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Abstract: Problem statement: The double Pareto distribution appeared most often as model for 
variety of fields, including archaeology, biology, economics, environmental science, finance and 
physics. The distribution exhibits Paretian power-law behavior in both tails. The family of double 
Pareto distributions has recently been proposed for modeling growth rates such as annual gross 
domestic product, stock prices, foreign currency exchange rates and company sizes. In this study, I 
develop parameter estimates for the double Pareto distribution that are easy to compute. I compare 
the performance of the maximum likelihood estimate with Bayesian and the method of moments 
estimates. Approach: This study contracted with maximum likelihood, the method of moments 
and Bayesian using Jeffrey’s prior and the extension of Jeffrey’s prior information. The 
comparisons are made on the performance of these estimators with respect to the Mean Squared 
Error (MSE) for small, moderate and large samples and for some values of the scale and the 
extension of Jeffrey’s prior parameters using the simulation techniques. Results: It turns out that 
the maximum likelihood method and Bayesian method with Jeffrey’s prior result in smaller MSE 
compared to others in all cases. Conclusion: Based on the results of the simulation, the maximum 
likelihood method and Bayesian method with Jeffrey’s prior are found to be the best  with respect 
to MSE. 
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INTRODUCTION 

 
 The probability density function and the 
cumulative distribution function of the symmetric 
double Pareto distribution are Eq. 1 and 2:  
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 For some θ>0 and β>0 respectively (Reed, 2001).  

 In practice, the double Pareto distribution has been 
widely used as a model for growth rates and size 
distributions of various phenomena arising in different 

areas of inquiry such as economics, physical 
Sciences, geology, geography and finance (Lee et al., 
1998; Madan et al., 1998; Kozubowiski and 
Podgoriski, 2001; Amaral et al., 1998; Buldyrev et 
al., 1997; Stanley et al., 1996; Takayasu and 
Okuyama, 1998; Reed, 2001).  
  The double Pareto distribution arises as 
exponential function of double exponential distribution 
and can be derived by combining the Pareto distribution 
and the distribution of the reciprocal of a Pareto random 
variable and has power tail behavior at zero and infinity 
(Reed, 2001; Kotz et al., 2001). 
  The double Pareto distribution has been proposed 
as a model for heavy-tailed phenomena. Heavy- tailed 
distributions are very important in modeling finance 
(Embrechts et al., 1997; Fama, 1965; Jansen and 
Varies, 1991; Loretan nand Phillips, 1994; Mandelbrot, 
1963; Madfal and Raw, 1996; Rachev, 2003; Rachev 
and Mittnik, 2000), Physics (Barkai et al., 2000), 
engineering (Nikias and Shao, 1995; Resnick, 1997; 
Resnick and Starica, 1995; Uchaikin and Zolotarev, 
1999). Burroughs and Tebbens (2001a; 2001b) 
estimated parameters of the truncated distribution by 
least squares fitting on a probability plot and by 
minimizing mean squared error fit on a plot of the tail 
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distribution function. Ramirez et al. (2008) used a 
mixture of K Pareto distributions to model Ethernet 
packets interarrival times. Reed and Jorgensen (2004) 
considered the double Pareto lognormal distribution as 
model for heavy-tailed data and introduced various 
approaches to inference this distribution. Cobo et al. 
(2010) developed an algorithm to implement Bayesian 
inference for the double Pareto lognormal distribution. 
Al-Athari (2011) considered the double translated 
Pareto distribution as model for infinite excess kurtosis 
data and as model for non-kurtosis data and proposed 
various robust confidence intervals to inference this 
distribution. Ahmed et al. (2010), the maximum 
likelihood estimation, Bayesian using Jeffrey’s prior 
and the extension of Jeffrey’s prior for estimating the 
parameters of Weibull distribution are compared 

using the mean squared error and the mean 
percentage error. Ahmed and Ibrahim (2011) 
compared the performance of maximum likelihood 
and Bayesian using Jeffrey’s prior and the extension 
of Jeffrey’s prior for estimating the survival function 
of Weibull distribution with right censored data.  

  In this study, I develop parameter estimates for the 
double Pareto distribution that are easy to compute. The 
Maximum Likelihood Estimation (MLE), the method 
of Moments Estimation (MM) and Bayesian using 
Jeffrey’s prior (BAJ) and extension of Jeffrey’s Prior 
Information (BAEJ) are developed. The comparisons 
are made on the performance of these estimators with 
respect to the Mean Squared Error (MSE) for varying 
sample sizes and for some values of the scale 
parameter and the extension of Jeffrey’s prior using 
the simulation techniques. 
 These methods should be useful for the 
practitioners in area of science and engineering where 
power law probability tails are prevalent.  
 

MATERIALS AND METHODS 
 
Maximum likelihood estimation: Let X1, X2,….Xn be 
a random sample of size n taken from the double Pareto 
distribution given in Eq. 1. Then the likelihood and the 
log-likelihood functions for the double Pareto density 
can be written respectively as Eq. 3 and 4: 
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where, the scale parameter β is taken to be constant. 
Maximizing Eq. 3 or Eq. 4 we get the maximum 
likelihood estimator mθ̂ for θ. It follows that 
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given by Eq. 5:  
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 Under the regularity conditions (Johnson, 1996; 
Verbeek, 2008; Zacks, 1971), this estimator possesses 
the major properties of the maximum likelihood 
estimator, that is mθ̂  is consistent, asymptotic efficient 

and best asymptotically normal estimator with mean θ 
and asymptotic variance, m

ˆavar ( )θ  attains the Cramer 

Rao lower bound. 
 
Method of moments estimator: Given data assumed 
to be from the double Pareto distribution given in Eq. 1 
one could obtain method of moments estimates of 

andθ β  using the first two moments of the log-

transformed data distribution. Use of the double Pareto 
moments (with untransformed data) is not 
recommended, since the population moments of order θ 
or greater do not exist. So, we need to prove the 
following Theorems 
 
Theorem 1: If X has double Pareto distribution given 
by Eq. 1, then the density of Y= ln X is a shifted double 

exponential with mean in β and scale 
1

.
θ

 

 
Proof: The p.d.f. of Y is easily found from (1). It can 
be expressed as: 
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 With some algebra, the p.d.f. of Y can be shown 
to be: 
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 It is easy to show that the moment generating 
function (mgf) of the shifted double exponential 
distribution is: 
 

t
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 And the variance of Y is: 
  

2

2
Var(Y) =

θ
 (6) 

 
 To find the method of moment estimator using the 
shifted double exponential distribution, one needs 
only solve Eq. 6, with Var (Y) set to its sample 
equivalent and gets: 
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where, Y=ln X. The estimator in Eq. 7 is independent 
of the parameter β. 
 
Bayesian estimation: Given a random sample X1, 
X2,….,Xn from the double Pareto distribution given in 
Eq. 1, a Bayes’ estimator is a decision function θ̂ that 
minimizes the conditional expectation of the loss 
function ˆ( , )θ θℓ  given that 

nxnX...,,2x2X,1x1X === and, accordingly, it 
minimizes the expected risk function. By using a 
quadratic loss function 2ˆ ˆ( , ) ( )θ θ = θ − θℓ , then the Bayes’ 

estimator is given byB 1 2 n
ˆ E( |x ,x ,..., x )θ = θ , the mean of 

the conditional distribution of θ, 
given 1 1 2 2 n nX x ,X x ,...,X x= = = . This conditional 

distribution 1 2 nK( |x ,x ,..., x )θ is called a posterior 

distribution of θ. 
 The goal is to compute the posterior distribution 
which depends on the likelihood function, the prior Π 
(θ) and the marginal probability density function. 
 
Jeffrey’s prior information: Consider the likelihood 
function L (θ) given by Eq. 3 and its Fisher information 

2
2

ln L( ) n
I( ) E( )

∂ θθ = =
∂θ θ

. 

 Jeffrey’s (Jeffreys, 1946) suggested 
n

( ) I( )Π θ ∝ θ =
θ

 as a prior distribution for the 

parameter θ. Then from standard Bayesian theory (Box 
and Tiao, 1992; Hogg and Craig, 1994), the posterior 

distribution is proportional to the joint distribution L 
(θ)Π(θ) that is K(θ|x1,x2,...,xn)∝ L(θ).Π(θ) with the 
possibility of dropping all functions involving constants 
and X1, X2,….,Xn alone (not θ) from the right- hand 
member of this expression.  
 This posterior distribution is proper provided that 
θ>0 and β>0 with the constant of proportionality 
turning out to be: 
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 Assuming the quadratic loss function, the Bayes’ 
estimation Bjθ̂ is the mean of the posterior distribution. 

Thus: 
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 This estimator is the same as the maximum 
likelihood estimator mθ̂ given in Eq. 5 and is 

independent of the parameter β. 
 
Extension of Jeffrey’s prior information: The 
extension of Jeffrey’s prior is given by: 
 

c
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where, c is positive constant (Al-Kutubi and Ibrahim, 
2009). Therefore, the posterior distribution is proper 
provided that θ>0, β>0 and n>2c-1 with the constant of 
proportionality turning out to be: 
 

n
1 n 2c 1

i
i 1

[ (n 2c 1)] . ( | ln X ln |)− − +

=

Γ − + − β∑  

 
And hence:  
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 Assuming the quadratic loss function, the Bayes’ 
estimation BEθ̂ is the mean of the posterior distribution. 
Thus: 
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RESULTS 

  
  A computer simulation experiment was done to 
compare four methods of estimation of the parameter 
of the double Pareto distribution. Simulations were 
performed for sample sizes n= 10, 25, 50, 100 with 
values of the parameter θ = 0.5 (1.5)5, β = 1.0 and 
values of Jefferys extension c = 0.4, 3.0. Without 
losing the generality I assumed β equals to 1.0. For 
each combination of values of n,θ, c and β 40000 

samples were simulated from the uniform (0, 1) and 
then used to generate random samples from the 
double Pareto distribution by using the probability 
transform. For each sample, the parameter was 
estimated by the proposed four methods of 
estimation and then the mean- squared errors and the 
estimated means of the parameter were calculated to 
compare the estimation methods with the help of 
MATLAB, the language of technical computing 
version 6.5 (Part-Enander, 1996).  
 The transformation to the double Pareto distributed 
variable is given by: 
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Where: 
F (.) = The distribution function given in Eq. 2  
Ui = Uniformly distributed random variable on 

(0,1) 
 
 The simulation results for the mean-squared errors 
and the estimated means of the parameter for each 
estimation of (a) the Maximum Likelihood method 
(ML) (b) the Method of Moments (MM) (c) Bayesian 
with Jeffrey’s prior (BAJ) and (d) Bayesian with 
Extension Jeffrey’s prior (BAEJ) are summarized and 
tabulated in Table 1. 

 
Table 1: The estimated mean and the mean-squared error of the estimators 
n  θ c MLE Men MM Mean BAEJ Mean  
10 0.5 0.4 0.0413 0.5553 0.0614 0.5977 0.0442 0.5664 
  3.0 0.0413 0.5553 0.0614 0.5977 0.0590 0.2776 
 2.0 0.4 0.6614 2.2212 0.9827 2.3907 0.7078 2.2656 

  3.0 0.6614 2.2212 0.9827 2.3907 0.9442 1.1106 
  3.5 0.4 2.0255 3.8870 3.0097 4.1837 2.1675 3.9648 
  3.0 2.0255 3.8870 3.0097 4.1837 2.8916 1.9435 
  5.0 0.4 4.1338 5.5529 6.1422 5.9768 4.4235 5.6639 
  3.0 4.1338 5.5529 6.1422 5.9768 5.9012 2.7764 

25 0.5 0.4 0.0125 0.5216 0.0164 0.5381 0.0129 0.5258 
  3.0 0.0125 0.5216 0.0164 0.5381 0.0145 0.4173 
 2.0 0.4 0.1997 2.0864 0.2624 2.1523 0.2060 2.1031 

  3.0 0.1997 2.0864 0.2624 2.1523 0.2325 1.6692 
  3.5 0.4 0.6116 3.6513 0.8035 3.7666 0.6308 3.6805 

  3.0 0.6116 3.6513 0.8035 3.7666  0.7120  2.9210 
 5.0 0.4 1.2482 5.2161 1.6398 5.3808 1.2873 5.2578 
  3.0 1.2482 5.2161 1.6398 5.3808 1.4531 4.1729 
50 0.5 0.4 0.0056 0.5107 0.0071 0.5190 0.0057 0.5127 
  3.0 0.0056 0.5107 0.0071 0.5190 0.0061 0.4596 
 2.0 0.4 0.0897 2.0428 0.1138 2.0758 0.0911 2.0509 
  3.0 0.0897 2.0428 0.1138 2.0758 0.0972 1.8385 
 3.5 0.4 0.2746 3.5748 0.3484 3.6327 0.2791 3.5891 

  3.0 0.2746 3.5748 0.3484 3.6327 0.2978 3.2173 
  5.0 0.4 0.5603 5.1069 0.7110 5.1895 0.5695 5.1273 
  3.0 0.5603 5.1069 0.7110 5.1895 0.6077 4.5962 

100 0.5 0.4 0.0027 0.5053 0.0034 0.5095 0.0027 0.5063 
  3.0 0.0027 0.5053 0.0034 0.5095 0.0028 0.4801 

 2.0 0.4 0.0431 2.0213 0.0539 2.0381 0.0434 2.0254 
  3.0 0.0431 2.0213 0.0539 2.0381 0.0448 1.9203 
  3.5 0.4 0.1320 3.5373 0.1651 3.5666 0.1331 3.5444 
  3.0 0.1320 3.5373 0.1651 3.5666 0.1373 3.3605 
  5.0 0.4 0.2693 5.0533 0.3370 5.0952 0.2715 5.0634 
  3.0 0.2693 5.0533 0.3370 5.0952 0.2802 4.8007 
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DISCUSSION 
 
 Table 1 show that the Maximum Likelihood 
Method (MLE) and Bayesian method with Jeffrey’s 
prior (BAJ) give, for all values of sample size and 
parameters, the closest estimated mean estimator for θ. 
In other words the maximum likelihood method and 
Bayesian method with Jeffrey’s prior have the lowest 
absolute bias. The estimated mean value of Bayesian 
method with extension Jeffrey’s prior (BAEJ) is closer 
to the parameter than that of the Method of Moments 
(MM) when the parameter c is small otherwise it is 
farther. Table 1 show also that, for all values of sample 
size and parameters, the mean-squared errors of the 
maximum likelihood and Bayesian with Jeffrey’s prior 
followed by the method of moments estimators are less 
than that of Bayesian with extension Jeffrey’s prior 
estimator. This suggests that the maximum likelihood 
method and Bayesian method with Jeffrey’s prior are 
the best followed by the method of moments a result 
which was supported partially by (Ahmed  and Ibrahim, 
2011; Ahmed et al., 2010). When the sample size 
increases the mean-squared error decreases for all cases 
but for any fixed value of n, the mean-squared error 
increases as the parameter θ increases for all cases. 
Finally, the mean-squared error for the Bayesian 
method with extension Jeffrey’s prior increases as the 
value of the extension parameter c increases. 
 

CONCLUSION 
 
 Estimations of the shape parameter of the 
symmetric double Pareto distribution have been studied 
in this research. It turns out that the maximum 
likelihood estimator and Bayesian estimator with 
Jeffrey’s prior are equivalent and the best compared to 
the moments and Bayesian with extension Jeffrey’s 
prior estimators. The method of moment’s estimator 
gives better results than Bayesian estimator with 
extension Jeffrey’s prior.  
 The mean-squared error decreases as long as the 
sample size increases.  
 The Maximum Likelihood Estimator (MLE) is like 
Bayesian estimator with Jeffrey’s prior has several 
advantages. It is always exist, fast and straightforward to 
compute and yields feasible values and under regularity 
conditions it is consistent, asymptotic efficient and best 
asymptotically normal with mean θ and asymptotic 
variance attains the Cramer Rao lower bound. 
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