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Abstract: Problem statement: In the prime number the Riemann zeta function is unquestionable and 
undisputable one of the most important questions in mathematics whose many researchers are still 
trying to find answer to some unsolved problems such as Riemann Hypothesis. In this study we 
proposed a new method that proves the analytic extension theorem for zeta function. Approach: Abel 
transformation was used to prove that the extension theorem is true for the real part of the complex 
variable that is strictly greater than one and consequently provides the required analytic extension of 
the zeta function to the real part greater than zero and Euler product was used to prove the real part of 
the complex that are less than zero and greater or equal to one. Results: From this proposed study we 
noted that the real values of the complex variable are lying between zero and one which may help to 
understand the relation between zeta function and its properties and consequently can pay the way to 
solve some complex arithmetic problems including the Riemann Hypothesis. Conclusion: The 
combination of Abel transformation and Euler product is a powerful tool for proving theorems and 
functions related to Zeta function including other subjects such as radio atmospheric occultation. 
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INTRODUCTION 

 
 There are a number of mathematical functions 
called “Zeta function” named for their customary 
symbol, the Greek letter ζ. Of them all, the most famous 
is the Riemann Zeta Function, for its involvement in the 
Riemann Hypothesis, which is highly important in 
Prime Number Theory (PNT). The Riemann Zeta 
function ζ(s) is the function of a complex variable s 
initially defined by the following infinite series: 
 

s
n 1

1
ξ(s)

n

∞

=

=∑   (1) 

 
 For values of s with real part greater than one and 
then analytically continued to all complex with s ≠ 1.  
 Where: 
 
 s zlnnn e= , since  s Rezn n=  
 
 This Dirichlet series converges for all real values 
of s greater than one. Since the 1859 study of Bernhard 
Riemann, (Castellanos, 1988; David, 1998), it has 
become standard to extend the definition of ζ(s) to a 
complex values s; by showing that the series is 
converges for all complex s whose real part Re(z) is 
greater than one and defines an analytic function of the 

complex variable s in the region {z∈C: Re (z) >1}of 
complex plane (Fig. 1).  
 As a result, the Zeta function becomes an 
holomorphic in the region {z∈C: z ≠1} of the complex 
plane and has a simple pole at s with residue = 1. The 
connection between the Zeta function and prime 
numbers was discovered by Leonhard Euler who 
proved the identity (Choudhury, 1995) where, by 
definition, the left hand side is ζ(s) and the infinite 
product in the right hand side extend  s over all prime p. 
Thus the expression is called Euler product: 
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Fig. 1: Z and its conjugate  Z  in the complex plane   
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 Here n ranges over all positive integers (n = 1, 2, 3, 
4,….) and  p ranges over all primes (p = 2, 3, 5, 7, ….). 
This formula, which is now know as the Euler product 
results from expanding each of the factors on the right 
 

( ) ( )s ss s 2 3

1 1 1 1
( ) 1
1 p p p p

− = + + + + ⋅ ⋅ ⋅ ⋅ ⋅
−

  (3) 

 
 And observing that their product is therefore a sum 
of term of the form: 
 

( )zn1 n2 n3 nn
1 2 3 r

1

p p p p⋅ ⋅ ⋅ ⋅ ⋅
 (4) 

 
Where: 

1 rp , ,p⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  = Distinct prime 

1 rn , ,n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  = Natural numbers 

 
and then using the fundamental theorem of arithmetic, 
that is to say every integer can be written in essentially 
only one way as a product of primes to conclude that 
the sum is simply: 
 

s

1

n
∑  (5) 

 
 Euler used this formula principally as a formal 
identity and principally for integer values of s. Dirichlet 
(Ohtsuka,1967) also based his work in this field on the 
Euler product formula since Dirichlet was one of 
Riemann’s teacher and since Riemann refers to 
Dirichlet’s work in the first paragraph of his study. It 
seems certain that Riemann’s use of the Euler formula 
was influenced by Dirichlet. Dirichlet, unlike Euler, 
used formula (2) with s as a real variable and, also 
unlike Euler he proposed rigorously that (1) is true for 
all real s >1. Riemann, as one of the founders of the 
theory of function of a complex variable, would 
naturally be expected to consider s as a complex 
variable. It is easy to show that both sides of the Euler 
product formula converge for complex s in the half 
plane Re(z)>1, but Riemann goes much further and 
shows that  even though both sides of (2) diverge for 
other values of s, the function they define is meaningful 
for all values of s expect for the pole at s = 1. 
 

MATERIALS AND METHODS 
 

Extension theorem for zeta: The function 
1

ς(z)
z 1

−
−

 

has an analytic extension to the right half plane 

Re(z)>0. Thus ς has an analytic to {z: Re (z)>0, z ≠ 1} 
and has a simple pole with residue 1 and z = 1. 
 
Proof: To prove this extension theorem we used the 
Abel transformation generally known as summation by 
parts: 
 

s s

k k s 1 s 1 r r k k
k r k r

a ∆b a b a b b∆a+ +
= =

= − −∑ ∑     (6) 

 
With: 
 

k k 1 k∆b b b+= −  (7) 

 
Where: 
r = Radius of the complex variable 
s = Simple pole 
 
 Abel transformation is the discrete analogue of the 
formula for integration by parts of the form u(x)dv(x) 
by an integral of v(x)du(x). For a definite integral the 
formula of integration by parts is: 
 

b b

a a
u(x) dv(x) u(b) v(b)-u (a) v (a) v(x)du(x)= −∫ ∫  (8) 

 
 This integration by parts is applied under the 
assumptions that u, v and their derivation u’,v’ are 
continuous on a≤x≤b. The (8) is valid whenever both u 
and v are absolutely continuous on the closed interval 
[a, b]. Abel transformation is often used to prove many 
criteria of convergence of series of number and 
functions. Abel transformation of a series often yields a 
series with and identical sum, but with a better 
convergence. 
 Substituting (7) into (6) we obtain: 
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 (9) 

 
 For Re(z) > 1 and  in order to apply the Abel 
transformation we suppose that: 
 
 ka n=  

 
and: 

 
z

kb 1 n=  



J. Math. & Stat., 6 (3): 294-299, 2010 
 

296 

 Then substituting them into (6) we get the 
following expression: 
 
k 1 k 1

z z z 1 z
k 1 k 1
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Were: 
r = 1  
s = k-1 respectively  
 
Thus: 
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 When seeing the second term of the right hand side 
of (11), it represents the primitive of the following 
integral: 
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 That is to say: 
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where, [x] is largest integer less than or equal to x. 
 Inserting (13) in to the second term of (11) we 
have: 
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 Now, letting x→∞ and using the convention that: 

1

0
1

0

 = ∞

 =
 ∞

 

 
 We obtain the following integral for  Re(z)>1: 
 

[ ]
1

x
ζ(z) z x dx

z 1

∞
=

+∫   (15) 

 
 Consider the closely related integral: 
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 Combining (15) and (16), we can write the 
definition of the extension theorem as follow: 
 

[ ]
1

1 x
ζ(z) 1 z ( x x) dx

z 1 z 1

∞
− = + −
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Now,  if we fix k > 1and consider the integral: 
 

( )k

1

x
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−
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 We can see that this integral is an analytic of Z and 
if Re(z)>1, then:  
 

( )k k Re(z 1)

1 1

k

1

x
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1 Re(z) Re(z)
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+
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−
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 This integral implies that the sequences: 
 

( )k

k 1

x
(z) [x] x dx

z 1
= −

+∫ ∫                     (19) 

 
 Of an analytic on real part of the complex z is 
greater than zero that is to say Re(z)>0 is uniformly 
bounded on compact subsets. Using the Vitali theorem, 
let [bn] be a bounded sequence in A (Ω).  
 Where: 
 
Ω = connected 
 
  Supposed  that  [fn]   converges  for  point wise on 
S⊆Ω and S has a limit point Ω. Then [fn] is uniformly 
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Cauchy on compact subsets of Ω, hence uniformly 
converge in compact subsets of Ω respectively. 
 Hence: 
 

( )k

k 1

x
(z) [x] x dx

z 1
= −

+∫ ∫  (20) 

 
 is analytic and thus the function: 
 

[ ]( )
1

x
1 z x x dx

z 1

∞
+ −

+∫   

 
is analytic on Re(z)>0. But this function agrees with 

1
ζ(z)

z 1
−

−
 for Re(z)>1 and consequently provides the 

required analytic extension of ξ to Re(z)>0. Hence the 
proof of the extension theorem is completed. We have 
seen that Euler product implies that ξ has no zeros in 
the half plane Re (z)>1.  But how about zeros of the 
extension of ξ in 0<Re(z)≤1. The next theorem asserts 
tells that ξ has no zeros on the line Re(z) = 1. 
 
Theorem:  For Re(z) >1: 
 

z 11

ζ (z) ψ (t)
z dt

ζ(z) t

∞

+

′
= ∫  (21) 

 
Where: 
 

k x
ψ(t) Λ(n)

≤
= ∑  (22)                                                                                                                              

 
With: 
   

mlnp if n p for some m
(n)

0 otherwise

 =Λ = 


 (23)                                                                                                 

 
Where: 
 
 Λ(n) lnp=  

 
if n is a power of the prime p and 0 if not. An 
equivalent expression of ψ  is: 
 

p x

ψ(x) mp(x)lnp
≤

=∑  (24)                                     

 
where the sum is over the prime p≤x and mp(x) is the 
largest integer such that pm

p
(x) ≤ x. 

 For example:   

ψ(10.4) 3ln2 2ln3 ln5 ln7= + + +  
 
 Note that: 
 

m (x)p
p p

lnx
p x iff m (x)lnp lnx iff m (x)

lnp
≤ ≤ ≤    (25)   

 
Thus: 
  

p

lnx
m (x)

lnp

 
=  
 

 (26)  

 
where,    is the greatest integer function.                   

 The function ψ will be used to obtain the desired 

integral representation   
ζ

ζ

′
. 

 
Proof: Throughout the study p and q range over primes 
if Re(z) > 1. The Riemann zeta function:  
 

z
n 1

1
ζ(z)

n

∞

=

=∑   (27) 

 
is given by the Euler product:  
 

z zj 1 j 1
j j

1 1
ζ(z) Π ( ) ζ(z) Π

1 p (1 p )

∞ ∞

− −= =
= = =

− −
           (28)  

 
Where: 
 pj = Increasing sequence of prime numbers and the 

product converge uniformly on compact subset 
of real part is greater than one 

ξ = Analytic on Re(z)>1  
 
 Furthermore the product of ξ shows that ξ has no 
zeros in Re(z)>1.  
 Hence:  
 

z z

-z 2 -z 2
p p

ζ (z) p lnp p lnp
ζ (z) ζ(z)

ζ(z) (1-p ) (1-p )

− −′ − −′= ⇒ =∑ ∑          (29) 

 
 Substituting (26) into (27) we have: 
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 Equation 29 becomes:    
  

z

-z 2 z z
p

z
z 0
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(1-p ) 1 p (1 p )

p lnp
ζ(z) (1 p )

(1-p )

−

− −

−
−

−′ =
− −

−= −

∑
            (32)                       

 
 Using the convention that a0

 = 1, we have: 
 

z
nz

-z 2
p p n 1

p lnp ζ (z)
ζ (z) ζ(z) p lnp

(1-p ) ζ (z)

−
−

=
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 As the iterated sum of (33) is absolutely 
convergent for Re(z)>1, we can rearrange it as a double 
sum as:  
 

n

zn z

p (n 1) k

(p ) lnp k lnp
− −

>

=∑ ∑   (34)                                                                           

 
where, pn  is k for sum  n.  
 Consequently (33) becomes: 
 

z z
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′
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 By the definition of Λ and ψ. But using Abel 
transformation once again with:     
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We have: 
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 Now from the definition of:     
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≤
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 We obtain ψ(x)≤xInx,  so if Re(z)>1 we have 

z
ψ(M)(M 1)

0
z

−+
→  and  as  M→∞, we can write: 
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ψ(k)( ) ψ(k) z dt

z z z 1

t t
z ψ(k) dt z ψ(t) dt
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 Because ψ is constant in each interval [k, k+1]. 
Taking the  limit  of (38) if  M→∞ we have finally: 
 

( )M

1

ζ (z) t
z ψ(t) dt for  Re z   1

ζ(z) z 1

′
= >
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 The proof is completed. 
 

RESULTS  
 
 In this study we have learned three important 
things: 
 
• The first thing is that the Riemann zeta function 

 

∑
∞

=
=

1n
zn

1
ζ(z)

                                           
 
Which is given by the following product: 

 

)
p1

1
(Π

z
j

1j −

∞

= −
 

 
where, Pj is sequence of prime numbers converge 
uniformly on compact subsets of Re(z)>1, hence ξ 
is analytic on Re(z)>1. Furthermore we have noted 
also that the Euler product representation of ξ 
shows that ξ has no zeros in Re(z)>1 and 
consequently  it can be extended to a region larger 
than  Re(z)>1 

• The second thing is the zeta’s logarithmic 
derivative  ξ‘(z)/ξ(z) we have used to prove that ξ 
can have some value in 0< Re(z)≤1, which we 
know is analytic on Re(z)>1. In fact the true is that 
ξ‘(z)/ξ(z) is analytic only on a neighborhood of  
{Z: Re(z) > 1 and Z ≠ 1}. Since ξ has a simple pole 
at z=1 so does ξ‘(z)/ξ(z), with residue 
Res(ξ‘(z)/ξ(Z), 1) = -1. We next obtain an integral 
representation for ξ‘(z)/ξ(z) that is similar to 
representation (15) of ξ 

• The function ψ define in (21) provides another 
connection through (22) between the Riemann zeta 
function and the properties of the prime numbers. 
The integral that appear in (21) is called Mellin 
transform of ψ 
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DISCUSSION 
 
 The combination of Abel transformation (Camelia 
and Gruia, 2008) and Euler product has helped us to 
understand the relation between zeta function and its 
proprieties which may pay the way to solve some 
complex theorems (Weimann, 2007) and arithmetic or 
geometric problems including problems related to radio 
atmospheric occultation. For example: Thomson (2007) 
proposed in his research that radio occultation 
measurements made with  a receiver inside  the earth’s 
atmosphere can be inverted with an Abel transform to 
provide an estimate of atmospheric refractive index 
profile. Healy et al. (2002), also proposed in their study 
that the reformulation of the radon transform as path 
integral for the case of a radio ray refracting in a 
spherical symmetric atmosphere can be change to Abel 
transformation as both are equivalent in atmospheric 
radio occultation and I agree with their proposed 
theory. Some successful work related to Riemann zeta 
function and can be found in: Choudhury (1995); 
Conrey (2003) and Cvijovic and Klinowski (2002). 
 

CONCLUSION 
 
 In this study, we have prove the extension theorem 
fro zeta function based ion Abel transformation and 
Euler product where the Abel transformation has been 
used to prove the real values of the complex variable 
that are only greater zero and next the Euler product is 
used to deal with the real values less than zero and 
greater or equal to one. The proposed study has helped 
us not only to understand the relation between zeta 
function and its properties but also shows the function 
ψ defines in (21) provides another connection through 
(22) between Riemann zeta function and properties of 
the prime numbers. 
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