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Abstract: Problem statement: Most of Seasonal Autoregressive Integrated Moving Average 
(SARIMA) models that used for forecasting seasonal time series are multiplicative SARIMA models. 
These models assume that there is a significant parameter as a result of multiplication between non-
seasonal and seasonal parameters without testing by certain statistical test. Moreover, most popular 
statistical software such as MINITAB and SPSS only has facility to fit a multiplicative model. The aim 
of this research is to propose a new procedure for indentifying the most appropriate order of SARIMA 
model whether it involves subset, multiplicative or additive order. In particular, the study examined 
whether a multiplicative parameter existed in the SARIMA model. Approach: Theoretical derivation 
about Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions from subset, multiplicative 
and additive SARIMA model was firstly discussed and then R program was used to create the graphics 
of these theoretical ACF and PACF. Then, two monthly datasets were used as case studies, i.e. the 
international airline passenger data and series about the number of tourist arrivals to Bali, Indonesia. 
The model identification step to determine the order of ARIMA model was done by using MINITAB 
program and the model estimation step used SAS program to test whether the model consisted of 
subset, multiplicative or additive order. Results: The theoretical ACF and PACF showed that subset, 
multiplicative and additive SARIMA models have different patterns, especially at the lag as a result of 
multiplication between non-seasonal and seasonal lags. Modeling of the airline data yielded a subset 
SARIMA model as the best model, whereas an additive SARIMA model is the best model for 
forecasting the number of tourist arrivals to Bali. Conclusion: Both of case studies showed that a 
multiplicative SARIMA model was not the best model for forecasting these data. The comparison 
evaluation showed that subset and additive SARIMA models gave more accurate forecasted values at 
out-sample datasets than multiplicative SARIMA model for airline and tourist arrivals datasets 
respectively. This study is valuable contribution to the Box-Jenkins procedure particularly at the model 
identification and estimation steps in SARIMA model. Further work involving multiple seasonal 
ARIMA models, such as short term load data forecasting in certain countries, may provide further 
insights regarding the subset, multiplicative or additive orders.  
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INTRODUCTION 
 
 ARIMA is the method first introduced by Box and 
Jenkins (1976) and until now become the most popular 
models for forecasting univariate time series data. This 
model has been originated from the Autoregressive 
model (AR), the Moving Average model (MA) and the 
combination of the AR and MA, the ARMA models. In 
the case where seasonal components are included in this 
model, then the model is called as the SARIMA model. 
Box-Jenkins procedure that contains three main stages 
to build an ARIMA model, i.e. model identification, 
model estimation and model checking, is usually used 

for determining the best ARIMA model for certain time 
series data.  
 The generalized form of SARIMA model can be 
written as (Box et al., 2008; Cryer and Chan, 2008): 
 

S d S D S
p P t q Q t(B) (B )(1 B) (1 B ) Z (B) (B )aϕ Φ − − = θ Θ  (1) 

 
Where: 
 

2 p
P 1 2 p(B) 1 B B Bφ = − ϕ − ϕ − − ϕ  

S 2 q
P 1 2 q(B ) 1 B B BΦ = − θ − θ − − θ    
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2 q
q 1 2 q(B) 1 B B Bθ = − θ − θ − − θ  

S 2S QS
Q 1 2 Q(B ) 1 B B BΘ = −Θ −Θ − −Θ    

 
Where: 
B = The backward shift operator 
d and D = The non-seasonal and seasonal order of 

differences, respectively and usually 
abbreviated as SARIMA (p,d,q)(P,D,Q)S 

 
 When there is no seasonal effect, a SARIMA 
model reduces to pure ARIMA (p,d,q) and when the 
time series dataset is stationary a pure ARIMA reduces 
to ARMA(p,q). 
 To date, SARIMA model has been used in various 
fields of forecasting. For example, Haswell et al. (2003) 
applied this model for forecasting soil dryness index in 
the southwest of Western Australia; Hu et al. (2004) for 
prediction of Ross River virus disease in Brisbane et al. 
(2005), Modarres (2007), also Abebe and Foerch 
(2008) for drought forecasting; Ediger et al. (2006), 
also Ediger and Akar (2007) for forecasting production 
of fossil fuel sources in Turkey; Briet et al. (2008) for 
short term malaria prediction in Sri Lanka; Sumer et al. 
(2009) for forecasting electricity demand; Chen et al. 
(2009) for forecasting inbound air travel arrivals to 
Taiwan; Abraham et al. (2009) for short-term 
forecasting of emergency inpatient flow; Schulze and 
Prinz (2009) for forecasting container transshipment in 
Germany; Momani (2009) for forecasting rainfall in 
Jordan; Ibrahim et al. (2009) for air pollutants 
prediction in several area of Malaysia. More recently, 
Pozza et al. (2010) applied SARIMA to analysis of 
PM2.5 and PM10-2.5 mass concentration in the city of 
Carlos et al. (2010) used for forecasting of boron in 
Western Turkey and Wagner (2010) for forecasting 
daily demand in cash supply chains. 
 Ong et al. (2005) stated that although many 
previous papers have concentrated on model estimation, 
model identification is actually the most crucial stage in 
building ARIMA models, because false model 
identification will cause the wrong stage of model 
estimation and increase the cost of re-identification. In 
particular of SARIMA models, most of previous papers 
usually used directly the multiplicative model without 
testing whether the multiplicative parameter was 
significant. It means that the multiplicative SARIMA 
models assume that there is a significant parameter as a 
result of multiplicative between non-seasonal and 
seasonal parameters. Moreover, most popular statistical 
software such as MINITAB and SPSS only has facility 

to fit a multiplicative model. The purpose of this 
research is to propose a new procedure for indentifying 
and then testing the most appropriate order of SARIMA 
model whether it involves subset, multiplicative or 
additive order. In particular, the study will examine 
whether a multiplicative parameter existed in the 
SARIMA model. Additionally, the present study 
updates the Box-Jenkins procedure particularly for 
seasonal model.  
 
Data sources: There are two monthly datasets that used 
as case studies, i.e., the international airline passenger 
data and series about the number of tourist arrivals to 
Bali, Indonesia, from 1989-1997. The first series was 
well known as Airline Data, listed in Box et al. (2008) 
and many researchers already analyzed these data, see 
for example Faraway and Chatfield (1998), also 
Suhartono and Subanar (2006).  These data also have 
become one of two data to be competed in Neural 
Network Forecasting Competition in 2005 (see 
www.neural-forecasting.com). In all these researches, 
the multiplicative SARIMA model was used as the best 
model without testing first whether the multiplicative 
parameter was significant. 
  The second monthly data about the number of 
tourist arrivals to Bali was obtained from the Indonesia 
Central Bureau of Statistics (see www.bps.go.id). Bali 
is the main destination of the international tourists who 
visit Indonesia and these data also have seasonal 
pattern. Ismail et al. (2009) analyzed these tourism data 
using intervention analysis. For both of datasets, the last 
12 observations are reserved as the test for forecasting 
evaluation and comparison (out-sample dataset or 
testing data).  
  

MATERIALS AND METHODS 
 
 Three forms of SARIMA were selected to validate 
whether a multiplicative parameter was significant. The 
theoretical explanation about ACF and PACF for these 
three models was focused on non-seasonal and seasonal 
moving average orders, i.e., ARIMA(0,0,[1,12,13]), 
ARIMA(0,0,1)(0,0,1)12 and ARIMA(0,0,[1,12]), for 
subset, multiplicative and additive model, respectively.  
 
Subset SARIMA: The generalized form of ARIMA 
(0,0,[1,12,13]) model, then known as subset SARIMA, 
can be written as: 
 

t t 1 t 1 12 t 12 13 t 13Z a a a a− − −− μ = − θ − θ − θ  (2) 
 
where, θ1, θ12 and θ13 denotes the parameters of MA 
orders. By using mathematical statistics, it could be 
shown that the ACF of this model is as follows: 
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Multiplicative SARIMA: The generalized form of 
ARIMA(0,0,1)(0,0,1)12 model, known as multiplicative 
SARIMA, can be written as: 
 

t t 1 t 1 12 t 12 1 12 t 13Z a a a a− − −− μ = − θ − θ + θ θ  (4) 
 
where, θ1 and θ12 denotes the parameters of non-
seasonal and seasonal MA order, respectively. This 
model is the same with subset SARIMA model in Eq. 2 
when θ13 = -θ1θ12. Thus, it could be concluded that 
multiplicative model is part of subset model. Hence, it 
could be shown that the ACF of this model is as 
follows: 
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 Equation 5 shows that the ACF values at lag 11 
and 13 are equal.  
 
Additive SARIMA: The generalized form of ARIMA 
(0,0,[1,12]) model, then known as additive SARIMA, 
can be written as: 
 

t t 1 t 1 12 t 12Z a a a− −− μ = − θ − θ  (6) 

where, θ1 and θ12 denotes the parameters of non-
seasonal and seasonal MA order, respectively. This 
model is the same with subset SARIMA model in Eq. 2 
when θ13 = 0. Thus, it could be concluded that additive 
model is also part of subset model. Moreover, this 
additive model in Eq. 6 could also be seen as subset 
ARIMA model with lower order than model in Eq. 2. It 
could be shown that the ACF of this model is as 
follows: 
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 Equation 7 shows that the main difference between 
additive and other models (subset or multiplicative) is 
the ACF value at lag 13 are equal zero.  
 
R Program to simulate the theoretical ACF and 
PACF: To illustrate the difference between the 
theoretical ACF and PACF of subset, multiplicative and 
additive models, we use facility in R program. The 
following code is the program in R for generating the 
theoretical ACF and PACF of these three kinds of 
models.  
 
# model1 for subset SARIMA  
# model2 for multiplicative SARIMA: use theta2 
# model3 for additive SARIMA: use theta3  
theta1 = c(-0.6,rep(0,10),-0.9,0.3) 
theta2 = c(-0.6,rep(0,10),-0.9,0.54) 
theta3 = c(-0.6,rep(0,10),-0.9) 
 
acf.model1 = ARMAacf(ar=0, ma=theta1, 50) 
pacf.model1 = ARMAacf(ar=0, ma=theta1, 50, pacf=T) 
acf.model1 = acf.model1[2:51] 
 
win.graph() 
par(mfrow=c(1,2)) 
plot(acf.model1, type="h", xlab="lag", ylim=c(-1,1)) 
abline(h=0) 
plot(pacf.model1, type="h", xlab="lag", ylim=c(-1,1)) 
abline(h=0) 
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Fig. 1: Theoretical ACF and PACF of subset SARIMA 
 

 
 
Fig. 2: Theoretical ACF and PACF of multiplicative 

SARIMA 
 

 
 
Fig. 3: Theoretical ACF and PACF of additive 

SARIMA 
 
 This program uses the same parameter of non-
seasonal and seasonal orders, i.e., θ1 = 0.6 and θ12 = 0.9. 
The difference only occurs for the last parameter, i.e. 
θ13 = -0.3 for subset SARIMA, θ13 = θ1. θ12 = -0.54 for 
multiplicative SARIMA and θ13 = 0 for additive 
SARIMA.  
 The results of the theoretical ACF and PACF for 
these three models are shown at Fig. 1-3. 
 
The proposed procedures of modeling: As we know, 
there are three main stages in building an ARIMA 
model based on Box-Jenkins procedure, i.e., (1) model 
identification, (2) model estimation and (3) model 
checking. These stages of building an ARIMA model 
are described in Fig. 4. 

 
 
Fig. 4: The stages of building ARIMA models 
 
 Most of previous researches usually used directly a 
multiplicative SARIMA model when the ACF and 
PACF indicated that the data contained both non-
seasonal and seasonal orders. In this research, we 
proposed a more precise model identification step 
particularly at the lags as implication of multiplicative 
orders. As an example, for monthly data that indicated 
consisting MA orders both in non-seasonal (ACF at lag 
1) and seasonal (ACF at lag 12), we must check first 
whether ACF at lag 13 is equal to zero (indicate 
additive model) or not (indicate multiplicative if tend to 
equal with ACF at lag 11, or subset model if difference 
from ACF at lag 11), as illustrated previously at Fig. 1-3.  
 Then, we validate the significance of multiplicative 
parameter at the model estimation step. In this step, we 
suggest to use SAS program that contains facility to fit 
subset, multiplicative and additive SARIMA models. In 
particular, the new stages that we propose in model 
estimation step are as follows: 
 
• Fit the subset SARIMA model first and test 

whether the multiplicative parameter is significant 
• If the multiplicative parameter is significant, then 

continue to test whether this coefficient is the same 
with the multiplication between non-seasonal and 
seasonal coefficients. If YES, it means that the 
appropriate model is multiplicative SARIMA. If 
NOT, it means that the subset SARIMA is the 
appropriate model for the time series data 

• If the multiplicative parameter is insignificant, it 
means that the appropriate model is additive 
SARIMA 

 
RESULTS 

 
Model identification: The time series plots of the both 
two datasets are shown in Fig. 5. The plots show that 
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both two data have seasonal and trend patterns with 
increasingly variation of variance. It means that both 
two data not yet satisfy the stationary condition, both in 
mean and variance. MINITAB program is used in this 
identification step. 
 By using logarithm transformation and difference 
both non-seasonal (d = 1) and seasonal (D = 1, S = 12), 
then both two data become stationary series and the 
ACF and PACF are shown in Fig. 6-7. Based on the 
graphs at Fig. 6, it could be seen that even though the 
estimated values are not significant, the ACF at lag 11 
and 13 tend to have difference values, i.e. ACF at lag 
13 looks larger than at lag 11. It indicates that no strong 
evidence to identify multiplicative model. Furthermore, 
the graphs at Fig. 7 show that the estimated value of 
ACF at lag 11 is significant, whereas at lag 13 is not 
significant. Again, it indicates that no strong evidence 
to identify multiplicative model as illustrated on the 
theoretical ACF and PACF Fig. 2.  
 In general, ACF and PACF for these two series 
suggest that both of non-seasonal and seasonal MA 
orders exist in the tentative SARIMA model. Then, the 
important question is whether the models are subset, 
multiplicative or additive ones.  
 
Model estimation: Based on the proposed stages at 
model estimation step, the subset ARIMA is fitted first 
to know whether the parameter of multiplicative effect 
is significant. SAS is used in this step and the following 
code is an example of the program for estimating 
subset, multiplicative and additive SARIMA models. 
 
 proc arima data=airline;  
 identify var=zt(1,12) nlag=24;  
 run;  
 /*** for subset SARIMA model ***/ 
 estimate q=(1,12,13) noconstant method=ml;  
 run;  
 /*** for multiplicative SARIMA model ***/ 
 estimate q=(1)(12) noconstant method=ml;  
 run;  
 /*** for additive SARIMA model ***/ 
 estimate q=(1,12) noconstant method=ml;  
 run;  
 
 The results of subset ARIMA are shown at Table 1 
and 2 for the airline and tourist arrivals data, respectively. 
 Based on the output SAS at Table 1 for case of the 
airline data, it could be concluded that the estimated 
parameter θ13 is significant or difference with zero. The 
estimated value of parameter θ13 shows that it’s 
parameter not satisfy θ13 = -θ1.θ12 or θ13<-θ1.θ12. If we 
use confidence interval 95% for θ13, the value of θ13 
will be between: 
 

0.27973    (1.96 0.09417)− ± ×  

Table 1:  Summary output for subset SARIMA models at for airline 
data 
 Maximum likelihood estimation 
 ----------------------------------------------------------------- 
                  Standard                Approx 
Parameter Estimate Error t Value Pr > |t| Lag 
MA1,1 0.34209 0.08625 3.97 <.0001 1 
MA1,2 0.59888 0.08702 6.88 <.0001 12 
MA1,3 -0.27973 0.09417 -2.97 0.0030 13 
 Variance estimate 0.001327 
 Std error estimate 0.036432 
               AIC  -442.019 
 SBC                     -433.681 
 Number of residuals 119 
 

 
 

 
 
Fig. 5: Monthly data about the number of international 

airline passenger (airline data) and the number 
of tourist to Bali 

 
or inside the interval of (-0.46430,-0.08516) and we 
could conclude that. Hence, we could continue to fit the 
multiplicative model and the results are presented at 
Table 3. 
 Otherwise, the estimation output at Table 2 for 
tourist arrivals case shows that the estimated parameter 
θ13 is insignificant or statistically not difference with 
zero. It means that there is no evidence to use 
multiplicative SARIMA model for this case. So, the 
model estimation continues to fit the additive model 
and the results are shown at Table 4. 
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Table 2:  Summary output for subset SARIMA models for the tourist 
arrivals data 

 Maximum likelihood estimation 
 -------------------------------------------------------------------- 
  Standard  Approx 
Parameter Estimate Error t Value Pr > |t| Lag 
MA1,1 0.50689 0.13644 3.72 0.0002 1 
MA1,2 0.53150 0.14967 3.55 0.0004 12 
MA1,3 -0.03838 0.12347 -0.31 0.7559 13 
 Variance estimate  0.007997 
 Std error estimate 0.089425 
 AIC  -155.542 
 SBC  -148.285 
 Number of residuals 83 
 
Table 3: Summary output for multiplicative SARIMA models for the 

airline data 
 Maximum likelihood estimation 
 ----------------------------------------------------------------- 
  Standard  Approx 
Parameter Estimate Error t Value Pr > |t|  Lag 
MA1,1 0.34854 0.08570 4.07 <.0001 1 
MA2,1 0.56221 0.08582 6.55 <.0001 12 
 Variance estimate 0.001335 
 Std error estimate 0.036539 
 AIC  -443.253 
 SBC  -437.695 
 Number of residuals 119 
 
Table 4: Summary output for additive SARIMA models for the 

tourist arrivals data 
 Maximum likelihood estimation 
 ----------------------------------------------------------------- 
  Standard  Approx 
Parameter Estimate Error t Value Pr > |t| Lag 
MA1,1 0.42838 0.13194 3.25 0.0012 1 
MA1,2 0.57162 0.14258 4.01 <.000 12 
 Variance estimate 0.008094 
 Std error estimate 0.089968 
 AIC  -154.616 
 SBC  -149.779 
 Number of residuals 83 
 
Table 5: The results of performance comparison between models at 

in-sample and out-sample datasets 
  In-sample 
  --------------------------- MSE at   
Data SARIMA model MSE AIC out-sample 
Airline data Multiplicative 0.001335 -443.253 0.00462 

 Subset 0.001327 -442.019 0.004487 
Tourist Multiplicative 0.006033 -169.157 0.011225 
arrivals data Additive 0.008094 -154.616 0.008422 
 
Model checking and forecasting: By using Ljung-Box 
test, all models at Table 1-4 satisfy assumption that the 
residuals model are white noise. Then, the process 
continues to calculate the forecasting values based on 
the subset or additive and multiplicative models for 
performance comparison and evaluation. Moreover, the 
evaluation focuses on the comparison between subset 
and multiplicative model for the airline data and 
between additive and multiplicative model for the 
tourist arrivals data. The summary of the comparison 
results is shown at Table 5. 

 
 

 
 
Fig. 6: ACF and PACF for stationary airline data 
 

 
 
 

 
 
Fig. 7: ACF and PACF for stationary tourist airline data 



J. Math. & Stat., 7 (1): 20-27, 2011 
 

26 

DISCUSSION 
  
 The model identification step for SARIMA models 
showed that there were different of ACF and PACF 
between subset, multiplicative and additive models, 
particularly at lag order as a multiplication between 
non-seasonal and seasonal orders. Theoretical results 
illustrated that evaluation ACF and PACF in this lag of 
multiplication order is the most important stage of 
model identification step for seasonal model. 
 Moreover, the results of performance evaluation 
show that multiplicative model yields poorer forecast 
accuracy than subset and additive models for the airline 
data and tourist arrivals data respectively. In particular, 
the results of the first case study about airline data show 
that subset ARIMA model yields more accurate 
forecasted values (less MSE) than multiplicative model 
both at in- and out-sample dataset. It is not surprisingly 
if the AIC shows that multiplicative is better than 
subset models. It is caused the calculation of number of 
parameters yields 2 for multiplicative and 3 for subset, 
even though in general the models are the same (Eq. 2 
and 4). Thus, the selection of the best SARIMA model 
should be used cross validation principle that 
highlighting on the results at out-sample dataset than 
used criteria as AIC which put emphasis on in-sample 
performance. 
 Otherwise, the results of performance evaluation at 
the second case study about tourist arrivals data show 
that multiplicative model yields better forecast at in-
sample dataset, or less MSE and AIC, than additive 
SARIMA model even though the estimated parameter 
of multiplicative effect was not significant. However, 
the evaluation at out-sample dataset shows that additive 
model produces more accurate forecasted values than 
multiplicative SARIMA model. Again, this empirical 
evidence shows that more careful identification is 
needed to determine the order of SARIMA model and 
not directly choose multiplicative model.  
 

CONCLUSION 
 
 This study has discussed about three kinds of 
seasonal ARIMA models, namely subset, multiplicative 
and additive SARIMA models, including the theoretical 
of ACF and PACF, how to simulate these values by 
using R program and how to test by using SAS program 
at model estimation of Box-Jenkins procedure. Most of 
the previous researches just used directly a 
multiplicative SARIMA model without identifying 
intensely ACF or PACF at lag as multiplication order 
and testing whether the multiplicative parameter was 
significant. 

 In general, these two empirical results show that 
the determination of orders in SARIMA model must 
consider about subset, multiplicative or additive orders. 
Moreover, the understanding pattern of theoretical ACF 
and PACF for these three kinds of model orders are 
very important to determine an appropriate tentative 
model for certain seasonal time series data. In addition, 
the results also illustrated that the multiplicative 
SARIMA model yielded less accurate forecasted values 
than subset or additive models for airline data and 
tourist arrivals data respectively.  
 Hence, the proposed stages in model estimation 
step to test the significance of the multiplicative 
parameter should be used concurrently with model 
identification of ACF and PACF for seasonal time 
series data. It means that we must revise the Box-
Jenkins procedure for seasonal ARIMA model, i.e. to 
not directly use multiplicative SARIMA model 
particularly at model identification and estimation 
steps. It also suggests the forecasters to use the 
statistical program that has facility for testing the 
multiplicative parameter model, such as SAS program. 
Moreover, further research involving multiple seasonal 
ARIMA models, such as short term load data 
forecasting in certain countries that recently become 
one of the central topics in forecasting, may provide 
further insights regarding the subset, multiplicative or 
additive orders. 
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