the population covariance matrix of group i for 

i = 1, 2. Then ( )TT T
1k 2lx x , x=  is the vector of all 

observations from kth subject in sample 1 and lth 

subject in sample 2, with E(x) = ( )TT T
1 2µ µ , µ=  and 

Var(x) = Σ1⊕Σ2. The corresponding sample estimators 

are x  = ( )TT T
1 2x , x
i i

 and 1 2
ˆ ˆΣ Σ⊕ , respectively, where ix

i
 

= i

i

n1
ijn j 1

x
=∑  = ( )T

i 1 i 2 i px ,x , ,x
i i i

…  is the vector of means 

of ith sample with ( )i iE x µ ,=
i ( ) ( )i i iVar x 1 n Σ=

i
 and 

( )( )i

i

Tn1
i ij i ij in 1 j 1

Σ̂ x x x x− =
= − −∑ i i

 is the sample 

covariance matrix in group i for j = 1, 2, …, ni, i = 1, 2. 
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The notation ⊕  is the direct sum and a sample from 
each population with sample sizes denoted by n1 and n2. 
 Traditionally, if data with fixed dimension are 
normally distributed, people would use the famous 
classical Hotelling’s T2 test for two-sample which is 

defined as ( ) ( )1 2

1 2

Tn n2 1
1 2 1 2n n

ˆT x x Σ x x−
+= − −

i i i i
, where ix

i
 

is the ith sample mean vector as defined above, for i = 
1, 2 and the pooled sample covariance matrix Σ̂  be 

defined by Σ̂  = ( )( )i

1 2

T2 n1
ij i ij in n 2 i 1 j 1

x x x x+ − = =
− −∑ ∑ i i

. It is 

well known that under the null hypothesis, n p 1 2
np T− +  has 

a central F-distribution (Davis, 2002; Anderson, 2003) 
with p and n-p+1 degrees of freedom where n = n1 + 
n2-2. Nowadays, however, modern society demands 
that the use of subjects (e.g., animals, patients) in 
scientific experiments must be adequately controlled 
and reduced. This position is enforced by ethical 
committees who authorize or deny permission for 
these kind of experiments. As a consequence the 
statistician sometimes has to work with very small 
subjects, but the large dimension of repeated 
measurements on each subject. Unfortunately, if n<p, 
called high-dimensional data, the Hotelling’s T2 test is 
not well defined because the sample covariance matrix 
becomes singular. 
 Recently, there has been some interest in 
investigating the behavior of high dimensionality n<p 
that can be found in the literature. A non-exact test for 
two sample case when n<p was first proposed by 
Dempster (1958). Many works have been published on 
hypothesis testing for means when both p and n go to 
infinity with the ratio p/n must remain bounded, Bai 
and Saranadasa (1996), Fujikoshi et al. (2004); 
Srivastava and Fujikoshi (2006); Srivastava (2007; 
2009); Schott (2007) and Srivastava and Du (2008). In 
addition, when sample covariance matrix does not have 
an inverse, Chongcharoen (2011) proposed one way to 
modify a sample covariance matrix. Yahya et al. (2011) 
proposed approach for feature selection in high 
dimensional data. For analysis of the one-sample high-
dimensional repeated measures designs, see Choopradit 
and Chongcharoen (2011). However, the mainstream 
attempt in this study interests in the analysis of two-
sample repeated measures designs for high-dimensional 
data. In an influential work, Ahmad (2008) proposed 
the modified version of the ANOVA-type statistic for 
analysis of two-sample repeated measures designs when 
the data are multivariate normal and the dimension can 
be large compared to the sample size using a modified 
Box’s approximation (Box, 1954) based on quadratic 
and bilinear forms. 

 In this study, we introduce test statistics for testing 
interaction and time effects which follow a multivariate 
approach to repeated measures for analyzing high-
dimensional two-sample repeated measures designs. 
The test statistics asymptotically follows a standard 
normal distribution and is not affected by even a large 
the dimension of repeated measurements, p. The test 
statistics are derived with no specific form of 
covariance matrix but under equal population 
covariance assumption. 

 
The modified ANOVA-type statistic: Here and in the 
following, for any natural number p, Ip denotes the p×p 
identity matrix of dimension p, 1p = (1,…,1)Tp×1 a p-
dimensional column vector of ones, T

p p pJ 1 1=  a square 

matrix of ones and Pp = Ip-p
−1 Jp is the centering matrix. 

Note that Pp is a projection matrix. Usually, the null 
hypothesis to be tested is H0: Hµ = 0. The matrix H can 
be formulated in distinctive settings depending on the 
objectives of the experimental research. As similar null 
hypothesis given in Brunner et al. (1999) and Ahmad 
(2008), we can also write H0: Gµ = 0 where G = HT 

(HHT)− H is the general hypothesis matrix whereas 
(HHT)− denoting a generalized inverse of HHT and G is 
a projection matrix. We note that Gµ = 0 if and only if 
Hµ = 0. For the two-sample repeated measures designs 
(Davis, 2002), the situation when repeated 
measurements at p time points are obtained from two 
independent groups of subjects is considered. Let  xij = 
(xij1, xij2,…, xijp)T denote the vector of observations from 
the jth subject in group i for j = 1, 2, …, ni, i = 1, 2. The 
matrix G can be formulated to test any appropriately 
hypotheses as GAB = P2⊗Pp (interaction effect 
hypothesis), A 1

2 ppG P J= ⊗  (group effect hypothesis) 

and B 1
2 p2G J P= ⊗  (time effect hypothesis). 

 It is clear from the hypotheses above that the high 
dimensionality influences only interaction effect 
hypothesis and time effect hypothesis whereas group 
effect hypothesis is a univariate hypothesis of the 
means of two independently samples from normal 
populations and does not depend on p. Group effect 
hypothesis, therefore, is not of our main interest 
because it can be tested using the usual t-test for two 
independent samples (Rencher, 2002; Johnson and 
Wichern, 2002). When n<p, ̂Σ  is singular. Any test 
statistic involved the inversion of ̂Σ  will not exist. 
Ahmad (2008) proposed the modified ANOVA-type 
statistic under covariance matrices of two groups are 
the same, using quadratic and symmetric bilinear 
forms based on Box’s approximation (Box, 1954) as 
followed. 
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The interaction effect: The hypothesis of no 
interaction effect, ( )AB

0 2 pH : P P µ 0⊗ = , can also be 

written as ( )AB
0 p 1 2H : P µ µ 0− = . Therefore, the 

generating matrix without any loss of generality for the 
interaction effect is G = Pp. Let x1k and x2l defined 
above with ( )1k p 1 1x ~ N µ ,Σ  and ( )2l p 2 2x ~ N µ ,Σ  where 

the samples are drawn independently from two 
populations. Define the differences x1k - x2l, for all k = 
1, 2, …, n1, l = 1, 2, …, n2, where E(x1k - x2l) = µ1-µ2 
and Var(x1k - x2l) = Σ1+Σ2. Under ( )AB

0 1 2H : G µ µ 0− = , 

E[G(x1k - x2l)] = ( )1 2E G x x − i i
 = 0, Var[G(x1k - x2l)] = 

G(Σ1+Σ2)G and ( )1 2Var G x x − i i
= ( )

1 2

1 1
1 2n nG Σ Σ G+ . 

Denote ( ) ( )TAB
kl 1k 2l 1k 2lQ x x G x x= − −  and 

( ) ( )TAB
rs 1r 2s 1r 2sQ x x G x x= − −  are the quadratic forms, 

( ) ( )TAB
klrs 1k 2l 1r 2sQ x x G x x= − −  is the symmetric bilinear 

form. For assuming that the two groups have common 
covariance matrix Σ, that is Σ1 = Σ2 = Σ, the estimators: 
 

( )( )

( )( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2
2

1 2 1 2

n n n n n n
AB AB AB1 1
kl kl rsn n n n n 1 n 1

k 1 l 1 k 1 l 1 r 1 s 1

k r, l s

n n n n
AB1
klrsn n n 1 n 1

k 1 l 1 r 1 s 1

k r, l s

Q , Q Q

and Q ,

− −
= = = = = =

≠ ≠

− −
= = = =

≠ ≠

∑∑ ∑∑∑∑

∑∑∑∑

�����

�����

 

 
are unbiased and consistent estimators of 2tr(GΣG), 
4[tr(GΣG)]2 and 4tr(GΣG)2, respectively. For testing 

AB
0H , the modified ANOVA-type statistic, AB

MATST , is 

given by: 
 

  ( ) ( )
1 2

2 2 AB
TAB 1 2

MATS 1 2 1 2n n
AB
kl

k 1 l 1

2n n f
T x x G x x

N Q
= =

= − −

∑∑
i i i i

ɶ  

 
where, N = n1 + n2. Under AB

0H  the modified ANOVA-

type statistic AB
MATST  has asymptotically a central AB

2

f
χ  

distribution with fAB degree of freedom which is 
estimated by: 
 

  
1 2 1 2 1 2 1 2

2
n n n n n n n n

AB AB AB AB
kl rs klrs

k 1 l 1 r 1 s 1 k 1 l 1 r 1 s 1

k r, l s k r, l s

f Q Q Q
= = = = = = = =

≠ ≠ ≠ ≠

=∑∑∑∑ ∑∑∑∑ɶ

����� �����

 

 
The time effect: The hypothesis of no time effect, 

( )B 1
0 2 p2H : J P µ 0⊗ = , can also be written as 

( )B
0 p 1 2H : P µ µ 0+ = . As similar in the interaction effect, 

therefore, the generating matrix without any loss of 
generality for the time effect is G = Pp. Let x1k and x2l 
defined above with ( )1k p 1 1x ~ N µ ,Σ  and ( )2l p 2 2x ~ N µ ,Σ  

where the samples are drawn independently from two 
populations. Define the sums x1k + x2l, for all k = 1, 2, 
…, n1, l = 1, 2, …, n2, where E(x1k + x2l) = 1 2µ µ+  and 

Var(x1k + x2l) = 1 2+Σ Σ . Under ( )B
0 1 2H : G µ µ 0+ = , 

E[G(x1k + x2l)] = ( )1 2E G x x + i i
 = 0, Var[G(x1k + x2l)] 

= ( )1 2G Σ Σ G+ and ( ) ( )
1 2

1 1
1 2 1 2n nVar G x x G Σ Σ G + = + i i

.  

Denote ( ) ( )TB
kl 1k 2l 1k 2lQ x x G x x= + +  and 

( ) ( )TB
rs 1r 2s 1r 2sQ x x G x x= + +  are the quadratic forms, 

( ) ( )TB
klrs 1k 2l 1r 2sQ x x G x x= + +  is the symmetric bilinear 

form. For assuming that the two groups have common 
covariance matrix Σ, that is 1 2Σ Σ Σ= = , the estimators: 

 

( )( )

( )( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2
2

1 2 1 2

n n n n n n
B B B1 1
kl kl rsn n n n n 1 n 1

k 1 l 1 k 1 l 1 r 1 s 1

k r, l s

n n n n
B1
klrsn n n 1 n 1

k 1 l 1 r 1 s 1

k r, l s

Q , Q Q

and Q ,

− −
= = = = = =

≠ ≠

− −
= = = =

≠ ≠

∑∑ ∑∑∑∑

∑∑∑∑

�����

�����

 

 
are unbiased and consistent estimators of 2tr(GΣG), 
4[tr(GΣG)]2 and 4tr(GΣG)2, respectively. For testing 

B
0H , the modified ANOVA-type statistic, B

MATST , is 

given by: 
 

  ( ) ( )
1 2

2 2 B
TB 1 2

MATS 1 2 1 2n n
B
kl

k 1 l 1

2n n f
T x x G x x

N Q
= =

= + +

∑∑
i i i i

ɶ

 

 
where N = n1 + n2. Under B

0H  the modified ANOVA-

type statistic B
MATST  has asymptotically a central B

2

f
χ  

distribution with fB degree of freedom which is 
estimated by: 
 

1 2 1 2 1 2 1 2
2

n n n n n n n n
B B B B

kl rs klrs
k 1 l 1 r 1 s 1 k 1 l 1 r 1 s 1

k r, l s k r, l s

f Q Q Q
= = = = = = = =

≠ ≠ ≠ ≠

=∑∑∑∑ ∑∑∑∑ɶ

����� �����

. 

 
METERIALS AND METHODS 

 
A proposed test: When n<p, only the first n 
eigenvalues of ̂Σ  will be non-zero and the smallest 
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eigenvalues will tend to zero pretty quickly as the 
dimensionality grows. Consequently, many of the 
classical techniques, e.g., the Hotelling’s T2 test, 
encounter a mathematical barrier and becomes 
inapplicable since in the case Σ̂  is degenerate. Hence, 
we look for tests which do not require the 
nonsingularity of ̂Σ . 
 We will derive the asymptotic distributions of the 
test statistics for two-sample repeated measures design 
when data are high dimension (n<p) under general 
conditions only that Σ is a positive definite covariance 
matrix (denoted as Σ>0). The test statistics considered 
under covariance matrices of two groups are equal and 
both p and n go to infinity. We should note that the 
limiting ratio p/n is allowed to be greater than one. 
Consequently, these tests can be used when n<p. From 
hypotheses presented as before the formulations of the 
test statistics for interaction effect involves differences 
of the vector x1k and x2l, but those for time effect 
involves sums of the vector x1k and x2l. Finally, the 
asymptotic distributions of these test statistics for the 
interaction effect and time effect are same since 
covariance of differences and sums remains the same. 
Hence, the details in the following section will be 
shown only for the interaction effect while for the time 
effect follows the same pattern. 
 
The interaction effect: For testing the null hypothesis 
of no interaction effect as above we first consider the 
following result. 
 
Theorem 1: For assuming1 2Σ Σ Σ= = , let xhj∼Np(0,Σ), 

Σ>0, where j = 1, 2, …, hn , h = 1, 2 and let G be a 

matrix defined the same as above. Then 

( ) ( )
pdT1 2

1 2 1 2 i i
i 1

n n
x x G x x C

N =

− − = λ∑i i i i
, where N = n1 + n2, 

λi are the eigen values of GΣ  and 2
i 1C ~ χ , i = 1, 2, …, 

p, are independent.  
 Proof. Under ( )AB

0 1 2H : G µ µ 0− = , for assuming 

1 2Σ Σ Σ= = , notice that ( )1 2n n
1 2N G x x−
i i

 ( )p~ N 0,GΣG . 

We set ( ) ( )1 2n n
1 2 pN G x x Q ~ N 0,GΣG− ≡
i i

. Let v1, v2, 

…, vp and λ1, λ2, …, λp are the corresponding 
orthonormal eigenvectors and eigenvalues of GΣ . It 
follows that: 

 
p

i i
i 1

Q v
=

= ξ∑  

where, T
i iQ vξ = , i = 1, 2, …, p, which are independent 

and we have ( )iE 0ξ =  and ( )i iVar 0ξ = λ > . Since Q is 

a normal random vector, we have i iξ λ  iid ~ N(0,1) 

for i = 1, 2, …, p. 
 Due to the orthonormality of the eigenvectors iv , i 

= 1, 2, …, p, then we have: 
 

p
T 2

i
i 1

Q Q
=

= ξ∑  

 

 Since i iξ λ  iid ~ N(0,1), then 2 2
i i 1~ξ λ χ . Hence 

d
2
i i iCξ = λ , where 2

i 1C ~ χ , i = 1, 2, …, p, are 

independent. It follows that 
p pd

2
i i i

i 1 i 1

C
= =

ξ = λ∑ ∑ , as desired. 

 Since the quantities tr(GΣG), tr(GΣG)2 and λmax = 
max1≤i≤pλi  vary with p. To derive the asymptotic null 
distribution in the following theorem, we impose the 
following regular assumptions: 
 

( ) ( )

( )

2

1

max

1 2

(A) tr GΣG p c 0, asp ;

(B) p 0asp ;

(C) n N c 0,1 .

→ ∈ ∞ → ∞

λ → → ∞

→ ∈

 

 
 These assumptions are similar to those imposed by 
Bai and Saranadasa (1996) and Srivastava and Du 
(2008) for the study of their two-sample testing 
procedures and for the study of their testing mean 
vector in one- and two-sample cases, respectively. 
 The following theorem establishes the asymptotic 
normality of our test statistic for testing the hypothesis:  
 

( )AB
0 1 2H : G µ µ 0− =  

 

Theorem 2: For 1 2n ,n ,p→ ∞  and assuming Σ1=Σ2=Σ, 

let xij∼Np(µi,Σ), Σ>0, where j = 1, 2, …, ni, i = 1, 2. 
Under ( )AB

0 1 2H : G µ µ 0− =  and the assumption (A)-(C) 

are satisfied, then: 
 

( ) ( )

( )( )

( )

1 2

1 2

1 2

1 2 1 2
2

1 2 1 2

n n
T2n n AB1

1 2 1 2 klN n n
AB k 1 l 1
* n n n n

AB2
klrsn n n 1 n 1

k 1 l 1 r 1 s 1

k r, l s

x x G x x Q
T N 0,1

Q

in distribution.

= =

− −
= = = =

≠ ≠

− − −
= →

∑∑

∑∑∑∑

i i i i

�����

 

 
Proof: For assuming Σ1=Σ2=Σ, then 

( )
1 2

N
1 2 p 1 2 n nx x ~ N µ µ , Σ− −
i i

. Under the null hypothesis 
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( )AB
0 1 2H : G µ µ 0− =  and G is a projection matrix, 

obviously, ( ) ( ) ( )1 2
T2n n

1 2 1 2NE x x G x x 2tr GΣG − − =
 i i i i

. 

Using cumulant generating function of quadratic and 
bilinear forms (Searle, 1997) and moment-cumulant 
relationships (Rao, 2001) we obtained 

( )
1 2

1 2

n n
AB1
kln n

k 1 l 1

E Q 2tr GΣG
= =

 
= 

 
∑∑  and 

1 2

1 2

n n
AB1
kln n

k 1 l 1

Var Q
= =

 
= 

 
∑∑  

( ) ( )
1 2

22 N 2

n n tr GΣG
+ . Consider the statistic: 

 

( ) ( )
1 2

1 2

1 2

n n
T2n n AB1

n 1 2 1 2 klN n n
k 1 l 1

R x x G x x Q
= =

= − − − ∑∑i i i i
 

 
 Therefore, clearly under AB

0H  we have E(Rn) = 0. 

Ahmad (2008) [Theorem 3.5] shown that 

( ) ( ) ( )1 2
T 22n n

1 2 1 2NVar x x G x x 8tr GΣG − − =
 i i i i

 and 

( ) ( ) ( )
1 2

1 2

1 2 1 2

n n
T 22n n AB 4N1

1 2 1 2 klN n n n n
k 1 l 1

Cov x x G x x , Q tr GΣG .
= =

 − − = 
∑∑i i i i

 It follows that ( )2

nVar(R ) 8tr GΣG≃  for large n1, n2. 

One can see that 

( ) ( )
1 2

1 2

n n
2AB1

kln n
k 1 l 1

Q 2tr GΣG 8tr GΣG 0
= =

 
− → 

 
∑∑ . Therefore, 

we need only show that 

( ) ( )
( ) ( )

( ) ( )
1 2

1 2

T2n n
1 2 1 2N 2

T2n n
1 2 1 2N

x x G x x E
8tr GΣG N 0,1

x x G x x

 − − −  → 
 − −   

i i i i

i i i i

 

in distribution. 

 Recall Theorem 1 since ( )
d

2
i i i i iC z ,z iid ~ N 0,1λ = λ  

and note that ( ) ( ) p

ii 1
tr GΣG tr GΣ

=
= = λ∑  we may 

rewrite: 

 

( ) ( ) ( )
( )

( )
( )

1 2
T2n n

1 2 1 2N

2

p 2
d i ii 1

2

x x G x x 2tr GΣG

8tr GΣG

z 1

2tr GΣG

=

− − −

λ −
=
∑

i i i i

 (A.1) 

 
 Now we show that (A.1) is asymptotically 
distributed as N (0, 1) by using Lyapounov’s 

theorem. We usually note that( ) p2 2
ii 1

tr GΣG
=

= λ∑ . Let 

( )p 2
i ii 1

S z 1
=

= λ −∑ . Then E(S) = 0 and Var(S) = 

2tr(GΣG)2. Therefore, as 1 2n ,n ,p→ ∞  and under 

assumption  (A)-(C) are satisfied, it then follows 
that: 

 

( )
( )( ) ( )( )

( )
( )

3 3p p2 3 2
i i i 1i 1 i 1

3 3
2 2

32
max 1

23 2

E z 1 E z 1

2tr GΣG 2tr GΣG

p E z 1
0.

2 tr GΣG p

= =
λ − λ −

=

λ −
≤ →

∑ ∑

 

 
 And Lyapounov’s condition is satisfied. By 
Lyapounov’s Central Limit Theorem, the expression 
(A.1) tends to N(0,1) in distribution. 
 To complete the construction of our test statistic, 
we need only find a ratio-consistent estimator of 4tr 

(GΣG)2. A natural estimator of ( )2
4tr GΣG  is 

( )2ˆ4tr GΣG . However, ( )2ˆ4tr GΣG  is generally neither 

unbiased nor ratio-consistent. It is usual to verify that 

( )( )

1 2 1 2
2

1 2 1 2

n n n n
AB1
klrsn n n 1 n 1

k 1 l 1 r 1 s 1

k r, l s

Q− −
= = = =

≠ ≠

∑∑∑∑
�����

, is an unbiased and ratio-

consistent estimator of 4tr (GΣG)2. Hence the theorem 
is proved.  
 Due to Theorem 2 the test with an α  level of 
significance will rejects AB

0H  if AB
* 1T z −α>  where 1z −α  

is the ( )100 1 %− α   quantile of  N(0,1).  Note  that, 

the approximating asymptotic null distribution of 
AB

*T  is similarly to the test obtained in Bai and 

Saranadasa (1996); Srivastava and Du (2008) and 
Zhang and Xu (2009) when both p and n go to 
infinity. 

 
The time effect: We consider testing the null 
hypothesis of no time effect as above. As mentioned 
above, the proof of the following theorem can be 
obtained similar that of Theorem 1, thus we present it 
without proof. 

 
Theorem 3: For assuming Σ1=Σ2=Σ, let xhj∼Np(0,Σ), 
Σ>0, where j = 1, 2, …, hn , h = 1, 2 and let G be a 

matrix defined the same as above. Then 

( ) ( )
pdT1 2

1 2 1 2 i i
i 1

n n
x x G x x C

N =

+ + = λ∑i i i i
, where N = n1 + n2, 

λi are the eigenvalues of GΣ  and 2
i 1C ~ χ , i = 1, 2, …, 

p, are independent. 
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 The following theorem establishes the asymptotic 
normality of our test statistic for testing the hypothesis 

( )B
0 1 2H : G µ µ 0+ = . 

 
Theorem 4: For 1 2n ,n ,p→ ∞  and assuming Σ1=Σ2=Σ, 

let xij∼Np(µi,Σ), Σ>0, where j = 1, 2, …, ni, i = 1, 2. 
Under ( )B

0 1 2H : G µ µ 0+ =  and the assumption (A)-(C) 

are satisfied, then: 

 

( ) ( )

( )( )

( )

1 2

1 2

1 2

1 2 1 2
2

1 2 1 2

n n
T2n n B1

1 2 1 2 klN n n
B k 1 l 1
* n n n n

B2
klrsn n n 1 n 1

k 1 l 1 r 1 s 1

k r, l s

x x G x x Q
T N 0,1

Q

in distribution

= =

− −
= = = =

≠ ≠

+ + −
= →

∑∑

∑∑∑∑

i i i i

�����

 

 
 The proof of Theorem 4 is similar to that of 
Theorem 2. Due to Theorem 4 the test with an α  level 
of significance will rejects B B

0 * 1H if T z −α>  where 1z −α  is 

the ( )100 1 %− α  quantile of N(0,1). 

 
Simulation study: We assess the effectiveness of the 
proposed two-sample tests for high dimensional data by 
means of a Monte Carlo simulation study. Simulation 
results were obtained so as to assess the accuracy of the 
asymptotic standard normal distribution in 
approximating the actual null distributions of 

AB B
* *T andT . If the distribution is derived correctly for 

the proposed test statistics, then we would expect that 
the estimated Type I errors should be close to the 
nominal significance level setting. We also estimate 
empirical powers of our proposed test statistics. We 
begin with the description of the parameter selection for 
our simulation. 
 
Parameter selection: For Type I error simulation study 
which were designed to evaluate the performance of the 
proposed two-sample test for repeated measures designs 
with high-dimensional data, we used Monte Carlo 
technique for 5,000 iterations with setting a nominal 
significance level of α = 0.05. We then took n1, n2 = 10, 
15, 20, 30 and p = 30, 50, 70, 100. The upper and lower 
limits were calculated according to 
0.05 3 0.05 0.95 / 5000± ×  = (0.041, 0.059), i.e., three 
standard errors around the nominal significance level of 
0.05. Thus, any estimated Type I error rate falling 
within these limits is not significantly different from the 
nominal significance level of 0.05. The estimated type I 
error rates are given as in Table 1. 

 For the empirical power computations, we chose G 
as an appropriated testing matrix defined above, 

( )T

1 p 1
µ 0,0, ,0

×
= …  and for the nonzero 

( )T

2 i 1 2 p p 1
µ u ,u , ,u

×
= η … where ju j p= , j = 1, 2, …, p and 

ηi is the ith element of the vector of constants, η = 
0(0.2) 1.4. The Table 2 and 3 give empirical powers of 
the proposed test AB

*T  (interaction effect) and of the 

proposed test B
*T  (time effect) for 5,000 iterations of 

simulations study with setting a nominal significance 
level of α = 0.05, p = 50, 70, 100 and for sample 
sizes n1 = 10, n2 = 20 and n1 = 20, n2 = 30 
respectively.  
 Here, the four different covariance patterns are 
considered: (a) simple (SIM) pattern, (b) compound 
symmetry (CS) pattern, (c) unstructured (UN) pattern 
and (d) heterogeneous compound symmetry (CSH) 
pattern. A simple covariance pattern is defined 
as 2

Σ I= σ , where I denotes the p×p dimensional identity 
matrix with 2 0σ > . A compound symmetry covariance 
pattern is defined as 2

Σ I J= σ + κ , where J = 11T denotes 
the p×p dimensional matrix of 1s and κ  is appropriate 
constant. The unstructured covariance pattern refers to 
the SAS PROC MIXED unstructured pattern (UN). 
And a heterogeneous compound symmetry covariance 

pattern is defined as ( )p

ij i, j 1
Σ

=
= σ , where 2

ij i 0σ = σ >  (i = 

j) and ij i j  (i j),σ = σ σ ρ ≠  ρ  is the correlation parameter 

satisfying 1ρ < . We set 2 1σ =  for SIM, 2 1σ = κ =  for 

CS, ( )ij iid ~ Unif 1,2σ  (if i = j) and ( ) 2
ij j 1 pρ = −  (if 

i j< ) for UN and ( )ij iid ~ Unif 2,3σ (if i = j),ρ = 0.5  for 

CSH, where i, j = 1, 2, …, p. The multivariate normal 
random vectors were generated using IMSL subroutine 
RNMVN of FORTRAN. 

 
RESULTS AND DOSCUSSION 

 
Simulation result: Table 1 show the closeness of 
estimated Type I errors with nominal significance level 
setting at α = 0.05. As can be seen from the Table 1, the 
estimated Type I errors of the test statistic AB

*T  for 

interaction effect and the test statistic B*T  for time 

effect are close to the nominal significance level setting 
at α = 0.05 reasonably well in all cases considered 
including small sample size as 10. This is shown that 
the proposed tests are reasonable tests. Moreover, we 
note that the accuracy of Type I error control is not 
affected by changing the covariance pattern and by the 
increasing the dimension p. 
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Table 1: Simulated Type I error of AB
*T  and B

*T  under the null hypothesis for four different covariance matrix pattern applied at nominal 

significance level α = 0.05 
    Interaction effect    Time effect 
   ------------------------------------------------------------- --------------------------------------------------------- 
n1 n2 p  SIM CS UN CSH SIM CS UN CSH 
10 10 30 0.047 0.048 0.045 0.046 0.044 0.044 0.044 0.044 
  50 0.046 0.045 0.046 0.045 0.047 0.046 0.049 0.048 
  70 0.044 0.044 0.046 0.044 0.045 0.045 0.042 0.042 
    100 0.043 0.041 0.041 0.041 0.046 0.043 0.046 0.047 
10 20 30 0.047 0.046 0.050 0.050 0.051 0.052 0.052 0.052 
  50 0.048 0.047 0.048 0.049 0.049 0.047 0.045 0.046 
  70 0.050 0.050 0.049 0.052 0.048 0.047 0.048 0.047 
    100 0.047 0.048 0.048 0.050 0.050 0.050 0.050 0.050 
10 30 50 0.050 0.052 0.051 0.051 0.047 0.048 0.050 0.047 
  70 0.048 0.047 0.048 0.047 0.051 0.053 0.052 0.053 
    100 0.046 0.049 0.050 0.047 0.045 0.044 0.044 0.042 
15 20 50 0.050 0.052 0.049 0.051 0.048 0.047 0.050 0.048 
  70 0.052 0.052 0.052 0.053 0.047 0.047 0.046 0.047 
    100 0.052 0.052 0.052 0.052 0.049 0.049 0.051 0.050 
15 30 50 0.049 0.048 0.050 0.048 0.053 0.054 0.054 0.056 
  70 0.048 0.048 0.047 0.049 0.047 0.050 0.045 0.047 
    100 0.049 0.051 0.049 0.050 0.045 0.045 0.045 0.045 
20 20 50 0.052 0.054 0.056 0.055 0.055 0.057 0.057 0.057 
  70 0.050 0.050 0.053 0.052 0.048 0.047 0.049 0.049 
    100 0.052 0.052 0.053 0.052 0.054 0.055 0.051 0.054 
20 30 50 0.053 0.054 0.056 0.055 0.052 0.051 0.053 0.052 
  70 0.052 0.050 0.052 0.050 0.052 0.052 0.050 0.053 
    100 0.049 0.049 0.050 0.051 0.052 0.050 0.051 0.050 
 

Table 2: Empirical powers of AB
*T  (interaction effect) under the alternative hypothesis for four different covariance matrix pattern applied at 

nominal significance level α = 0.05 
  n1 = 10, n2 = 20   n1 = 20, n2 = 30 
  ---------------------------------------------------- ---------- ------------------------------------------------------- 
COV η p = 50 p = 70 p = 100 p = 50 p = 70 p = 100 
SIM 0.0 0.048 0.050 0.047 0.053 0.052 0.049 
 0.2 0.076 0.092 0.095 0.125 0.150 0.163 
 0.4 0.232 0.282 0.372 0.508 0.617 0.732 
 0.6 0.603 0.713 0.843 0.933 0.978 0.997 
 0.8 0.917 0.973 0.996 0.999 1.000 1.000 
 1.0 0.995 1.000 1.000 1.000 1.000 1.000 
 1.2 1.000 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
CS 0.0 0.047 0.050 0.048 0.054 0.050 0.049 
 0.2 0.079 0.089 0.094 0.127 0.147 0.156 
 0.4 0.228 0.288 0.362 0.500 0.605 0.724 
 0.6 0.595 0.721 0.833 0.936 0.978 0.996 
 0.8 0.916 0.978 0.994 0.999 1.000 1.000 
 1.0 0.996 1.000  1.000 1.000 1.000 1.000 
 1.2 1.000 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
UN 0.0 0.048 0.049 0.048 0.056 0.052 0.050 
 0.2 0.067 0.073 0.074 0.098 0.108 0.117 
 0.4 0.148 0.179 0.221 0.311 0.388 0.467 
 0.6 0.368 0.461 0.582 0.751 0.860 0.944 
 0.8 0.708 0.830 0.925 0.975 0.997 1.000 
 1.0 0.938 0.987 0.998 1.000 1.000 1.000 
 1.2 0.995 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
CSH 0.0 0.049 0.052 0.050 0.055 0.050 0.051 
 0.2 0.070 0.079 0.082 0.111 0.125 0.130 
 0.4 0.175 0.218 0.272 0.383 0.468 0.574 
 0.6 0.453 0.565 0.694 0.836 0.927 0.980 
 0.8 0.804 0.906 0.971 0.993 1.000 1.000 
 1.0 0.973 0.997 1.000 1.000 1.000 1.000 
 1.2 0.999 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3: Empirical powers of AB
*T  (time effect) under the alternative hypothesis for four different covariance matrix pattern applied at nominal 

significance level α = 0.05 
  n1 = 10, n2 = 20   n1 = 20, n2 = 30 
  --------------------------------------------------- ---------------------------------------------------------- 
COV η p = 50 p = 70 p = 100 p = 50 p = 70 p = 100 
SIM 0.0 0.049 0.048 0.050 0.052 0.052 0.052 
 0.2 0.077 0.086 0.093 0.124 0.135 0.159 
 0.4 0.249 0.286 0.351 0.497 0.598 0.715 
 0.6 0.604 0.725 0.832 0.935 0.977 0.997 
 0.8 0.918 0.972 0.995 0.999 1.000 1.000 
 1.0 0.995 0.999 1.000 1.000 1.000 1.000 
 1.2 1.000 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
CS 0.0 0.047 0.047 0.050 0.051 0.052 0.050 
 0.2 0.080 0.085 0.095 0.121 0.137 0.160 
 0.4 0.241 0.285 0.355 0.498 0.603 0.722 
 0.6 0.609 0.714 0.826 0.932 0.975 0.996 
 0.8 0.921 0.972 0.996 0.999 1.000 1.000 
 1.0 0.996 1.000 1.000 1.000 1.000 1.000 
 1.2 1.000 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
UN 0.0 0.045 0.048 0.050 0.053 0.050 0.051 
 0.2 0.069 0.069 0.076 0.094 0.098 0.112 
 0.4 0.156 0.176 0.217 0.304 0.380 0.467 
 0.6 0.377 0.464 0.571 0.742 0.846 0.936 
 0.8 0.717 0.833 0.921 0.979 0.997 1.000 
 1.0 0.937 0.984 0.998 1.000 1.000 1.000 
 1.2 0.996 0.999 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
CSH 0.0 0.046 0.047 0.050 0.052 0.053 0.050 
 0.2 0.074 0.076 0.081 0.106 0.111 0.130 
 0.4 0.183 0.218 0.269 0.375 0.460 0.574 
 0.6 0.463 0.558 0.678 0.835 0.918 0.977 
 0.8 0.809 0.906 0.967 0.992 0.999 1.000 
 1.0 0.972 0.994 1.000 1.000 1.000 1.000 
 1.2 0.999 1.000 1.000 1.000 1.000 1.000 
 1.4 1.000 1.000 1.000 1.000 1.000 1.000 
 
 The corresponding empirical power curves of the 
test statistic AB

*T  for the interaction effect with the 

aforementioned four different covariance patterns are 
summarized in Table 2 and Fig. 1. To make it clear, the 
four covariance patterns are listed separately. We 
observe that the empirical power functions of AB

*T  have 

a steep ascending slope and is very high for each 
sample size groups and all covariance patterns 
considered. The corresponding empirical power of AB

*T  

test give good power when η≥0.6 for n1 = 10 and n2 = 
20 andη≥0.4 for n1 = 20 and n2 = 30. As expected, the 
power of AB

*T  test increases for increasing both p and η 

when fixed the sample sizes for all cases considered as 
well. In addition, the power of AB

*T  test also increases 

for increasing the sample sizes when both p and η are 
fixed. Moreover, the empirical power is also unaffected 
by changing the covariance pattern. In a separate 
simulation where the test statistic B*T  were considered 

for the time effect as displayed in Table 3 and Fig. 2, 

the results obtained similar as interaction effect which 
reported above. 
 
Analysis of the body-weight of male Wistar rats 
data: The data and the experimental description for a 
motivating example to deal with the high-dimensional 
data is reported in Brunner et al. (2002). The body-
weight of male Wistar rats was observed over a period 
of 22 weeks to assess the toxicity of a drug. A group of ten 
animals was given a placebo, while a second group of ten 
animals was given a high dose of the drug. The main 
question to be addressed is whether the body-weights of 
the two test groups differ in their evolution over time. For 
this data, we have ni = 10, i = 1, 2 and p = 22.  
 We get test values of AB

*T 0.6273= −  with a 

corresponding p-value is 0.7348 and B
*T 6.2078=  with a 

corresponding p-value < 0.0001. We conclude that a 
p-value highly significant for time effect but a p-
value accepting the null hypothesis of no interaction 
effect.
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Fig. 1: Empirical power curves for AB

*T  (interaction effect) with n1 = 10, n2 = 20 and n1 = 20, n2 = 30 

 

       
 

       
 
Fig. 2: Empirical power curves for B*T  (time effect) with n1 = 10, n2 = 20 and n1 = 20, n2 = 30 

 
CONCLUSION 

 
 In this study, we developed test statistics for 
analyzing high-dimensional two-sample repeated 
measures designs when the data are multivariate 
normal. We began by highlighting the previous work in 
the literature describing test for the hypothesis of no 
interaction and no time effects. We proposed test 
statistics AB

*T  for no interaction effect and B*T  for no 

time effect which have an asymptotically distributed as 

standard normal distributions, under the null 
hypothesis, with common covariance Σ. One of the 
main advantages of these statistics is that they can be 
used for both unstructured and factorially structured 
repeated measures designs when the underlying 
hypothesis matrix G is appropriately defined. Monte 
Carlo simulation studies in this study show that the 
general behavior of these test statistics with asymptotic 
standard normal distribution still accurately control 
Type I error and have quite good power for any the 
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covariance matrix pattern considered with a moderate 
sample size and any large dimension p. The strong 
support is provided in the simulation results. In our 
study, the power simulation results suggest that it may 
be assumed that the quality of the proposed test 
statistics, AB

*T  and B
*T , are maintained even if the 

dimension is in the thousands and it may also be 
applied for the microarray data analysis. 
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