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Abstract: Problem statement: In many applications two or more dependent variables are observed at 
several values of the independent variables, such as at time points. The statistical problems are to estimate 
functions that model their dependences on the independent variables and to investigate relationships 
between these functions. Nonparametric regression model, especially smoothing splines provide powerful 
tools to model the functions which draw association of these variables. Approach: Penalized weighted 
least-squares was used to jointly estimate nonparametric functions from contemporaneously correlated 
data. We apply Generalized Maximum Likelihood (GML), Generalized Cross Validation (GCV) and 
leaving-out-one-pair Cross Validation (CV) for estimating the smoothing parameters, the weighting 
parameters and the correlation parameter Results: In this study we formulated the multi-response 
nonparametric regression model with unequal correlation of errors and give a theoretical method for 
both obtaining distribution of the response and estimating the nonparametric function in the model. We 
also estimate the smoothing parameters, the weighting parameters and the correlation parameter 
simultaneously by applying three methods GML, GCV and CV. Conclusion: Distribution of responses 
is normal. With multiple correlated responses it is better to estimate these functions jointly using the 
penalized weighted least-squares.   
 
Key words: Multi-response nonparametric regression model, penalized weighted least-squares, 

generalized maximum likelihood, generalized cross validation, leaving-out-one-pair 
cross validation 

 
INTRODUCTION 

 
 The functions which draw association of two or 
more dependent variables are observed at several values 
of the independent variables, such as at multiple time 
points, can be modeled by using smoothing spline. 
There are many writers who have studied spline 
estimators for estimating regression curve of 
nonparametric regression models. Kimeldorf and 
Wahba (1971); Craven and Wahba (1979) and Wahba 
(1985) proposed original spline estimator to estimates 
regression curve of smooth data. Cox (1983) and Cox 
and O’Sullivan (1996) used M-type spline to overcome 
outliers in nonparametric regression. Wahba (1983) 
proposed polynomial spline to obtain confidence 
interval based on posterior covariance function. Wahba 
(2000) compared between GCV and GML for choosing 
the smoothing parameter in the generalized spline 
smoothing problem. Oehlert (1992) and Koenker et al. 

(1994) introduced relaxed spline and quantile spline, 
respectively. Budiantara et al. (1997) studied weighted 
spline estimator in   nonparametric regression model 
with different variance. Wahba (1992) introduced some 
techniques for spline statistical model building by using 
reproducing kernel Hilbert spaces. Cardot et al. (2007) 
studied asymptotic property of smoothing splines 
estimators in functional linear regression with errors-in-
variables. Liu et al. (2007) proposed smoothing spline 
estimation of variance functions. Aydin (2007) showed 
goodness of spline estimator rather than kernel 
estimator in estimating nonparametric regression model 
for gross national product data. All these writers studied 
spline estimators in case of single response 
nonparametric models only.     
 In the real cases, we are frequently faced to the 
problem in which two or more dependent variables are 
observed at several values of the independent variables, 
such as at multiple time points. Multi-response 
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nonparametric regression model provide powerful tools 
to model the functions which draw association of these 
variables. 
 Many authors have considered nonparametric 
models for multi-response data. Wegman (1981); Miller 
and Wegman (1987) and Flessler (1991) proposed 
algorithms for spline smoothing. Wahba (1990) 
developed the theory of general smoothing splines 
using reproducing kernel Hilbert spaces. Gooijer et al. 
(1991) and Francisco-Fernandez and Opsomer (2005) 
proposed methods of estimating nonparametric 
regression models with serially and spatially correlated 
errors, respectively. Wang et al. (2000) proposed spline 
smoothing for estimating nonparametric functions from 
bivariate data. Lestari (2008a) developed spline 
estimator in biresponse nonparametric regression model 
with unequal variances of errors, Lestari (2008b) 
studied penalized weighted least-squares estimator for 
bivariate nonparametric regression model with 
correlated errors, Lestari et al. (2010a; 2010b) proposed 
spline approach for estimating regression function of 
multi-response nonparametric regression model in 
special cases, i.e., variances and correlations of errors 
are the same for every response.   
 All, except Wang et al. (2000); Lestari (2008a; 
2008b) and Lestari et al. (2010a; 2010b), assumed that 
the covariance matrix is known, which is usually not 
the case in practice. When the covariance matrix is 
unknown, it has to be estimated from the data and this 
can affect the estimates of the smoothing parameters 
(Wang, 1998). 
 In this study, we study mathematical statistics 
methods for obtaining distribution of responses and 
estimating the nonparametric functions and the 
parameters in the multi-response nonparametric 
regression model. Here, we assume that the covariance 
parameters are unknown and errors of the same 
responses have the same variances. In addition, errors 
have different correlation. Based on the multi-response 
nonparametric regression model given, we estimate 
multi-response nonparametric regression function by 
using penalized weighted least-squares. Next, we 
describe three methods: Generalized Maximum 
Likelihood (GML), Generalized Cross Validation 
(GCV) and leaving-out-one-pair Cross Validation (CV) 
to estimate the smoothing parameters, the weighting 
parameters and the correlation parameter 
simultaneously.   

 
MATERIALS AND METHODS 

 
 Assume that data {yki, tki} follows multi-response 
nonparametric regression model: 

ki k ki kiy f (t )= + ε  (1) 

 
Where: 
k = 1, 2,…,p 
i = 1, 2,…,nk 

 

 It means that the ith response of the kth variable yki 
is generated by the kth function fk evaluated at the 
design point tki plus a random error εki. Assume 

( )i.i.d.
2

ki k~ N 0,ε σ  for fixed k = 1, 2,…,p and the correlation 

of errors are different for every i = 1, 2,…,nk, i.e.,  
Corr(εki, εki) = ρi for k ≠ l and zero otherwise. This 
correlation assumption means that correlation of errors 
are the same for every response. 
 There are four cases for this correlation 
assumption, i.e., (i) case: n1<n2<…<np, (ii) case: 
n1>n2>…>np, (iii) case: n1 = n2 =…= np and (iv) case: 
not all ni<ni+1 (for i = 1, 2,…,p-1), not all ni>ni+1 (for i = 
1, 2,…,p-1) and not all ni = ni+1 (for i = 1, 2,…,p-1). In 
this study, we describe for the first case only, i.e., 
n1<n2<…<np. The three other cases can be verified 
similarly. In addition, for simplicity of notation, we 
assume that the domain of the functions are [0,1] and fk 
is element of Sobolev space W2, i.e., fk∈W2 = {f: f, f' 

absolutely continuous, 
1 2

0
(f (t)) dt }′′ < ∞∫ . Our methods 

can be easily extended to the general smoothing spline 
models where the p domains are arbitrary (thus could 
be different) and the observations are linear functional 
instead of evaluations (Wahba, 1985; 1990). 
 
Distribution of the responses: Based on the model (1), 
suppose that we denote 

k

T
k1 knkt (t ,..., t )= ;  

k

T
k1 knk

y (y ,..., y )= ; 
k

T
k1 knk ( ,..., )ε = ε ε ; 

k

T
k k k1 k k2 k knf (f (t ), f (t ),..., f (t ))= ; T T T

1 pf (f ,...,f )=  and 
T T T

1 p
y (y ,..., y )= , where the superscript T refers to 

transpose. Moreover, we may write model (1) in the 
vector equation as follows: 
 
y f= + ε  (2) 

 
 Next, for k = 1, 2,…,p. 

 Let k
kr m

σ= , 
p

j
j 1
j k

m
=
≠

= σ∏ ; 
p

kk 1=
θ = Π σ ; 

( )ij
k

1
i, j 1,2,...,p;k i jγ = = ≠ ≠

σ
 and Ωqs be a nq×ns matrix 

with (i, j)th element equal to ρi(i = 1, 2,…,nq) if the ith 
element of 

q
y  and the jth element of 

s
y  is a pair and 



J. Math. & Stat., 6 (3): 327-332, 2010 
 

329 

zero otherwise. Therefore, by taking ( )E y  and ( )Var y  

in (2), we obtain the distribution of responses, i.e., 
Multivariate Normal with mean f and variance 1W−θ . It 
can be written as y ~ N(f , θ 1W )− , where: 
 

1

2

p

1 n 12 12 1p 1p

T
12 12 2 n 2p 2p

1

T T
1p 1p 2p 2p p n

r I ...

r I ...

. . ... .
W

. . ... .

. . ... .

... r I

−

γ Ω γ Ω 
 γ Ω γ Ω 
 
 =
 
 
 
 γ Ω γ Ω 

       (3) 

 
RESULTS AND DISCUSSION 

 
Estimation nonparametric function of multi-
response nonparametric regression model: The 
nonparametric functions fk are estimated by carrying 
out the following penalized weighted least-squares:  
 

  

1 2 p 2

T

f ,f ,...,f W

1 12 2
1 1 2 20 0

1 2
p p0

Min {(y f ) W(y f )

(f (t)) dt (f (t)) dt ...

(f (t)) dt}

∈
− − +

′′ ′′λ + λ + +

′′λ

∫ ∫

∫

   (4) 

 
 The parameters λk (k = 1, 2,…,p) control the trade-
off between goodness-of-fit and the smoothness of the 
estimates and are referred to as smoothing parameters. 
 We extend method as in Wang (1998) (i.e., in case 
of single-response nonparametric regression model) to 
multi-response nonparametric regression model with 
unequal correlation of errors. Let φv(t) = tν-1/(ν-1)! for ν 
= 1, 2; R1(s,t) = k2(s)k2(t)-k4(s-t) where kν(.) = Bν(.)/ν 
and Bν(.) is the νth Bernoulli polynomial. Let 

{ } kn ,2

k ki i 1, 1
G (t )ν = ν=

= ϕ ; G = diag(G1,…,Gp); 

{ } k kn ,n1
k ki kj i 1, j 1

R (t , t )
= =

Σ =  and ( )1 2 pdiag , ,...,Σ = Σ Σ Σ . By 

extending method as in both Wang (1998) and Wahba 
(1985) to the case of multi-response with unequal 
correlation of errors, we can show that for fixed λk, γij  
and ρi, the solution to (4) is: 
 

kn2
1

k k ki ki
1 i 1

f̂ (t) d (t) c R (t, t )ν ν
ν= =

= ϕ +∑ ∑         (5) 

 
 where, k = 1, 2,…p  and 

1 2 p

T
11 1n 21 2n p1 pnc (c ,...,c ,c ,...,c ,...,c ,...,c )= ; 11 1pd (d ,...,d ,=  

T
21 2p p1 ppd ,...,d ,...,d ,...,d ) are solutions to: 

T T

1 1 p p

T

G WG G W d

WG W diag( ,..., ) c

G Wy

Wy

 Σ  
   Σ Σ Σ + λ Σ λ Σ   

 
 =
 Σ 

 (6) 

 
 Note that 

11 11 1 1n 2 21
ˆ ˆ ˆ ˆf (f (t ),..., f (t )f (t )= ,…, 

2 p

T
2 2n p p1 p pn

ˆ ˆ ˆf (t ),..., f (t ),..., f (t ))  is always unique when G is 

of full column rank, which are assumed to be true in 
this study. We can be verified that a solution to:  
 

( )( )1 p

1
1 n p n

T

W diag I ,..., I c Gd y

G c 0

− Σ + λ λ + = 

= 

  (7)  

 
is also a solution to (6). Thus we need to solve 
simultaneous Eq. 7 for c  and d . In fact, 

( )1 p

1
1 n p nW diag I ,..., I− λ λ  is asymmetric if λ1 ≠ λ2 ≠ λp and 

ρi ≠ 0(i = 1, 2,…,nk). To calculate the coefficients c  
and d , we use the following transformations: 

( )1 2 pn 1 n 2 n pdiag I , I ,..., IΣ = Σ λ λ λ%  and c diag=%  

( )1 p1 n p nI ,..., I cλ λ . Then (7) is equivalent to: 

 

( )1

T

W c Gd y

G c 0

− Σ + + = 


= 

% %

%

 (8) 

 

 Let ( ) k
k k1 k 2

R
G Q Q

0

 
=  

 
, k = 1, 2,…,p be the QR 

decompositions. Let 1 11 21 31 p1Q diag(Q ,Q ,Q ,...,Q )= ; 

2 12 22 32 p2Q diag(Q ,Q ,Q ,...,Q )= ; 1 2 pR diag(R ,R ,...,R )=  and 
1B W−= Σ +% . It can be shown that the solutions to (8) 

are: 
  

T 1 T
2 2 2 2

T
1

c Q (Q BQ ) Q y

Rd Q (y Bc)

−=

= −

%

%

 (9) 

 
 Note that ̂f Ay=  where: 

  
1 T 1 T

2 2 2 2A I W Q (Q BQ ) Q− −= −  (10) 

 
is the “hat matrix”. Here, A is not symmetric, which is 
different from the usual independent case. 
 
Estimations of parameters: We have assumed that the 
parameters λk, γij and ρi, are fixed. In practice it is very 
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important to estimate these parameters from the data. 
Since observations are correlated, popular methods 
such as the usual Generalized Maximum Likelihood 
(GML) method and the Generalized Cross Validation 
(GCV) method may underestimate the smoothing 
parameters (Wang, 1998). In this study we propose the 
following three methods to estimate the smoothing 
parameters λk, the weighting parameters rk and γij and 
the correlation parameter ρi simultaneously, i.e., an 
extension of the GML method based on a Bayesian 
model; an extension of the GCV method and leaving-
out-one-pair cross validation. 
 Wang (1998) proposed the GML and GCV 
methods for correlated observations with one 
smoothing parameter. Wang et al. (2000) proposed the 
GML and GCV methods for correlated observations 
with two smoothing parameters. In multi-response 
(with p responses) nonparametric regression model, 
there are p smoothing parameters which need to be 
estimated simultaneously together with the covariance 
parameters. Following an extension of derivation, we 
extend the GML and GCV in Wang (1998); Wang et al. 
(2000) and Lestari et al. (2010a; 2010b), to the case of 
multi-response with unequal correlation of errors as 
follows. 
 The GML estimates of λk, γij, rk and ρi are 
minimizers of the following GML function: 

 

  

T

k ij k i 1

n 4

T T 1
2 2

1
T 1 n 4
2 2

y W(I A)y
M( , ,r , )

det (W(I A))

z (Q BQ ) z

det(Q BQ )

+ −

−

− −

−
λ γ ρ =

 − 

=
  

  (11) 

 
Where: 
n = n1+n2+…+np 

det+ = The product of the nonzero eigen values 
z  = T

2Q y  

 
 The minimizers of M (λk, γij, rk, ρi) are called GML 
estimates. 
 The GCV estimates of λk, γij, rk and ρi are 
minimizers of the following GCV function: 

 

[ ]

2

k ij k i 2

T T 2
2 2

2T 1
2 2

W(I A)y
V( , , r , )

tr(W(I A))

z (Q BQ ) z

tr(Q BQ )

−

−

−
λ γ ρ =

−

=
  

 (12) 

 In the following we propose a cross validation 
method based on leaving-out-one-pair procedure. 
Suppose there are a total of N (N≥max{n1, n2,…,np}) 
distinct time points and thus N pairs of observations. 
Any one observation in a pair may be missing. These 
pairs are numbered from 1 to N. We use the following 
notation: superscripts (i) to denote the collection of 
elements corresponding to the ith pair; superscripts [i] to 
denote the collection of elements after deleting the ith 
pair; superscripts {i} to denote solution of fk without 
the ith pair. When one observation in a pair is missing, 
superscripts indicate a single observation instead of a 
pair. The solutions to: 

 

1 p 2

[i ] [i] [i] [i ]T [i ]

f ,...,f W

1 12 2
1 1 2 20 0

1 2
p p0

Min {(y f ) W (y f )

(f (t)) dt (f (t)) dt ...

(f (t)) dt}

∈
− − +

′′ ′′λ + λ + +

′′λ

∫ ∫

∫

 (13) 

 
are {i}

1f̂ , {i}
2f̂ , …, {i}

pf̂ . Assume that there are p elements 

in the ith pair (it is simple if there is only one). Denotes 
i1, i2, …, ip as the row numbers of this pair in 

1
y , 

2
y , 

…,
p

y , respectively. Define: 

 

k

kj k*
kj {i}

k ki k

y , j i
y

f̂ (t ), j i ,k 1,2,...,p

≠=  = =
 

 
 Suppose that we denote 

k

* * * T
k1 knk

y (y ,..., y )= , 
* *T *T T

1 p
y (y ,..., y )=  and ( ){i} {i}

1 11
ˆ ˆf t (f (t ),...,=  

1

{i} {i}
1 1n 2 21
ˆ ˆf (t ),f (t ),...,

2 p

{i} {i} {i}
2 2n p p1 p pn

ˆ ˆ ˆf (t ),..., f (t ),..., f (t ) ). Then 

we have the following leaving-out-one-pair lemma. 

 
Lemma:  For fixed λk, γij, rk, ρi and i, we have 

{ } ( )if̂ t Ay *= . 

 
Proof: Let ( ) 1 11f t {f (t ),...,=  

11 1n 2 21f (t ),f (t ),...,
2 p2 2n p p1 p pnf (t ),..., f (t ),..., f (t )} and ( ){i}f̂ t  

1

{i} {i} {i}
1 11 1 1n 2 21
ˆ ˆ ˆ(f (t ),..., f (t ),f (t ),...,=  

2

{i} {i}
2 2n p

ˆ ˆf (t ),...,f  

p

{i}
p1 p pn

ˆ(t ),..., f (t )) . Similarly define [ ]( )if t   and { } [ ]( )iif̂ t  as 

( )f t  and { } ( )if̂ t  respectively without the elements 

corresponding to the ith pair. For any function f1, f2,…fP 
in W2, we have:  
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( )( ) ( )( ) ( )( )
( )( ) ( )( )

[ ] [ ]( )( ) [ ] [ ] [ ]( )( )
( )( ) ( )( )

[ ] { } [ ]( )( ) [ ] [ ] { } [ ]( )( )
{ } ( )( ) { } ( )( )

{ } [ ]( )( ) [ ] { } [ ]( )( )
{ } ( )( )

T 1 2

1 10

1 1 22

2 2 p p0 0

T
i i i ii

1 1 22

1 1 p p0 0

T
i i i ii i i

2 2
1 1i i

1 1 p p0 0

T
i ii i i

i
1 1

y * f t W y * f t f t dt

f t dt ... f t dt

y f t W y f t

f t dt ... f t dt

ˆ ˆy f t W y f t

ˆ ˆf t dt ... f t dt

ˆ ˆy * f t W y * f t

f̂ t

′′− − + λ +

′′ ′′λ + +λ

≥ − − +

′′ ′′λ + + λ

≥ − − +

″ ″   
λ + + λ   

   

= − − +

λ

∫

∫ ∫

∫ ∫

∫ ∫

{ } ( )( )
2 2

1 1 i
p p0 0

ˆdt ... f t dt
″ ″   

+ +λ   
   
∫ ∫

 (14) 

 
where, the first inequality holds because after switching 
rows and columns, we have: 
  

( )( ) ( )( )
[ ] [ ]( )
( ) ( )( )

[ ]

( )

[ ] [ ]( )
( ) ( )( )

[ ] [ ]( )( ) [ ] [ ] [ ]( )( )

T

T
i ii i

i

ii ii i

T
i i i ii

y * f t W y * f t

y * f t y * f tW 0

0 Wy * f t y * f t

y f t W y f t

− − =

   − −            − −    

≥ − −

 

 

 The second inequality holds because { } { }i i
1 p
ˆ ˆf ,..., f  are 

solutions to (13). The last equality holds because of the 
definition of y * . The inequality at (14) indicates that 

{ } { }i i
1 p
ˆ ˆf ,..., f  are solutions to (4) with y  replaced by y * . 

Therefore,  { } ( )if̂ t Ay *= . 

 As a consequence of this lemma, we do not need to 
solve separate minimization problems (13) for each 
deleting-one-pair set. All we need to do is to solve the 
following equations:  
 

     

11 12 1p 1 1

21 22 2p 2 2

p1 p2 pp p p

m m ... m s u

m m ... m s u

. . ... . . .

. . ... . . .

. . ... . . .

m m ... m s u

     
     
     
     

=     
     
     
     
          

        (15) 

 

for { } ( )
k k

i
k ki kif̂ t y− , where ( )11 1 1m 1 a i ,i= − ; 

( )12 1 1 2 1p 1 1 pm a i ,n i ;...;m a(i ,n i )= − + = − + ; 21m =  

( )1 2 1a n i ,i− + ; ( )22 1 2 1 2m 1 a n i ,n i= − + + ;… ; 

( )2p 2 2 pm a i ,n i= − + ;…; ( )p1 1 p 1m a n i ,i= − +  

( )p2 2 p 2m a n i ,i= − + ;… ; ( )pp p 1 p p 1 pm 1 a n i ,n i− −= − + +  

{ } ( )
1 1

i
1 1 1i 1i

ˆs f t y= − ; { } ( )
2 2

i
2 2 2i 1i

ˆs f t y= − ;… ; 

{ } ( )p p

i
p p pi pi

ˆs f t y= − ; { } ( )
1 1

i
1 1 1i 1iu f t y= − ; { } ( )

2 2

i
2 2 2i 1iu f t y= − ; 

… ; { } ( )p p

i
p p pi piu f t y= −  and a(i, j) are elements of the 

matrix A. If there is only one observation in the ith pair, 
for example 

11iy , we then have the following equation: 

 

( )( ) { } ( )( ) ( )
1 1 1 1

i
1 1 1 1i 1i 1 1i 1i

ˆ ˆ1 a i ,i f t y f t y− − = −   (16) 

 
 Note that (16) is exactly the same as the “leaving-
out-one” lemma in the independent case. 

 Let 
{ } { } ( ) { } ( )( )knk1 k

k

T
ti

k k k1 k kn
ˆ ˆ ˆf f t ,..., f t

−
=  and 

{ } { }( ) { }( )T T

1 p
ˆ ˆ ˆf f ,..., f

− − − 
=  
 

, where ikj denotes the index of 

the pair for observation ykj. Define the cross validation 
score as: 
  

      ( ) { }( ) 2

k ij k i

1 ˆC , ,r , W y f
n

−
λ γ ρ = −          (17) 

 
 Here, C estimates the Weighted Mean-Square 
Errors (WMSE) (Wang, 1998; Wang et al., 2000). The 
minimizers of C((λk, γij, rk, ρi) are called cross 
validation estimates of the parameters. 
 

CONCLUSION 
  
 The distribution of vector of responses y  is 

Multivariate Normal with mean f  and variance θW−1. 
General smoothing spline models provide flexibility for 
estimating nonparametric functions and are widely used 
in many areas. With multiple correlated responses it is 
better to estimate these functions jointly using the 
penalized weighted least-squares.  
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