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Abstract: Problem Statement: In this research, the author discussed the problems associated with the 
approximation of the mixed derivative terms appearing in strongly coupled linear elliptic systems by 
the finite difference method over irregular domains. To avoid the appearance of mixed derivative 
terms the author introduced a reformulation for the system through introducing a new dependent 
variable which adds one supplementary (simple) differential equation to the system but does not 
change its elliptic character. Approach: The basic idea in the reformulation is the direct generation of 
the Laplacian operator which has an efficient finite difference treatment. Results: Two finite 
difference formulae with symmetric appearance approximating the first order derivatives on curved 
boundaries up to O(h2) are established, that can be considered as a generalization to the well known 
central formula. Applications to the otolith membrane model have proved the reliability and efficiency 
of the present treatment in comparison with other methods. Conclusions/Recommendations: 
Although, this treatment has increased the number of algebraic equations approximating the system 
linearly 3n instead of 2n, the overall accuracy is increased quadratically. The band width of matrix of 
coefficients of the algebraic system is decreased and there is no need to interpolate along the diagonals 
due to the absence of mixed derivatives. The treatment is promising and other extensions are 
mentioned. 
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INTRODUCTION 
 
 In spite of the advances in computer facilities and 
the extension of their capabilities there is no loss of 
interest in the efficient algorithms generally and in 
high-order difference methods. To write an acceptable 
finite difference model corresponding to a given 
differential system, some times, it is better to 
reformulate the system, one way is to write a 
corresponding first order system and other way is to 
decompose the differential operator to parts that can be 
treated efficiently.  
 The problem of reducing a given system of 
differential equation to a lower order one or to an 
equivalent equation with higher order is an old 
problem. It is completely solved in ordinary differential 
equations, but in partial differential equations the 
situation is different, the reduction method is not 
unique. Laplace's equation and the corresponding 
Cauchy Riemann equations, the biharmonic equation 
and the corresponding second order system are good 
examples,[1,2]. It is well known that the matrix of the 
algebraic system resulting from approximating the 

biharmonic equation on a unit square by the finite 
difference is very ill-posed[2]. Also, there is situations 
lead to over-determined systems, [2,3]. 
 PDEs with cross-derivative terms arise naturally 
via the chain rule when an   equation   without   cross-
derivative terms on a nonrectangular region is 
transformed into a rectangular solution domain. The 
transformation can also introduce cross-derivative 
terms and convert normal derivative boundary 
conditions to mixed oblique derivative boundary 
conditions[4]. Strongly coupled systems of elliptic 
equations have received considerable attentions in 
recent years, and various system forms have been 
proposed in the literature,[5,6,7] and the references 
therein. We consider in this study a class of linear 
second order elliptic systems with only two 
independent variables x- and y-, strongly coupled 

through the mixed derivative terms 
2 *

x y

∂
∂ ∂

 and we 

introduce a new reformulation, to avoid approximating 
the mixed derivative terms. This will reduce the band 
width of the matrix of the algebraic system resulting 
from the approximation by the finite difference method. 
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 The irregularity of the domains associated with 
PDE's usually excludes the analytical solutions. Various 
approaches for the numerical solution of elliptic 
systems have been considered in the literature[8-11]. Due 
to the ease of grid generation and the dissipative 
properties of the Finite Difference Method (FDM), it is 
the first method one tries to use. However, the FDM 
usually involves a rectangular grid system, which 
makes it very difficult to model the detailed 
topographic features of an irregular domain especially 
in the existence of mixed derivatives. The Finite 
Element Method (FEM) can accommodate a more 
flexible grid work and has been used as an alternative 
solution scheme for many problems, in some problems  
the finite element solution is not as stable as the finite 
difference solution and usually requires the use of 
nonphysical dissipation(as an example, the elliptic 
system corresponding to the biharmonic equation)[11]. 
Furthermore, the generation of a finite element grid 
with several thousand nodes and with elements of 
various sizes, shapes and orientations is not a trivial 
task and you have to use one of the standard software to 
generate the grid as well as the associated bases. To 
avoid the difficulties that usually arise from traditional 
strategies, and also to make use of the efficient 
treatment in the Laplacian operator, the author tried in 
this study to generate a Laplacian part plus a simple 
first order differential operator part. Accordingly, we 
avoided the use of grid points outside the curved 
domain and situated along the diagonals increasing the 
accuracy of the over all finite difference 
approximations in addition to the structure of the matrix 
of the corresponding linear algebraic system which will 
appear through the treatment. 
 The objective of this study is three fold: in the first 
we generate a Laplace operator from elliptic differential 
operators strongly coupled through the mixed derivative 
term without any transformations, in the second we 
introduce finite difference formulas and a 
corresponding difference scheme with high accuracy 
for problems with curved domains, in the third we 
applied the treatment to a realistic problem. 
 
Review of elliptic systems: Let us consider the system 
of partial differential equations: 
 

n

ij j i
j 1

l u F in , i 1, , n
=

= Ω =∑ L  

 
Subject to the Dirichlet boundary conditions 
  

iu 0 on , i 1, , n= ∂Ω = L  

 Where Ω is a bounded domain in R2 with boundary 
,∂Ω  ijl  denotes the homogeneous second order 

differential operator defined by: 
 

j j
ij j ij ij

j j
ij ij

u u
l u a b

x x y x

u u
b c

x y y y

∂ ∂   ∂ ∂= +   ∂ ∂ ∂ ∂   

∂ ∂   ∂ ∂+   ∂ ∂ ∂ ∂   

 

  
 In this study, the author considers the case of 
determinant constant coefficient systems which can be 
written in the matrix form as:  
 

2 2
11 12 11 12

2
21 22 21 22

2
11 12

2
21 22

a a b bu u
2

a a b bv vx x y

c c u
0

c c vy

      ∂ ∂+      ∂ ∂ ∂      

   ∂+ =   ∂   

 (1) 

 
Or in compact form as: 
 

2 2 2

2 2
A U 2B U C U 0

x x y y

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

 (2) 

 
Where u and v are real functions of x, y and A, B and 

C  are2 2×  constant matrices. It is well known that by 
means of linear transformation of independent 
variables, linear combination of equations and linear 
transformation of unknown functions, the system (1) 
can be reduced to the canonical form which contains at 
most two independent parameters. 
The determinant: 
  

2 2F(ξ, )  | A ξ 2Bξη Cη |η = + +  (3) 

 
is known as the biquadratic characteristic polynomial of 
the system (1). This system is classified according to 
the nature of the roots of the biquadratic characteristic 
equation 
  

ξ
F(τ, 1)  0,           

η
= τ =  (4) 

 
 The system (1) is elliptic, when F(τ, 1)  0,=  has a 
pair of complex roots. It is of the first kind when it has 
a repeated complex roots, and of the second kind when 
it has two distinct pairs of complex roots. We will 
concentrate in this study on systems of the first kind i.e. 
the biquadratic characteristic equation admits a pair of 
double complex roots. In this case the system (1) can be 
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written by the use of the above mentioned 
transformations in a form whose biquadratic 
characteristic polynomial will take the standard form[5]. 
 

2 2 2F( , ) ( )ξ η = ξ + η  (5) 

 
Definition 1: The system (1) is said to be reducible if it 
is equivalent to a system of the form, 
 

2 2 2

11 12 112 2

2 2 2

22 22 222 2

2 2 2

21 21 212 2

u u u
α  2β γ 0

x x y y

v v v
α  2β γ  

x x y y

u u u
-(α  2β γ )

x x y y

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂
∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

∂ ∂ ∂+ +
∂ ∂ ∂ ∂

 (6) 

 
i.e., the study of reducible systems is equivalent to the 
study of two simple equations successively, otherwise it 
is irreducible, and thus irreducible systems of the form 
(1) are strongly coupled through the term with mixed 
derivatives, which will be our interest in this study. 
Thus, irreducible systems can be written in the form: 
 

2 2
1 2

2
3 4

2

2

b b1 0 u
2

b b0 1 vx x y

u λ 0 u
0

v 0 µ vy

    ∂ ∂+     ∂ ∂ ∂     

     ∂+ =     ∂     

 (7) 

 
With 
 

2 3

1 4

1 4 2 3

1 4

            b 0 and b 0

b b 0

λ µ 4b b 4b b 2

µ b λ b 0

1

≠ ≠
+ =

+ + − =
+ =

µ λ =

 (8) 

  
 In the finite difference approximation for the 
system (7) each equation will contain at least 9 grid 
unknowns and for domains with curved boundaries the 
corner grid points due to the mixed derivatives will be 
outside the domain when using the finite differences 
near the boundary. Accordingly, reducing the accuracy 
of the over all system. 
 

MATRIALS AND METHODS 
  
 The use of a local five-point approximation scheme 
making use of only neighboring nodes of a square grid 
and avoiding mesh points situated in the diagonal of the 
associated linear difference operator which is known to 

be optimal for Laplace operators[12], will be my 
objective in this study. Accordingly, the bandwidth of 
the coefficient matrix of the associated linear system is 
reduced and the accuracy is increased when treating 
problems with curved boundaries. Despite of the 
irregular shape of the otolith membrane, the boundary 
conditions can be realized in a way preserving the 
consistency of the finite difference equations with the 
system of differential equations and giving a global 
approximation error up to the fourth order. 
 
Formulation of the problem: One of the difficulties in 
handling problems with finite differences is the curved 
domains especially with the existence of mixed 
derivatives. In the approximation of the mixed 
derivative terms we use data along the diagonals of the 
grid system. So the author introduced a reformulation 
for the system (7) to eliminate the mixed derivative 
term. The author distinguishes between two cases: 
 
Case 1: ,λ ≠ µ  we must have 1 4b b 0= =  accordingly 

the first canonical form can be written as: 
 

  

2

2

2 2

2

1 0 u 0 1
2

0 1 v b 0x

u λ 0 u
0

v 0 µ vx y y

     ∂ +     ∂     

     ∂ ∂+ =     ∂ ∂ ∂     

 (9) 

with  
 
    1, and   4b 2λ µ = λ + µ − =  (10) 
 
Where, 2 3b b b=  
 

x x y y xy

x x y y x y

u  λ u  2 v   0

1
v  v   2 b u  0

λ

+ + =

+ + =
 (11) 

 
We define 
 

y xw  (  - 1) u 2 v= λ +    (12) 
 
 Then with the help of (10), this system, can be 
written in the form  
 

x x y y y

x x y y x

y x

u  u   w   0

λ -1
v  v    w   0

2
( 1) u 2 v  - w  0

+ + =

+ + =

λ − + =

 (13) 

 
Case 2: 1λ = µ ≠  (if 1λ = µ =  the system will be 
reducible) and we must have 1λ = µ = − and 
accordingly 4 1b b= −  , and the system becomes 
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2 2
1 2

2
3 1

2

2

b b1 0 u
2

b -b0 1 vx x y

u λ 0 u
0

v 0 λ vy

    ∂ ∂+     ∂ ∂ ∂     

     ∂+ =     ∂     

 (14) 

 
 Which can be further transformed to give the 
second canonical form 
 

2 2

2

2

2

1 0 u 0 1
2

0 1 v -1 0x x y

u -1 0 u
0

v 0 -1 vy

     ∂ ∂+     ∂ ∂ ∂     

     ∂+ =     ∂     

 (15) 

 
With  

1, and 4b 2.λ µ = λ + µ − =  (16) 

 
x x y y x yu  u   2 v   0− + =  

x x y y x yv  v  - 2 b u   0− =  (17) 

 
We define 
 

y xw  2 u 2 v= −  (18) 

 
Then the above system can be written in the form 
 

x x y y yu  u  - w   0+ =  

x x y y xv  v    w   0+ + =  

y x

1
u  v  - w  0

2
− =  (19) 

  
 In systems (13) and (19) we don't have mixed 
derivative terms, but we have an extra first order 
differential equation as we will see in the application 
below. The number of the algebraic equations 
approximating the system of PDE is increased linearly 
"3n instead of 2n" the accuracy for curved domains is 
increased quadratically and the band width of the sparse 
matrix of coefficients is decreased "at most 7 instead of 
at least 9". We will consider the relation between the 
band width and the dimension of the coefficient matrix 
for like systems in a subsequent work. 
 
The mathematical model of the otolith membrane: 
The otolith membrane in man is apart of the vestibular 
organ which controls the subjective sensation of 
equilibrium, spatial orientation and motion. It also 
influences different vegetative functions such as blood 
pressure and coagulation time and it stabilizes the eyes 
in space during a movement of the head[13]. 

 The otolith membrane is a thin layer of a gelatinous 
substance which covers a plaque of hair cells called the 
macula utricle. Adherent to the elastic membrane are a 
large number of calcite cristals known as the otoconia. 
They have a much higher specific mass than the otolith 
membrane and the macula. When the head is in an 
upright position, the macula is nearly horizontal. Any 
movement of the head causes accelerations and 
therefore exerts forces of different strength on macula 
and otoconia. This induces shearing forces and 
produces a distortion of the otolith membrane. By 
evaluating this distortion, some indication of 
compensating movements of the head for restoring the 
balance and staiblizing the eyes can be obtained. 
 The investigations might be interesting in 
connetion with space exploration research, when the 
behavior of the sensory apparatus has to be studied 
under different gravitational conditions. 
Following Hudetz[14] and Youssef et al.[15], the otolith 
membrane is considered as a flat, thin, ovoid structure 
which is fixed at the boundary. Movements are 
restricted to the plane of the membrane which is 
likewise the plane of the macula. No displacements 
perpendicular to this plane are possible. It is supposed 
to be situated in the x-y plane of a 3-dimensional 
Cartesian coordinate system if the head is in an upright 
position (parallel to the z-axis). 
 The irregular boundary Γ of the membrane Ω can 
be approximated by the curves C1 , C2 which are 
connected at the points A ( 0.064, 0.096)= −  and 

B ( 0.064, 0.096)= − − , Twizell[16], Twizell and Curran[17], 

Castillo et al.[18,19], Youssef et al. [15] as shown in Fig. 1. 
 

2 2

1 2 2

x y
C  :        1

(0.096 ε) (0.128)
+ =

+
 (20) 

Where 
 

    
ε 0.000758905         for  0.064 x 0.07

0.0                        for                   x 0.07

= − ≤ ≤
ε = ≥

 

 
and  
 

2
2

3

C :    x  - 0.084 - 0.5 y  2.1701 y  

 54.2535 y ,       |y|  0.096

= +

+ ≤
 (21) 

 
This definition shifts some annoying boundary 
discontinuity observed in the above literature from 
nodes A (= no. 4) and B (= no. 43) to points which are 
not mesh points. 
 It is generally accepted[14-19] that the displacements 
u and v in the x- and y- directions of all points of the 
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membrane are governed within the domain of the 
membrane by the linear elliptic system of partial 
differential equations. 
 

2 2 2 2
(x)

2 2

u 1 ν u 1 ν v 1 ν
F

x 2 y 2 x y E

∂ − ∂ + ∂ −+ + = −
∂ ∂ ∂ ∂

 (22) 

 
2 2 2 2

(y)
2 2

v 1 ν v 1 ν u 1 ν
F

y 2 x 2 x y E

∂ − ∂ + ∂ −+ + = −
∂ ∂ ∂ ∂

 (23) 

 
together with the Dirichlet boundary conditions 
 

1 2u(x, y) v(x,y) 0 for all  (x,y) ; C C= = ∈Γ Γ = U  (24) 

 
 (x)F and (y)F are the x and y components of the 
gravitational force which is considered as being the 
only acting force (static conditions) and is given by 
  

(x)F ρ g [cosψ (sinα sin γ cosα sinβ cosγ)

sinψ(sinα cosγ cosα sinβ sin γ)]

= +
+ −

 (25) 

 
(y)F ρ g [ sinψ (sinα sin γ cosα sinβ cosγ)

cosψ (sinα cosγ cosα sinβ sin γ)]

= − +
+ −

 (26) 

 
where ψ  is the azimuth angle and α, β, γ are the angles 
of rotation of the membrane about the x-, y-, z- axes. 
 The model constants are the Poisson ratio ν which 
is chosen as 0.5 (For gelatinous substances it lies in the 
range 0.3 0.8),≤ ν ≤  the Young's modulus 

3E 200000 dynescm−= the density 30.903 gmcm−ρ = the 

earth gravity constant 2g 981 cmsec−=  The maximum 

length of the membrane is 0.256 cm and the maximum 
width 0.192 cm. It is easily proved that the system is 
elliptic in the sense of Petrowski for all such ν,[2,5,7].  
 Since the irregularity of the boundary excludes any 
analytical solution of the system it must be solved by 
numerical methods. This will be done by finite 
differnce techniques after superimposing a square grid, 
with grid constant h 0.032 cm,=  on a rectangular region 

including the membrane domain Ω (Fig. 1). 
Exactly the same grid is used by Twizel[16] and 

castillo et al.[18], Youssef et al.[15]. The mesh points lie 
at the intersections of the lines 
x 0.032m, y 0.032n (m,n 0, 1, 2, ).= = = ± ± L  There are 

thirty interior grid points in Ω and twenty boundary 
points on Γ as shown in Fig. 1. 
 
Finite difference scheme for the Otolith membrane 
model: The appearance of the mixed derivatives in (22) 

and (23) introduces mesh points situated in the diagonal 
of the associated linear difference operator and the 
matrix of the corresponding finite difference system, 
which in general is sparse, will get four supplementary 
non-zero entries in every row. This in general reduces 
the average rate of convergence if iterative methods are 
chosen for the solution of the linear finite difference 
system. Define an auxiliary function 

1 ν u v
w

2 y x

 + ∂ ∂= − ∂ ∂ 
 the mixed second order derivatives 

in (22), (23) can be eliminated and one gets the 
following system of partial differential equations: 

 
2 2 2

(x)
2 2

u u w 1 ν
F

x y y E

∂ ∂ ∂ −+ − = −
∂ ∂ ∂

 (27) 

 
2 2 2

(y)
2 2

v v w 1 ν
F

x y x E

∂ ∂ ∂ −+ + = −
∂ ∂ ∂

 (28) 

 
u v 2

w  0
y x 1 ν

∂ ∂− + + =
∂ ∂ +

 (29) 

 
With  

 
u(x, y) v(x, y) 0 for all   (x, y)= = ∈ Γ   (30) 
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Fig. 1: The grid imposed to the otolith membrane     

domain 
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 This system is much simpler than the original 
partial differential system (22, 23). It is still linear 
elliptic of the second order, but the principal part of the 
equations (27), (28) is now defined only by the classical 
Laplacian which is easily handled in discretization. The 
supplementary differential equation (29) is of the first 
order and does not represent any difficulty in describing 
its finite difference approximation of accuracy up to the 
second order. It is interesting to note that, for this 
system and in accordance with equation (10), we 
have 0.5ν = , 2b 0.375= , 3b 1.5=  0.25, 4λ = µ =  and 

b 0.5625=  
 Now, denoting the values of a function s at node 
(0.032m, 0.032n) by m,ns  and assuming sufficient 

differentiability of s, finite difference approximations 
for the derivatives can be obtained by the well known 
Taylor development: 
 

m 1, n m 1, n 2

m, n

s ss
O(h )

x 2 h
+ −−∂ = +

∂
 (31) 

 

m, n 1 m, n -1 2

m, n

s ss
O(h )

y 2 h
+ −∂ = +

∂
 (32) 

 
2

m 1, n m, n m 1, n 2
2 2

m, n

s 2 s ss
O(h )

x h
+ −− +∂ = +

∂
 (33) 

 
2

m, n 1 m, n m, n -1 2
2 2

m,n

s 2 s ss
O(h )

y h
+ − +∂ = +

∂
 (34) 

 
 If the y-derivative is needed at a point 
(mh, (n )h) , 0 1,+ θ  < θ <  which is not necessarily a 

mesh point (see Fig. 2), it can be approximated by 
 

m,n m,n θ m,n-12

m,n θ

2

2 2 4θ 2θ
-(2 )u u u

u θ θ θ 1 θ

y 2 h

O(h ) 0 1 

+

+

++ + +
∂ + +=
∂

+ < θ ≤

 (35) 

 
 If the x-derivative is needed at a point 
(mh, (n )h) , 0 1,+ θ  ≤ θ <  it can be approximated by  

 

m 1, n m-1, n

m 1, n -1 m-1, n -1 2

m, n θ

(1 )u (1 ) u

u uu
O(h )   

x 2 h

0 1

+

+

+

+ θ − + θ

−θ + θ∂ = +
∂

≤ θ <

 (36) 

 
   

 
 
Fig. 2: boundary points and not grid points 
 
 The same formulae can be used analogously to 

approximate the derivatives 
m θ, n

u

x +

∂
∂

and
m θ, n

u

y +

∂
∂

. Note 

that formulas (36) generalize formula (31) for θ ≠ 0. 
The finite difference representation of the system of 
equations (27), (28) and (29) is 
 

m 1,n m 1,n m,n-1 m,n 1 m,n

2
2 (x)

m,n 1 m,n 1

m, n

u u u u 4u

h 1 ν
(w w ) h   F

2 E

− + +

+ −

+ + + −

 −− − = − 
 

  (37) 

 

m 1,n m 1,n m,n-1 m,n 1 m,n

2
2 (y)

m 1,n m-1,n

m, n

v v v v 4v

h 1 ν
(w w ) h   F

2 E

− + +

+

+ + + −

 −+ − = − 
 

 (38) 

 

m,n 1 m,n-1 m 1,n m-1,n m,n

4 h
u u v v w 0

1 ν
+ +− − + − =

+
 (39) 

 
 It is easily seen that these equations are consistent 
with the system of partial differential equations and the 
accuracy of the scheme is O(h2). The above equations 
are applied to the thirty nodes in Ω and a system of 90 
equations is obtained. This system is banded (sparse) 
with band width smaller by at least 2 than the standard 
one used by Twizel[16]. 
 When the above system is applied to nodes 
adjacent to the boundary sometimes function values at 
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mesh points outside of Ω must be expressed by values 
at internal and boundary nodes. This is easily achieved 
by using interpolating polynomials of the second degree 
along grid lines in both directions x and y and 
conserving second order accuracy of the approximation. 
 Equation (29) is used with formulae (35) and (36) 
to approximate the boundary values of w. 
 The linear finite difference system is quickly 
solved by successive overrelaxation. 
 

RESULTS AND DISCUSSION 
 
 The objective of this study is three fold: in the first, 
the author generates a Laplace operator from elliptic 
differential operators strongly coupled through the 
mixed derivative term without any transformations, in 
the second the author introduces finite difference 
formulas and a corresponding difference scheme with 
high accuracy for problems with curved domains, in the 
third the author applied the treatment to a real problem. 
The objective has been successively treated. 
 In this study the author introduced a simple trick 
based on the simple form of the biquadrate 
characteristic form to generate the well known Laplace 
differential operator from strongly coupled linear 
elliptic system in which the coupling is due to the 
mixed derivative terms. The mixed derivatives can not 
be eliminated by the three well known transformations 
for like systems, Hua et al.[5]. Also, the author 
introduced two simple finite difference formulae (35) 
and (36) with symmetric appearance approximating the 
first order derivatives on curved boundaries up to O(h2) 
that can be considered as a generalization to the well 
known central formulae. Accordingly, we used the five-
point difference operator approximating the Laplacian 
on a square grid which is known to be optimal, and of 
the second order, Birkhoff[12]. We applied our treatment 
to a realistic problem, which appear when modeling the 
distortion of the otolith membrane under gravity forces. 
After elimination of the mixed derivatives no diagonal 
nodes of the central difference operator occur. Since the 
values at mesh points neighboring the boundary (from 
inside and outside) are also approximated with O(h2). 
The total finite difference equation system has an order 
of consistency up to the second order.   
 The absolute value of the displacement m,nd  at the 

point (0.032 m, 0.032 n) is 2 2
m,n m,n m,nd (u ) (v ) ,= +  its 

slope with regard to the positive x-axis is m,n m,n(v / u ). A 

displacement m,nd  is considered as positive if the 

calculated value of v is positive. Otherwise it is 
negative. 
 Three sets of numerical experiments were 
performed. 
 In the first one the membrane was rotated in steps 
of α = π/12 through 2π about the x-axis starting from its 
normal equilibrium position, β and γ were maintained at 
0. Physically the head was turned through 360° in steps 
of 15° by first raising the right ear (Fig. 3). 
 In the second set the membrane was rotated in 
steps of β = π/12 through 2π about the y-axis starting 
from its normal equilibrium position, α and γ were 
maintained at 0. Physically the head was turned from its 
normal upright position through 360° in steps of 15° by 
first raising the nose (Fig. 4). 
 In the third set the acceleration due to gravity was 
allowed to vary according to Table 1, thus modeling 
gravity conditions on the surfaces of Earth, Moon, 
Mars, Venus and Jupiter (Fig. 5). 
 In contrast to Twizell's results[16], no perturbation 
of the sinusoidal behavior of the displacement curves 
has been observed in the neighborhood of α = 45° (see 
Fig. 3). 
 
Table 1: Acceleration due to gravity on the surface of Earth, Moon, 

Mars, Venus and Jupiter 

Surface G (cm sec−2) 
Earth 981 
Moon 162 
Mars 373 
Venus 873 
Jupiter 2551 

 

 
 
Fig. 3: Displacements dm,n for nodes 5, 18, 35 as a 

function of α on the surface of the Earth 
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Fig. 4: Displacements dm,n  for nodes 7, 11, 17, 46 as a 

function of β on the surface of the Earth 
 

 
 
Fig. 5: Displacements dm,n for the node 18 as a 

function of α on the surfaces of Jupiter (J), 
Earth (E), Venus (V), Mars (M), and Moon 
(MN) 

 
This expected result might be explained by the fact that 
the discontinuity in the definition of the boundary 
curves has been transferred in the present study from 
nodes A and B to places which are no more mesh 
points. 
 The results presented in (Figs. 3, 4 and 5) are in 
full agreement with those obtained by Castillo et al.[19] 

and Youssef et al.[15] in applying standard finite 
element, isoperimetric finite element method and 
variational techniques.   
 

CONCLUSION 
 
 The objective of the study has completely 
achieved. The finite difference formulas introduced can 
be used in other problems with curved boundaries. The 
efficient methods used in treating the Laplace operators 
can be used directly to problems with mixed 
derivatives. 
 In comparison with the results of Twizell[16] which 
is problem specific and only obtains a first order 
accuracy due to linear Lagrange interpolation for mesh 
points adjacent to the boundary this treatment is more 
accurate. Moreover the traditional computational work 
is straight forward; the banded matrix of the finite 
difference system is sparse and well adapted for 
iterative solution methods and has band width at most 7 
instead of at least 9. Although, the number of equations 
in the algebraic system is increased linearly (3n) instead 
of (2n) the accuracy is increased quadratically. 
 In comparison with the results of Youssef et al.[15] , 
Twizel and Curran[17], Castillo et al.[18,19] with the finite 
element, isoperimetric finite element, boundary element 
and boundary fitted coordinates, the computational 
work as well as the theoretical treatment introduced in 
this study is more straightforward easy, convenient and 
at the same time gives the same results. The numerical 
results illustrate the high efficiency and reliability of the 
treatment. This approach can be applied with slight 
modifications to problems which are not elliptic or 
strongly coupled because the mathematical work in this 
studyis more simple than any other transformations. 
 

ACKNOWLEDGEMENT 
  
 The author is most grateful to prof. F. Ebersoldt 
Grahard Merkator University at diusburg for several 
helpful discussions and valuable comments and 
suggestions also great thanks to prof. S. I. Zaki for the 
time he spent in reading the manuscript and his many 
helpful comments. 
  

REFERENCES 
 
1. Bube, K.P. and J.C. Strikwerda, 1983. Interior 

regularity estimates for elliptic systems of 
difference equations. SIAM J. Numr. Anal., 20: 
653-670. DOI: 10.1137/0720044. 



J. Math. & Stat., 4 (4): 236-244, 2008 
 

 244 

2. Krupchyk, K., W.M. Seiler and J. Tuomela, 2006. 
Overdetermined elliptic systems, found. Comput. 
Math. 6: 309-351. DOI: 10.1007/s10208-004-
0161-y. 

3. Strain, J., 2007. Locally-corrected spectral methods 
and overdetermined elliptic systems. J. Comput. 
Phys.,224:1243-1254. DOI: 
10.1016/j.jcp.2006.11.017. 

4. Adams, J.C. and P. Smolarkiewicz, 2001. Modified 
multigrid for 3D elliptic equations with cross-
derivatives. Applied Math. Comput., 121: 301-312. 

       DOI: 10.1016/s0096-3003(00)00004-7. 
5. Hua Loo Keng, Lin Wie and Wu Ci-Quian, 1985. 

Second-order Systems of Partial Differential 
Equations in the Plane. Pitman Publishing 
Program, London, ISBN: 9780273086451. 

6. Pao, C.V., 2005. Strongly coupled elliptic systems 
and applications to Lotka-Volterra models with 
cross-diffusion. Nonlinear Anal., 60: 1197-1217. 
DOI: 10.1016/j.na.2004.10.008. 

7. Michlin, S.G., 1978. Partielle 
Differentialgleichungen in der mathematischen 
physik, verlag harri deutsch, thun-frankfurt/main. 
http://openlibrary.org/b/OL4512928M. 

8. Ehrlich, L. W., 1971. Solving the biharmonic 
equation as coupled finite difference equations. 
SIAM J. Numr. Anal., 8: 278-287.       DOI: 
10.1137/0708029. 

9. Van Blerk J.J. and J.F. Botha, 1993. Numerical 
solution of partial differential equations on curved 
domains by collocation. Numerical Methods for 
Partial Differential Equations, 9: 357-371. 
http://www3interscience.wiley.com/journal/110543
738/abstract.  

10. Barbeiro, S. and J.A. Ferreira, 2005. A 
superconvergent linear FE approximation for the 
solution of an elliptic system of PDEs. J. Comput. 
Applied Math., 177: 287-300. DOI: 
10.1016/j.cam.2004.09.20. 

11. Adibi, H. and J. Es'haghi, 2007. Numerical 
solution for biharmonic equation using multilevel 
radial basis functions and domain decomposition 
methods. Applied Math. Comput., 186: 246-255. 
DOI: 10.1016/j.cam.2006.06.123. 

 
 
 
 
 
 
 
 
 

12. Birkhoff, G. and S. Gulati, 1974. Optimal few-
point discretizations of linear source problems. 
SIAM J. Numer. Anal., 11: 700-728. DOI: 
org/10.1137/0711057. 

13. Jaeger, R., A. Takagi and T. Haslwanter, 2002. 
Modeling the relation between head orientations 
and otolith responses in humans. Hearing Res., 
173: 29-42. DOI.10.1016/s0378-5955(02)00485-9. 

14. Hudetz, W.J., 1973. A Computer simulation of the 
otolith membrane. J. Comput. Biol. Med., 3: 355-
369. http:// 
www.ncbi.nlm.nih.gov/pubmed/4777732. 

15. Youssef, I.K., A.E. Abu-Sabh and B.I. Bayoumi, 
2002. Isoparametric rectangular finite element 
treatment for the otolith membrane distortion. 
Proceedings of International Conference on 
Mathematics: Trends and Developments, Dec. 28-
31, The Egyptian Mathematical Society, Cairo, pp: 
103-118.  

16. 16. Twizel, E.H., 1980. A variable gravity model 
of the otolith membrane. J. Appl. Math. Model., 4: 
82-86. DOI: 10.1016/0307-904x(80)90110-9. 

17. Twizel, E.H. and D.A.S. Curran, 1977. A finite 
element model of the otolith membrane, J. Comput. 
Bio. Med., 7: 131-141. 
http://www.ncbi.nlm.nih.gov/pubmed/852276. 

18. Castillo, J.E. G. McDermott, M. McEachern and 
J.A. Richardson, 1992. Comparative analysis of 
numerical techniques applied to a model of the 
otolith membrane. J. Comput. Math. Applic., 24: 
133-141. http:// 
cat.inist.fr/?aModele=affichen&cpsidt=4871972. 

19. Castillo, J.E. M. McEachern and J. Richardson, 
1994. Modelling the otolith membrane using 
boundary-fitted coordinates. J. Appl. Math. 
Modell., 18: 391-399. DOI: 
10.1016/0307.904x(94)90225-9. 

 
 


