The Algebraic K-Theory of Finitely Generated Projective Supermodules P(R) Over a Supercommutative Super-Ring R

Ameer Jaber

Department of Mathematics, the Hashemite University, Zarqa 13115, Jordan

Abstract: Problem statement: Algebraic K-theory of projective modules over commutative rings were introduced by Bass and central simple superalgebras, supercommutative super-rings were introduced by many researchers such as Knus, Racine and Zelmanov. In this research, we classified the projective supermodules over (torsion free) supercommutative super-rings and through out this study we forced our selves to generalize the algebraic K-theory of projective supermodules over (torsion free) supercommutative super-rings. **Approach:** We generalized the algebraic K-theory of projective modules to the super-case over (torsion free) supercommutative super-rings. **Results:** we extended two results proved by Saltman to the supercase. **Conclusion:** The extending two results, which were proved by Saltman, to the supercase and the algebraic K-theory of projective supermodules over (torsion free) supercommutative super-rings would help any researcher to classify further properties about projective supermodules.

Key words: Projective supermodules, superinvolutions, brauer groups, brauer-wall groups

INTRODUCTION

An associative super-ring $R = R_0 + R_1$ is nothing but a \mathbb{Z}_2 -graded associative ring. A \mathbb{Z}_2 -graded ideal $I = I_0 + I_1$ of an associative super-ring is called a superideal of R. An associative super-ring R is simple if it has no non-trivial superideals. Let R be an associative super-ring with $1 \in R_0$ then R is said to be a division super-ring if all nonzero homogeneous elements are invertible, i.e., every $0 \neq r_{\alpha} \in R_{\alpha}$ has an inverse r_{α}^{-1} , necessarily in R_a . If $R = R_0 + R_1$ is an associative superring, a (right) R-supermodule M is a right R-module with a grading $M = M_0 + M_1$ as R_0 -modules such that $m_{\alpha}r_{\beta} \in M_{\alpha+\beta}$ for any $m_{\alpha} \in M_{\alpha}$, $r_{\beta} \in R_{\beta}$, $\alpha, \beta \in \mathbb{Z}_2$. An Rsupermodule M is simple if $MR \neq \{0\}$ and M has no proper subsupermodule. Following^[4] we have the following definition of R-supermodule homomorphism. Suppose M and N are R -supermodules. An Rsupermodule homomorphism from M into N is an R₀module homomorphism $h_{\gamma}: M \to N$, $\gamma \in \mathbb{Z}_2$, such that $M_{\alpha}h_{\gamma} \subseteq N_{\alpha+\gamma}$. Let K be a field of characteristic not 2. An associative superalgebra is a \mathbb{Z}_2 -graded associative K-algebra $A = A_0 + A_1$. A superalgebra A is central simple over K, if $\hat{Z}(A) = K$, where $(\hat{Z}(A))_{\alpha} = \{\alpha_{\alpha} \in A\}$ A_{α} : $\alpha_{\alpha}b_{\beta} = (-1)^{\alpha\beta}b_{\beta}\alpha_{\alpha}\forall\beta_{\beta}\in A_{\beta}$ and the only superideals of A are (0) and A. Through out this study we let R be a supercommutative super-ring ($\hat{Z}(A) = R$)

with $1 \in R_0$. An R-superalgebra $A = A_0 + A_1$ is called projective R-supermodule if it is projective as a module over R. Define the superalgebra $A^e = A^o \ \widehat{\otimes}_R A$, then A is right A^e -supermodule. There is a natural map π from A^e to A given by deleting 0,s and multiplying.

In^[2], Childs, Garfinkel and Orzech proved some results about finitely generated projective supermodules over R, where R is a commutative ring. In^[1], we generalized the same results about finitely generated projective supermodules over R, where R is a supercommutative super-ring. Here are the results:

Proposition 1: Let M be an R-supermodule and A an R-superalgebra then there exist isomorphisms of R-superalgebras:

$$A \ \widehat{\otimes}_R \ End_R(M) \cong End_R(M) \ \widehat{\otimes}_R \ A$$

Corollary 1: Let P and Q be a finitely generated projective supermodules over R, then:

$$\operatorname{End}_R(P) \ \widehat{\otimes}_R \operatorname{End}_R \ (Q) \ \cong \ \operatorname{End}_R \ (Q) \widehat{\otimes}_R \operatorname{End}_R \ (P) \ \cong \operatorname{End}_R(P \widehat{\otimes}_R \ Q)$$

Theorem 1: Let A be an R-superalgebra. The following conditions are equivalent:

- A is projective right A^e -supermodule
- $0 \mapsto \ker(\pi) \mapsto A^e \xrightarrow{\pi} A \to 0$ splits as a sequence of right A^e -supermodules

• $(A^e)_0$ contains an element ϵ such that $\pi(\epsilon) = 1$ and $\epsilon(1 \otimes a_{\alpha}) = \epsilon(a_{\alpha} \otimes 1)$ for all $a_{\alpha} \in A_{\alpha}$

Definition 1: We say that A is R-separable if conditions (1-3) above hold.

Remarks:

- Condition (3) states that A is R-separable if and only if it is R-separable of the sense of ungraded algebras
- It is easy to see that ε defined above is idempotent.
 A is a central separable R-superalgebra if it is separable as an R-algebra, thus our Azumaya R-algebras A are those separable R-algebras which are superalgebras over R and whose supercenter is R

For any R-superalgebra A we have seen that A is naturally a right A^e -supermodule. This induces an R-superalgebra homomorphism μ from A^e to $End_R(A)$ by associating to any element $x_\alpha \otimes y_\beta$ of A^e the element $x_\alpha y_\beta$ where for any $a_\gamma \in A_\gamma$:

$$a_{\gamma}\mu(x_{\alpha} \otimes y_{\beta}) = a_{\gamma}.(x_{\alpha}y_{\beta}) = (-1)^{\alpha\gamma}x_{\alpha}a_{\gamma}y_{\beta}$$

Theorem 2: Let A be an R-superalgebra. The following conditions are equivalent:

- A is an Azumaya R-superalgebra
- A is finitely generated faithful projective Rsupermodule and μ is an isomorphism

MATERIALS AND METHODS

Suppose C is any category and obj(C) the class of all objects of C and let C(A,B) be the set of all morphisms $A \rightarrow B$, where $A,B \in obj(C)$. A groupoid is a category in which all morphisms are isomorphisms.

Definition 2: A category with product is a groupoid C, together with a product functor \bot : $C \times C \rightarrow C$ which is assumed to be associative and commutative.

A functor $F:(C,\bot) \to (C',\bot')$ of categories with product is a functor $F:C \to C'$ which preserves the product.

Examples:

 Let R be any supercommutative super-ring and let P(R) denote the category of finitely generated projective supermodules over Rwith isomorphisms

- as morphisms. It is a category with product if we set $\bot = \oplus$
- The subcategory FP(R) of P(R) with finitely generated faithful projective supermodules as objects. Her we set $\perp = \widehat{\otimes}_R$
- The category Az(R) of Azumaya superalgebras over R. Her we take $\bot = \hat{\otimes}_R$

If C(R) denotes one of the categories mentioned above and if $R \rightarrow R'$ is a homomorphism of super-rings. Then $R' \ \widehat{\otimes}_R$ induces a functor $C(R) \rightarrow C'(R')$ preserving product.

Definition 3: Let C be a category with product. The Grothendieck group of C is defined to be an abelian group K_0 C, together with the map ()_C: obj(C) $\rightarrow K_0$ C, which is universal for maps into abelian groups satisfying:

- if $A \cong B$, then $(A)_C = (B)_C$
- $(A \perp B)_C = (A)_C + (B)_C$

Definition 4: A composition on a category (C, \bot) is a composition of objects of C, which satisfies the following condition: if $A \circ A'$ and $B \circ B'$ are defined then so also is $(A \bot B) \circ (A' \bot B')$ and:

$$(A \perp B) \circ (A' \perp B') = (A \circ A') \perp (B \circ B')$$

Definition 5: If (C, \perp, \circ) is a category with product and composition. Then the Grothendieck group of C is defined to be an abelian group K_0 C, together with a map:

$$()_C: obj(C) \rightarrow K_0C$$

which is universal for maps into abelian groups satisfying the two conditions in Definition 3 and:

If
$$A \circ B$$
 is defined, then $(A \circ B)_C = (A)_C + (B)_C$

An easy computation gives us the following result.

Proposition 2: Let (C, \perp, \circ) be a category with product and composition. Then:

- Every element of K₀ C has the form (A)_C-(B)_C for some A, B in obj(C)
- (A)_C = (B)_C if and only if $\exists C, D_0, D_1, E_0, E_1 \in$ obj(C), such that $D_0 \circ D_1$ and $E_0 \circ E_1$ are defined and $A \perp C \perp (D_0 \circ D_1) \perp E_0 \perp E_1 \cong B \perp C \perp D_0 \perp D_1 \perp (E_0 \circ E_1)$

If F: C→C' is a functor of categories with product and composition, then F preserves the composition.
 Moreover, the map K₀F: K₀C→K₀C' given by (A)_C → (FA)_{C'} is well-defined and makes K₀F a functor into abelian groups

Now let (C, \bot) be a groupoid. For $A \in obj(C)$, we write G(A) = C(A,A), the group of automorphisms of A. If $f: A \to B$ is an isomorphism, then we have a homomorphism $G(f): F(A) \to G(B)$, given by $G(f)(\alpha) = f\alpha f^{-1}$.

We shall construct, out of C, a new category ΩC . we take $obj(\Omega C)$ to be the collection of all automorphisms of C. If $\alpha \in obj(\Omega C)$ is an automorphism of $A \in C$, we write (A,α) instead of α . A morphism $(A,\alpha) \to (B,\beta)$ in ΩC is a morphism $f:A \to B$ in C such that the diagram in Fig. 1 is commutative, that is $G(f)(\alpha) = \beta$. The product in ΩC is defined by setting $(A,\alpha) \perp (\beta,\beta) = (A \perp B,\alpha \perp \beta)$. The natural composition \circ is defined in ΩC as follows: if $\alpha,\beta \in obj(\Omega C)$ are automorphisms of the same object in C, then $\alpha \circ \beta = \alpha$ β and:

$$(\alpha \perp \beta) \circ (\alpha' \perp \beta') = \alpha \alpha' \perp \beta \beta'$$

Definition 6: If (C, \perp) is a category with product, we define:

$$K_1C = K_0 \Omega C$$

If F: C \rightarrow C' is a functor, then Ω F: Ω C \rightarrow Ω C', preserving product and composition, so we obtain homomorphisms K_i F: K_i C \rightarrow K_i C', i = 0,1.

If P(R) is the category of finitely generated projective R-supermodules, where R is a supercommutative super-ring and their isomorphisms with \oplus . Then the tensor product $\widehat{\otimes}_R$ is additive with respect to \bigoplus so that it induces on K_0 P(R) a structure of commutative ring.

The next following results are just the generalizing of the results proved by H. Bass to the supercase.

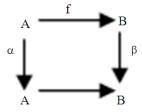


Fig. 1: Set of morphisms

If $Z \in \text{spec}(R)$ (i.e., $Z \subseteq R$ is a prime superideal) and $P \in P(R)$, then P_Z is a free R_Z -supermodule and its rank is denoted by $\text{rk}_P(Z)$. The map:

$$rk_P$$
: $spec(R) \rightarrow \mathbb{Z}$

given by $Z \rightarrow \operatorname{rk}_P(Z)$ is continuous and is called the rank of P. As R is a supercommutative super-ring, K_0 P(R) and $Q \, \widehat{\otimes}_R \, K_0 P(R) = Q K_0 P(R)$ are rings with multiplication induced by $\, \widehat{\otimes}_R \,$. Since:

$$rk_{P \oplus Q} = rk_P + rk_Q$$

and

$$rk_{P \oplus_{R} Q} = rk_{P}rk_{Q}$$

We have a rank homomorphism:

$$rk_P: K_0P(R) \rightarrow C$$

where C is the ring of continuous functions $\operatorname{spec}(R) \to \mathbb{Z}$.

The rank homomorphism rk is splitting by the ring homomorphism $C \rightarrow K_0 P(R)$, so that:

$$K_0 P(R) \cong C \oplus \widetilde{K_0} P(R)$$

where, $\widetilde{K_0}P(R) = \ker(rk)$ So:

$$\mathbb{Q} \, \otimes_{\mathbb{Z}} \, K_0 P(R) \cong (\mathbb{Q} \otimes_{\mathbb{Z}} C) \, \oplus (\, \mathbb{Q} \, \otimes_{\mathbb{Z}} \, \widetilde{K_0} P(R) \,)$$

The next results generalize the results proved by H. Bass.

Theorem 3: Suppose max(R), the space of maximal superideals of R, is noetherian space of dimension d, then:

- If $x \in K_0P(R)$ and $\operatorname{rk}(x) \ge d$, then $x = (p)_{P(R)}$ for some $P \in P(R)$
- If $rk((P)_{P(R)}) > d$ and if $(P_{P(R)}) = (Q_{P(R)})$, then $P \approx Q$
- $\bullet \qquad (\widetilde{K_0}P(R))^{d+1} = 0$

Proposition 3: The following conditions on R-supermodule P are equivalent:

- P is a finitely generated projective supermodule over R and has zero ahnihlator
- $P \in P(R)$ and has every where positive rank

• \exists a supermodule Q and a positive integer n such that $P \widehat{\otimes}_R Q \approx R^n$

RESULTS AND DISCUSSION

Let P(R) be the category of finitely generated projective supermodules over R, Az(R) the category of Azumaya superalgebras over R and Prog(R) the category of finitely generated faithful projective R-supermodules.

A useful fact to be remember is that since R is supercommutative super-ring, $P \in Prog(R)$ if and only if $P \in Prog(R)$ and P is faithful. If $A,B \in Az(R)$ are equivalent in BW(R) (the Brauer-Wall group of R), we will write $A \sim B$. If M is a supermodule over R, then nM is the n-fold direct sum of M. If $P \in P(R)$ let (P) be the image of P in $K_0 P(R)$ and $\{P\}$ in $\mathbb{Q} \otimes_\mathbb{Z} K_0 P(R) = \mathbb{Q} K_0 P(R)$. The next results generalize the results proved by $\mathbb{Q}^{[6]}$.

Theorem 4: Let $P, P', Q \in P(R)$. Then:

- P∈Prog(R) if and only if there is a Q in P(R) such that P⊗̂_RQ is free
- If $x \in \mathbb{Q} K_0 P(R)$ and rk(x) > 0 then $x = \left(\frac{1}{m}\right) \{Q\}$ for some $Q \in Prog(R)$, m > 0 an integer
- If $\{P\} = \{Q\}$, $P \in Prog(R)$, then there is an integer n > 0 such that $nP \approx nQ$
- If $Q \in Prog(R)$ and ((P) (P'))(Q) = 0 then there is an integer n > 0 such that $nP \approx nP'$
- If P∈Prog(R) and rk_P is a square then there is an integer n > 0 and Q∈ Prog(R) such that n²P ≈ Q⊗_RQ

Let R/S be Galois extension of supercommutative super-rings with finite Galois Group G. $M = M_0 + M_1$, an R-supermodule, has a G-action if there is a group injection $\varphi: G \to Aut(M)$ such that $\varphi(\sigma)$ is σ -linear for all $\sigma \in G$. That is, $\varphi(\sigma)(m_{\alpha}r_{\beta}) = \varphi(\sigma)(m_{\alpha})\sigma(r_{\beta})$. Let $M^G = \{m \in M : \varphi(\sigma)(m) = m \text{ for all } \sigma \in G\}$. The following fact was proved in $M^G = M : \varphi(\sigma)(m) = m$ for all $\sigma \in G$. The following fact was proved in $M^G = M : \varphi(\sigma)(m) = m$ for all $\sigma \in G$.

$$R \widehat{\otimes}_S M^G \simeq M$$

Again let R/S be a Galois extension of super-commutative super-rings with Galois group $G = \{1, \sigma\}$. Let A be any central separable R-superalgebra, we define A^{σ} as follows, set $A^{\sigma} = A$ as a super-ring, but the

product by a scalar. on A^{σ} is defined by $\lambda a = \sigma(\lambda)a$ for all $\lambda \in R$. Then one easily check that A^{σ} is a central separable R- superalgebra.

Now let $\tau: A^{\sigma} \widehat{\otimes}_R A \to A^{\sigma} \widehat{\otimes}_R A$, be defined by $\tau(a_{\alpha} \otimes b_{\beta}) = (-1)^{\alpha\beta} b_{\beta} \otimes a_{\alpha}$, then τ is a σ -linear automorphism. In particular τ is S-linear. Define the Corestriction:

$$Tr(A) = \{ x \in A^{\sigma} \widehat{\otimes}_{R} A \mid \tau(x) = x \}$$

Obviously, Tr(A) is an S-superalgebra. But $by^{[3]}Tr(A)$ is an S-progenerator as an S-supermodule, if A is an R-progenerator as an R-supermodule. Moreover if A is central separable over R then $by^{[3]}$ Tr(A) is central separable over S.

Lemma 1: Let R/S be a Galois extension of supercommutative super-rings with Galois group $G = \{1, \sigma\}$. Let A, B be R-supermodules (superalgebras), $P \in Prog(R)$:

- If A and B have G-action, so does $M = A \widehat{\otimes}_R B$ and $M^G = A^G \otimes_{\mathbb{R}} B^G$
- $\operatorname{Tr}(A \widehat{\otimes}_R B) \cong \operatorname{Tr}(A) \widehat{\otimes}_S \operatorname{Tr}(B)$
- If $E = End_R(P)$, $Tr(E) \cong End_S(Tr(P))$

Theorem 5: Let $A \in Az(R)$ and $P,Q \in Prog(A)$ such that $P \approx Q$ as R-supermodules. Then there is an integer n > 0 such that $nP \approx nQ$ as A-supermodules.

Proof: $A \widehat{\otimes}_R \operatorname{End}_A(P) \cong \operatorname{End}_R(P) \cong \operatorname{End}_R(Q) \cong A \widehat{\otimes}_R$ $\operatorname{End}_A(Q)$. Tensoring by A° yields that:

$$\operatorname{End}_{R}(A) \otimes_{R} \operatorname{End}_{A}(P) \cong \operatorname{End}_{R}(A) \otimes_{R} \operatorname{End}_{A}(Q)$$

or

$$\operatorname{End}_{A}(A \otimes_{R} P) \cong \operatorname{End}_{A}(A \otimes_{R} Q)$$

where, A acts on $A \widehat{\otimes}_R P$ ($A \widehat{\otimes}_R Q$) by acting on P (Q). Using^[3], There is a rank one projective R-supermodule I, such that $A \widehat{\otimes}_R P \cong A \widehat{\otimes}_R Q \widehat{\otimes}_R I$ as A-supermodules. Theorem 4(a) implies that $mR \widehat{\otimes}_R P \cong mR \widehat{\otimes}_R Q \widehat{\otimes}_R I$ as A-supermodules, for some m > 0 and $m'R \cong m'R \widehat{\otimes}_R I$ as R-supermodules, for some different m'. Finally, n = mm' will satisfy the theorem.

On a superalgebra A, a map $J:A \to A$ is called a superinvolution if J^2 is the identity and J is an

antiautomorphism. More explicitly, $(a_{\alpha})^{J^2} = a_{\alpha}$, $(a_{\alpha} + b_{\beta})^J = a_{\alpha}^J + b_{\beta}^J$ and $(a_{\alpha}b_{\beta})^J = (-1)^{\alpha\beta}b_{\beta}^Ja_{\alpha}^J$ for all $a_{\alpha}, b_{\beta} \in A$. Let $C = \widehat{Z}(A)$ (the super-center of A) then J must preserve C. If J is the identity on C, J is a superinvolution of the first kind. If not, J induces an automorphism of C of order 2 and J is said to be of the second kind. Two superinvolutions J, J' which agree on C are said to be of the same kind.

The following theorem generalizes of ^[6].

Theorem 6: If $A \in Az(R)$ and $A \widehat{\otimes}_R A \sim 1$, then there is a $B \in Az(R)$, such that $B \sim A$ and $B \cong B^{\circ}$.

Another way of viewing an isomorphism $B \cong B^{\circ}$ is that B has an antiautomorphism, J, of the first kind. Now, we are ready to prove the following result.

Theorem 7: Suppose A is a super-ring with antiautomorphism J such that J^2 is inner, induced by a $w_0 \in A_0$ such that $w_0(w_0)^J = (w_0)^J w_0 = 1$. Then $M_2(A)$ has a superinvolution of the same kind.

Proof Let L be the inverse map to J. Since:

$$\mathbf{w}_{0}^{-1}\mathbf{a}_{\alpha}\mathbf{w}_{0} = (\mathbf{a}_{\alpha})^{\mathbf{J}^{2}}$$

We have $(a_\alpha)^J(w_0)^J=(w_0)^J(a_\alpha)^L \qquad \text{ and } \\ (a_\alpha)^Lw_0=w_0(a_\alpha)^J \text{ , so the map:}$

$$\begin{pmatrix} a_{\alpha} & b_{\alpha} \\ c_{\alpha} & d_{\alpha} \end{pmatrix} \mapsto \begin{pmatrix} (d_{\alpha})^{J} & (w_{0})^{J} (b_{\alpha})^{L} \\ w_{0} (c_{\alpha})^{J} & (a_{\alpha})^{L} \end{pmatrix}$$

Is a superinvolution on M_2A of the same kind of J. Next we try to find the conditions on a central separable R-superalgebra A to have a superinvolution of the second kind, if R is a connected super-ring. In the next theorem we try to find the conditions on $A = \operatorname{End}_R(P)$ to have a superinvolution of any kind, where P is an R-progenerator as a supermodule over R, if R is a connected super-ring.

The following theorem involves assuming that R, the base super-ring, is semilocal. We will use the fact, from $^{[5]}$, that if A, B are central separable R-algebras, A ~ B and the rank of A equals rank of B, then A \cong B, which is also true in the superalgebra case (i.e., if A, B are central separable R-superalgebras, A ~ B and the rank of A equals rank of B, then A \cong B). Let M be the Jacobson radical of R. Then $\overline{A} = A/MA$ is a finite direct sum of simple superalgebras. We call \overline{A} is

perfect if every simple subsuperalgebra of \overline{A} admits a superinvolution of the second kind.

Theorem 8: Suppose R is a connected semilocal superring and A is a central separable R-superalgebra. Suppose R/S is a Galois extension with Galois group $\{1, \sigma\}$. Then A has a superinvolution of the second kind extending σ if and only if $Tr(A) \sim 1$ and \overline{A} is perfect.

Proof: Suppose A has a superinvolution, *, extending σ . Then it is easy to Check that \overline{A} is perfect. Also * induces an isomorphism $A^{\sigma} \cong A^{\circ}$, so there is an isomorphism:

$$\varphi: A^{\sigma} \widehat{\otimes}_R A \to End_R(A)$$

given by $x_{\gamma}(a_{\alpha}\otimes b_{\beta})^{\phi}=(-1)^{\alpha\gamma}a_{\alpha}^{*}x_{\gamma}b_{\beta}$. Set $A'=A'_{0}+A'_{1}$, where $A'_{\alpha}=\{a_{\alpha}\in A_{\alpha}:a_{\alpha}^{*}=a_{\alpha}\}$.

Since * is σ -linear R-supermodule automorphism of A, the S-supermodule A' is an S progenerator as a module over S. ϕ induces an isomorphism $Tr(A) \cong End_s(A')$, hence $Tr(A) \sim 1$.

Conversely, since R is a connected semilocal super-ring, one easily sees that S is a connected semilocal super-ring also. Let $Tr(A) \cong End_s(P)$. In other let $\tau: A^{\sigma} \widehat{\otimes}_R A \to A^{\sigma} \widehat{\otimes}_R A$ $(a_{\alpha} \otimes b_{\beta})^{\tau} = (-1)^{\alpha\beta} b_{\beta} \otimes a_{\alpha}$, be a σ -linear automorphism. Then Tr(A) is the fixed super-ring of $A^{\sigma} \widehat{\otimes}_R A$ under τ . Say $Tr(A) \cong End_S(P)$, where Pis an S-progenerator as a supermodule over Then $A^{\sigma} \widehat{\otimes}_R A \cong R \widehat{\otimes}_R \operatorname{End}_{\mathfrak{S}}(P) \cong \operatorname{End}_{\mathfrak{R}}(R \widehat{\otimes}_S P)$ and if $\omega = \sigma \otimes 1 : R \widehat{\otimes}_{S} P \rightarrow R \widehat{\otimes}_{S} P$. $(x_{\gamma}(a_{\alpha} \otimes b_{\beta}))^{\phi} = x_{\gamma}^{\phi}(a_{\alpha} \otimes b_{\beta})^{\tau}$, for all $x_{\gamma} \in R \widehat{\otimes}_{S} P$ and $a_{\alpha} \otimes b_{\beta} \in A^{\sigma} \widehat{\otimes}_{R} A$. Since R is connected. $rank_{p}(A) = rank_{p}(A^{\sigma})$, but:

$$A^{\sigma} \widehat{\otimes}_{R} A \cong End_{R} (R \widehat{\otimes}_{S} P)$$

Therefore:

$$A^{\sigma} \widehat{\otimes}_{R} (A \widehat{\otimes}_{R} A^{\circ}) \cong A^{\sigma} \widehat{\otimes}_{R} End_{R} (A) \cong End_{R} (R \widehat{\otimes}_{S} P) \widehat{\otimes}_{R} A^{\circ}$$

So by^[5], $A^{\sigma} \cong A^{\circ}$, which implies that $\operatorname{End}_R(A) \cong \operatorname{End}_R(R \widehat{\otimes}_S P)$, but the R-rank of A equals the

R-rank of $R \widehat{\otimes}_S P$. So again $by^{[5]}$, $A \cong R \widehat{\otimes}_S P$. In other words, A has a σ -linear antiautomorphism J such that for all $a_{\alpha}, x_{\gamma}, b_{\beta}$ in A, setting $x_{\gamma}(a_{\alpha} \otimes b_{\beta}) = (-1)^{\alpha \lambda} a_{\alpha}^J x_{\gamma} b_{\beta}$ yields the isomorphism $A^{\sigma} \otimes_R A \cong End_R(A)$ and the map $\phi: \sigma \otimes 1: A (\cong R \widehat{\otimes}_S P) \to A$ satisfies $\phi^2 = 1$ and $(x_{\gamma}.(a_{\alpha} \otimes b_{\beta}))^{\phi} = x_{\gamma}^{\phi}.(a_{\alpha} \otimes b_{\beta})^{\tau}$. Therefore:

$$(-1)^{\alpha\lambda}(a_{\alpha}^{J}x_{\gamma}b_{\beta})^{\varphi} = (-1)^{\alpha\beta}x_{\gamma}^{\varphi}.(b_{\beta}\otimes a_{\alpha}) = (-1)^{\beta(\alpha+\gamma)}b_{\beta}^{J}x_{\gamma}^{\varphi}a_{\alpha}$$

(ϕ respects the grading). For $w = 1^{\phi} \in A_0$ we have $ww^J = w^Jw = 1$ and $wa_{\alpha}w^{-1} = a_{\alpha}^{J^2}$ and:

$$\varphi^{2} = 1, \ (a_{\alpha}^{J} x_{\nu} b_{\beta})^{\varphi} = (-1)^{\alpha \lambda} (-1)^{\beta(\alpha + \gamma)} b_{\beta}^{J} x_{\nu}^{\varphi} a_{\alpha}$$
 (1)

Lemma 2: Let A be a central separable R-superalgebra, with J and φ satisfying (1). Then A has a superinvolution agreeing with J on R if φ fixes a unit of A_a .

Proof: If u_a is a unit in A_a such that $u_\alpha^\varphi = u_\alpha$ then $u_\alpha = (1.u_\alpha)^\varphi = u_\alpha^J w$, so $(u_\alpha^J)^{-1} u_\alpha = w$, but $(u_\alpha^J)^{-1} = (-1)^\alpha (u_\alpha^{-1})^J$, therefore $w = (-1)^\alpha (u_\alpha^{-1})^J u_\alpha$, implying that $x_\gamma^J = u_\alpha^{-1} x_\gamma^J u_\alpha$ is a superinvolution since J is an antiautomorphism on A and:

$$\begin{split} (x_{\gamma}^{J})^{J'} &= u_{\alpha}^{-1} (u_{\alpha}^{-1} x_{\gamma}^{J} u_{\alpha})^{J} u_{\alpha} = (-1)^{\alpha} u_{\alpha}^{-1} (u_{\alpha}^{J} x_{\gamma}^{J^{2}} (u_{\alpha}^{-1})^{J}) u_{\alpha} \\ &= u_{\alpha}^{-1} u_{\alpha}^{J} (w x_{\gamma} w^{-1}) w \\ &= x_{\gamma}, \text{ sin ce } u_{\alpha}^{-1} u_{\alpha}^{J} = w^{-1} \end{split}$$

Continuing proof of the theorem: Let M be the jacobson radical of R. Then $\overline{A} = A/MA$ is a finite direct sum of simple superalgebras. On \overline{A} , φ and J induce maps $\overline{\varphi}$ and \overline{J} satisfying (1). Every preimage of a unit \overline{u}_{α} of \overline{A} is a unit u_a of A_a . Thus we can change J by conjugation with a unit u_a , to make \overline{J} any desired antiautomorphism of \overline{A} of the same kind. In fact, if J' is defined by $x_{\gamma}^{J'} = u_{\alpha}^{-1} x_{\gamma}^{J} u_{\alpha}$, we can find a corresponding φ' so that J', φ' satisfy (1). Specifically if L is the inverse map to J, we can set $x_{\gamma}^{\varphi'} = u_{\alpha}^{-1} x_{\gamma}^{\varphi} u_{\alpha}^{L}$, to show that we have:

$$(\mathbf{x}_{\gamma}^{\mathbf{o}'})^{\mathbf{o}'} = \mathbf{u}_{\alpha}^{-1} (\mathbf{u}_{\alpha}^{-1} \mathbf{x}_{\gamma}^{\mathbf{o}} \mathbf{u}_{\alpha}^{L})^{\mathbf{o}} \mathbf{u}_{\alpha}^{L}$$
$$= (-1)^{\alpha} \mathbf{u}_{\alpha}^{-1} (\mathbf{u}_{\alpha}^{LJ} \mathbf{x}_{\gamma} \mathbf{z}_{\alpha}) \mathbf{u}_{\alpha}^{L}$$

where $z_{\alpha}^{J}=u_{\alpha}^{-1}$ and hence $z_{\alpha}=z_{\alpha}^{JL}=(u_{\alpha}^{-1})^{L}$, so that $(x_{\gamma}^{\phi'})^{\phi'}=(-1)^{\alpha}x_{\gamma}(u_{\alpha}^{-1})^{L}u_{\alpha}^{L}=x_{\gamma}$ since $(-1)^{\alpha}(u_{\alpha}^{L})^{-1}=(u_{\alpha}^{-1})^{L}$. It suffices to find u_{α} of \overline{A} such that $(u_{\alpha})^{\phi}+u_{\alpha}$ is a unit, for if u_{α} is a preimage of u_{α} , then $(u_{\alpha})^{\phi}+u_{\alpha}$ will be a ϕ fixed unit of A_{a} . Since \overline{A} is perfect, it suffices to prove.

Lemma 3: Let \overline{A} be a finite dimensional central simple superalgebra over a field F with a superinvolution \overline{J} of the second kind and any associated ϕ to \overline{J} then there is an element \overline{a}_{α} in \overline{A}_{α} such that $(\overline{a}_{\alpha})^{\circ} + \overline{a}_{\alpha}$ is a unit.

Proof: The element $w=1^{\phi}$ is central since J is a superinvolution. If $w\neq -1$, then $\overline{a_0}=1$ will do. If w=-1, then $(\overline{a_\alpha})^{\phi}=(\overline{a_\alpha})^Jw=-(\overline{a_\alpha})^J$. Since J is of order 2 on F, there is f in F such that $f \cdot f^J \neq 0$, so again take $\overline{a_0}=f \cdot f^J$.

Lemma 4: Suppose Q is a right $A^e = A^{\circ} \widehat{\otimes}_R A$ -supermodule, then:

$$Q = M \oplus I$$

where, M is the R-subsupermodule of Q generated by all elements of the form $(a_{\alpha}\otimes 1\text{-}1\otimes a_{\alpha})q_{\beta}$, where $a_{\alpha}\in A_{\alpha}$ and $q_{\beta}\in Q_{\beta}$. If Q is R-projective as a supermodule over R then:

$$rank_{R}(A).rank_{R}(I) = rank_{R}(Q)$$
.

Proof: Consider the well-known split exact sequence of A°-supermodules:

$$0 \rightarrow J \rightarrow A^e \xrightarrow{\mu} A \rightarrow 0$$

where, $\mu(a_{\alpha} \otimes b_{\beta}) = a_{\alpha}b_{\beta}$ and J is a right super-ideal of A^e generated by all elements of the form $a_{\alpha} \otimes 1 - 1 \otimes a_{\alpha}$ where $a_{\alpha} \in A_{\alpha}$. Suppose Q is a right A^e -supermodule. Tensoring by Q over A^e yields a split exact sequence of R-supermodules:

$$0 \to Q \widehat{\otimes}_{A^c} J \to Q \widehat{\otimes}_{A^c} A^c \xrightarrow{1 \otimes \mu} Q \widehat{\otimes}_{A^c} A \to 0$$

of course, $Q \widehat{\otimes}_{A^e} A^e \cong Q$ under the map $a_{\alpha} \otimes z_{\beta} \mapsto a_{\alpha} z_{\beta}$. Under this isomorphism $Q \widehat{\otimes}_{A^e} J$ is mapped onto M defined above. Thus $Q \cong M \oplus I$, where $I \cong Q \widehat{\otimes}_{A^e} A$. But:

$$\widehat{I \otimes}_R A \cong \widehat{Q \otimes}_{A^e} (\widehat{A \otimes}_R A) \cong \widehat{Q \otimes}_{A^e} (\widehat{A}^{\circ} \widehat{\otimes}_R A)$$

as an R-supermodules, therefore, $I \widehat{\otimes}_R A \cong Q \widehat{\otimes}_{A^e} A^e \cong Q$.

Suppose R is a local supercommutative super-ring, σ an automorphism of R of order 2, P is an Rprogenerator as a supermodule over R and I a rank one R-projective supermodule. A morphism $e: P \widehat{\otimes}_R P \to I$ is called a bilinear I form on P, a morphism $e: P^{\sigma} \widehat{\otimes}_{R} P \to I$ is called a σ bilinear I form on P. The image $e(p_\alpha \otimes q_\beta)$ is often written as $e(p_{\alpha}, q_{\beta})$ and in either case, e can be thought of as a map $e: P \times P \rightarrow I$. Such a form induces a map $e^*: P \to Hom_R(P, I)$ $(P^{\sigma} \to Hom_R(P, I))$ given by $e^*(p_\alpha)(q_\beta) = e(p_\alpha, q_\beta)$. In a similar manner, we define $e_*: P \to Hom_{\mathbb{R}}(P, I) \qquad (P \to Hom_{\mathbb{R}}(P^{\sigma}, I))$ by $e_*(p_\alpha)(q_\beta) = e(p_\alpha, q_\beta)$. If e^* and e_* are isomorphisms then we say e is nondegenerate. The next final result shows that the existence of superinvolutions on $\operatorname{End}_{R}(p)$, where $\operatorname{End}_{R}(p)$ is an R-progenerator as a supermodule over R, is equivalent to the existence of forms on P and this result was proved in^[1].

Theorem 9: Let R be a connected super-ring and $A = \operatorname{End}_{R}(p)$ be a central separable R-superalgebra such that A is an R-progenerator as a supermodule over R, then:

- A has a superinvolution of the first kind if and only if there is a rank one R-projective I, a nondegenerate bilinear I form e on P and a $\delta \in R_0$ such that $\delta^2 = 1$ and $e(x_\alpha, y_\beta) = (-1)^{\alpha\beta} \delta e(y_\beta, x_\alpha)$ for all x_α, y_β in P
- Let σ be an automorphism of R of order 2. Then A has a superinvolution of the second kind extending σ if and only if there is a rank one R-projective I with a σ -linear automorphism of order 2 (also called σ) a σ -bilinear I form e on P and an element δ in R_0 such that $\sigma(\delta)\delta = 1$ and $\sigma(e(x_\alpha, y_\beta)) = (-1)^{\alpha\beta}\delta e(y_\beta, x_\alpha)$ for all x_α, y_β in P

CONCLUSION

The extended two results proved by Saltman^[6] to the supercase and the algebraic K-theory of projective supermodules over (torsion free) supercommutative super-rings would help any researcher to classify further properties about projective supermodules.

REFERENCES

- 1. Jaber, A., 2003. Superinvolutions of Associative Superalgebras, P.h. D. thesis, University of Ottawa, Ottawa, Canada, 2003.
- Childs, L.N., G. Garfinkel and M. Orzech, 1973.
 The brauer group of graded azumaya algebras,
 Trans. Am. Math. Soc., 175: 299-326. DOI: 10.1007/BFb0077340
- 3. DeMeyer, F. and E. Ingraham, 1971. Separable Algebras Over Commutative Rings, L.N.M. 181, Springer-Verlag, New York, USA., ISBN: 9783540053712, pp: 172.
- 4. Racine, M.L., 1998. Primitive superalgebras with superinvolution, J. Algebra, 206: 588-614. DOI: 10.1006/JABR.1997.7412
- 5. Roy, A. and R. Sridharan, 1967. Derivations in azumaya algebras. Math. Kyot. Univ., 72: 161-167.
- Saltman, D.J., 1978. Azumaya algebras with involution. J. Algebra, 52: 526-539. DOI: 10.1016/0021-8693(78)90253-3