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Abstract: Problem statement: In the last decade growing attention has been paid to the pattern of 
investments by the insurance industry and the question of how to evaluate such investments. In an 
economy where the capital market is huge and active, mathematical considerations come into play in the 
selection of investments to ensure yield maximisation. Approach: This study examined the use of factor 
analysis as an emerging technique for the analysis of insurance investment in Nigeria. Results: The 
proposed technique described a number of methods designed to analyze interrelationships within the 
investment variables in terms of few underlying but unobservable random quantities called factors. The 
factors were constructed in a way that reduces the overall complexity of the data by taking advantage 
of inherent interdependencies. Conclusion: The result obtained through this approach were promising 
and shows that two principal components of the factor loadings have a cumulative proportion of 
variance accounted for 94.5% of the total variations of the investments pattern.  
 
Key words: Analysis, forcasting, regression analysis, multivariate analysis, principal components,  

eigenvalues   
 

INTRODUCTION 
 
 Economic recession and global mettle-down have 
brought the question of insurance company investment 
to the forefront. Growing attention has shifted to the 
pattern of investments by the insurance industry and the 
question of how to evaluate such investments. The 
annual published accounts of the insurance industry are 
a valuable instrument for the assessment of the 
investment pattern of the insurance industry.  
 The investment of insurance funds serves as a 
shield for insurance against predictable underwriting 
losses which are more prominent than profits. The size 
of funds held by the Insurance industry represents a 
reasonable percentage of the Country’s total invisible 
funds generated by the capital market. 
 Because of the need to invest funds to provide for 
their future liabilities, insurance companies look for 
certain desirable characteristics in the asset which they 
hold. The assets duly are expected to possess good 
stable yield, stable capital growth, liquidity and 
marketability and as well as good tax status. Of course, 
no assets have all of these attributes but by an 
intelligent mix of different types, the insurer can obtain 
a portfolio that has broadly desirable characteristics. 
 In an economy where the capital market is huge 
and active, mathematical considerations come into play 

in the selection of investments to ensure yield 
maximisation. Regression analysis enjoys very wide 
use and application in marketing and financial research. 
Most researchers’ in this field are ignorant of the fact 
that the techniques of   regression analysis are critically 
dependent upon the assumption that the so called 
independent variables are truly independent. If they are 
correlated among themselves, problems of 
multicollinearity and singularity arise and may cause the 
entire analysis to fail.  Factor analysis may be used to 
reduce this problem. Factor analysis, Johnson and Wichern 
(2002); Lawley and Maxwell (1971); Kent and Bibby 
(1980) and   Krzanowski (2000) is given to a body of 
techniques concerned with the study of such 
interrelationships. A factor analytic study is carried out 
in this study, to determine linear combinations of the 
variables that assist insurance investment in Nigeria. 
The essential purpose of factor analytic approach in this 
study is to describe a number of methods designed to 
analyze interrelationships within the investment 
variables. Factor analysis in this study attempts to 
explain the interrelationships in terms of few 
underlying but unobservable random quantities called 
factors (Johnson and Wichern, 2002; Mardia et al., 
1979). The factors are constructed in a way that reduces 
the overall complexity of the data by taking advantage 
of inherent interdependencies. Under factor analytic 
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model, each response variates are represented as a 
linear function of small number of unobservable 
common-factor variates and a single latent specific 
variate. The common factors generate the co-variances 
among the observable responses, while the specific 
terms contribute only to the variances of their particular 
responses. This approach can be thought of as a robust 
method for reducing the number of explanatory 
variables in a model in terms of smaller number of 
variables.  
 

MATERIALS AND METHODS 
 
 Data on Insurance assets (both life and non-life) 
were extracted from the Central Bank of Nigeria (CBN) 
Statistical bulletin as shown in Table 1. To descry the 
hidden underlying factors which generated a 
dependence or variation in Table 1, we adopted a factor 
analytic approach. 
 Let the investment portfolio in Table 1, be 
described by an n-dimensional random variables X1, 
X2,....,Xn. The vector random variables Xi have a non 
singular multi-normal distribution. To describe the data, 
X i is  represented as an n×p data matrix, observations of 

the variables x′  = (x1,…,xn). For convenience E(X) = 
0 and the covariance matrix of these responses will be 
denoted by ( ) .′Ε ΧΧ = Σ  The covariance Σ  of the 
standardized variables is nothing more than the 
correlation matrix. Our interest is to develop the factor 
model in relation to the data matrix and this can be 
parsimoniously be written as: 

 
FΥ = Λ + Ε  (1) 

 
Where: 
Y  =  An n×p data matrix  
Λ  = The p×k matrix of factor loadings  
F =  The k×n matrix of factor scores   
E  =  An n×p matrix of residuals or error terms  

 
 Here k is a scalar denoting the number of factors to 
be used. It is always less than p the number of 
variables. Equation 1 is the fundamental model 
equation for all forms of R-mode factor. It states that 
each observed variable is weighted sum of factors plus 
an error term or residual.  

 
Table 1: Assets of all insurance companies 
    Government Stock, shares Mortgages Cash and bills  
Year securities and bonds and loans receivable Miscellaneous 
1970   6,733.0 9,517.0 7,573.0 20,424.0    2,206.0 
1971 10,840.0 9,239.0 7,404.0 30,063.0    3,687.0 
1972 16,832.0 11,853.0 11,647.0 33,915.0    9,667.0 
1973 22,635.0 13,386.0 12,943.0 44,982.0  14,847.0 
1974 19,660.0 18,074.0 20,087.0 47,830.0  33,597.0 
1975 29,105.0 20,668.0 23,889.0 64,893.0  48,716.0 
1976 42,434.0 30,572.0 38,093.0 82,531.0 67,187.0 
1977 61,427.0 37,236.0 58,137.0 129,677.0 121,880.0 
1978 78,092.0 53,620.0 72,937.0 144,612.0 174,054.0 
1979 91,895.0 70,736.0 93,535.0 138,369.0 253,665.0 
1980 109,963.0 121,926.0 180,986.0 195,519.0 340,496.0 
1981 133,883.0 145,453.0 147,266.0 159,307.0 428,339.0 
1982 131,722.0 190,389.0 217,587.0 177,173.0 421,551.0 
1983 204,678.0 169,496.0 70,673.0 145,598.0 381,736.0 
1984 212,234.0 199,496.0 88,720.0 196,608.0 527,604.0 
1985 460,637.0 277,681.0 106,076.0 236,078.0 662,864.0 
1986 822,644.0 290,626.0 112,595.0 289,018.0 806,144.0 
1987 850,466.0 324,255.0 146,097.0 280,485.0 924,767.0 
1988 1,301,149.0 326,049.0 182,337.0 534,138.0 1,049,940.0 
1989 1,836,882.0 414,653.0 112,854.0 586,001.0 1,942,475.0 
1990 1,852,146.0 498,160.0 176,304.0 518,209.0 2,777,283.0 
1991 562,923.0 568,903.0 227,008.0 1,034,552.0 3,258,116.0 
1992 628,882.0 987,437.0 909,505.0 1,603,900.0 5,695,873.0 
1993 3,856,351.0 5,094,023.0 1,283,881.0 2,189,626.0 6,002,170.0 
1994 5,417,112.0 2,078,444.0 628,561.0 2,340,657.0 6,894,799.0 
1995 981,338.0 1,817,680.0 666,800.0 3,158,194.0 19,401,775.0 
1996 1,662,092.0 4,232,125.0 583,782.0 3,551,990.0 5,537,913.0 
1997 2,325,002.0 5,191,335.0 984,860.0 2,846,231.0 8,660,972.0 
1998 3,368,788.0 5,350,113.0 1,236,582.0 3,696,894.0 8,723,292.0 
Source: Central bank statistical bulletin 
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 The product ΛF produces a vector of estimates of 
X the vector E represents the difference between this 
estimate and the observed vector. These residuals are 
assumed to be uncorrelated with the factors. From the 
properties of the latent variates it follows that the 
covariance matrix of the observable and common-factor 
variates can be written as: 

 
[( F)( F) ]′Ε Χ − Λ Χ − Λ = Ψ  (2) 

 
 Evaluation of the expectations in Eq. 2 shows that:  

 
′Σ = Ψ + ΛΛ  (3) 

 
Where: 
Σ   =  The p×p population covariance matrix of the 

observed variables  
Λ  =  The p×k matrix of factor loadings  
ψ =  The p×p residual covariance matrix  

 
 The factors are designed to account maximally for 
the inter-correlations of the variables. The diagonal 
elements ΛΛ’ are called the communalities of the 
responses. By choosing different orthogonal 
transformations, an infinity of loading matrices can be 
computed from Λ which would lead to the same 
covariance. 
 Equation 3 presents, in matrix form, the complete 
factor model for the variance covariance of the 
observed variables. The model holds for an R-mode 
factor model; since the relationship within the set of p 
variables is regarded as reflecting the correlations of 
each of the variables with k mutually uncorrelated 
underlying factors. 
 In practice the parameters of the factor models are 
never known and must be estimated from sample 
observations. The information in the sample covariance 
matrix S is sufficient for the estimation of the factor 
parameters. With uncorrelated factors as in Eq. 3, a 
reasonable criterion for fitting the model to the data is 
to make S-ΛΛ‘-ψ as small as possible, by choosing Λ 
so that the sum of squares of all the elements of S-ΛΛ‘-
ψ is minimized. But the diagonal elements of  ψ are 
unique variance that must be estimated from the data, 
together with the factor loading matrix Λ. Of course, 
the magnitude of the communalities ΛΛ‘ is dependent 
upon the number of factors k, that are retained. If k = p, 
ψ will vanish in Eq. 3 and our problem is equivalent to 
Principal Component Analysis (PCA). In cases where 
k<p, the matrix of parameters Λ which are the loadings 

on the factors and the unique variance ψ is estimated. 
The usual assumption is that k<p factors are retained. 
There are mathematical criteria as well as some 
subjective decisions involved in determining the 
number of factors k to be extracted, in locating these 
factors prior to rotation and in rotating the factor 
structure. By using Kaiser’s varimax criterion for 
rotation to a simple structure, the best fit or most useful 
fit of the factors to the data is provided. 
 Most factor analyses are implemented by using 
standardized variables. Standardization is in turn 
effected because in many problems the raw variables 
reflect widely differing units of measurement. By 
standardizing the variables to mean zero and unit 
standard deviation, the impact of units of measurement 
on the final solution is removed.  
 

RESULTS 
 
 A correlation analysis of the Assets is as shown in 
Table 2. 
 Table 2 contains the simple pair wise correlations 
of the investment variables. 
 Each of this investment mix in Table 2 is measured 
on an annual basis. For simplicity, the assets have been 
transformed to standardized form. 
 Given these result in Table 2, it is clear that 
variables X1 and X2, X2 and X3, X3 and X4 and X4 and 
X5 form groups. Variable 4 is closer to the (3, 4) and (4, 
5) groups. The factor-loading matrix is the key outputs 
of a factor-analytic solution. Specifically, the estimated 
factor loadings are the sample principal component 
coefficients (eigenvectors of R), scaled by the square 
root of the corresponding eigenvalues. A rotation of the 
factors revealed a simple structure and aids 
interpretations. Rotated principal-component estimates 
of factor loadings based upon the sample correlation 
matrix R are presented in Table 3, with the estimated 
factor loadings, communalities, eigenvalues and 
proportion of total (standardized) sample variance 
explained by each factor for k = 1 and k = 2 factor 
solutions. 
 
Table 2: Correlation Matrix of Insurance Asset 
Variables (X1) (X2) (X3) (X4) (X5)  
Mortgage 1.00 0.89 0.50 0.58 0.55 
loans (X1)  
Government 0.89 1.00 0.71 0.69 0.53 
securities (X2)      
Stock, shares 0.50 0.71 1.00 0.90 0.65 
and bonds (X3)        
Cash and bills 
Receivable (X4)      0.58 0.69 0.90 1.00 0.86 
Miscellaneous (X5) 0.55 0.53 0.65 0.86 1.00 
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Table 3:  Rotated principal component estimates of factor loadings 
 Estimated factor 
  loadings 
 --------------------- 
Variables       F1 F2 Communalities 
Mortgage loans (X1) 0.415 -0.628 0.567 
Government 0.455  -0.480 0.437 
Securities (X2)                    
Stock, shares and bonds (X3) 0.452 0.300 0.294 
Cash and bills receivable (X4) 0.483  0.359 0.362 
Miscellaneous (X5) 0.428 0.396 0.340 
Eigen values 3.750 0.760  
Cumulative proportion of total 0.750 0.190 
(standardized) sample variance   
  
 The eigenvalues in Table 3 represent the lengths of 
these axes and the eigenvectors of the matrix yield the 
principal axes of the ellipsoid. The first eigenvalues is 
3.75, which is the length of the first vector while the 
second eigenvalues is 0.76. These eigenvalues represent 
the lengths of the two principal axes. The principal axes 
also represent the total variance of the dataset and each 
account for an amount of the total variance equal to the 
eigenvalues divided by the trace. The first principal axis 
contained about 75% of the total variance, while the 
second axis represents only 19%. The elements of the 
eigenvectors which are used to compute the scores of 
observations are called loadings. They are simply 
coefficients of the linear equation which the 
eigenvector defines. The first two eigenvectors 
accounted for 94% of the variance in the dataset. The 
communalities correspond to the portion of the variance 
of each variable retained in the factors. The 
communalities are the sum of squares of the loadings in 
the factor matrix and are equal to the original variances. 
The magnitude of the communalities is dependent upon 
the number of factors that are retained. The factors are 
defined to account maximally for the intercorrelations 
of the variables. 
 

DISCUSSION 
 
 This study condenses the information contained in 
the asset portfolio by providing reasonable explanations 
in terms of a few interpretable factors. The factors 
explain the correlations that have been discovered 
among the investment variables.  The factor loading 
matrix Λ, is regarded as containing coefficients that 
describe the composition of the factor in terms of the 
original variables.     
 

CONCLUSION 
  
 Factor analysis is used in this study to provide a 
way of explaining the observed variability in the 
investment (assets) pattern of the Nigerian insurance 

industry. The factor analytic solution outlined above 
resulted from the application of the principal-
components procedure to the data. The objective of the 
principal-components analysis was to transform the set 
of interrelated investment variables into a set of 
unrelated linear combinations of these variables. Under 
the assumption of the classical-factor model, the 
correlations between investment variables in Table 2 
are reproduced by means of the common-factor 
coefficients alone.  
 The entries in Table 3 simply are correlations 
between the variables and the factors. These 
correlations are called factor loadings. Since the entries 
are variable-factor correlations, their square indicates 
the proportion of variation in the variable that is 
accounted for by the factor. The proportion of variance 
in the study accounted for two factors. The two factors 
derived from the study adequately captured the 
information contained in the five investment variables. 
The first rotated factor is largely concerned with all the 
variables. All the five variables are positive in the first 
loadings. Variables 3, 4 and 5 have positive loadings on 
the second factor, whereas variables 1 and 2 have 
negative loadings on the second factor. The second 
factor weighs mortgage loans against government 
securities. The first two eigenvalues of R are the only 
eigenvalues greater than unity. Moreover, k = 2 
common factors accounted for 94% cumulative 
proportion of total (standardized) sample variance. 
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