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Abstract: Problem statement: Classifying irreducible complex representations of an abstract group 
has been always a problem of interest in the field of group representations. In our study, we considered 
a linear representation of the braid group on three strings, namely, Krammer's representation. The 
objective of our work was to study the irreducibility of a specialization of Krammer's representation. 
Approach: We specialized the indeterminates used in defining the representation to non zero complex 
numbers and worked on finding invariant subspaces under certain conditions on the indeterminates. 
Results: we found a necessary and sufficient condition that guarantees the irreducibility of Krammer’s 
representation of the braid group on three strings. Conclusion: This was a logical extension to 
previous results concerning the irreducibility of complex specializations of the Burau representation. 
The next step is to generalize our result for any n, which might enable us to characterize all irreducible 
Krammer’s representations of various degrees. 
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INTRODUCTION 

 
 Let Bn be the braid group on n� strings. There are 
many kinds of representations of Bn. The earliest was 
the Artin representation, which is an embedding            
Bn � Aut(Fn), the automorphism group of a free group 
on n generators[1]. Applying the free differential 
calculus to elements of Aut (Fn) sometimes gives rise to 
linear  representations  of  Bn  or  some  of its 
subgroups. The Burau and Krammer’s representations 
arise this way.  It  has  been  shown that the Burau 
representation of Bn is not faithful for n�6[4]. For n = 3, 
it was proved that the Burau representation is indeed 
faithful[1]. 
 The representation, introduced by D. Krammer, is 
the map K (q,t) : Bn � GL(m, Ζ [q±1, t±1]), where m�= n 
(n-1)/2 and q,t are two variables. What distinquishes 
this representation from others is that Krammer’s 
representation is a faithful representation for all n�3[3]. 
In our study, we consider the braid group on three 
strings and we specialize the indeterminates q and t�� to 
non zero complex numbers. Our main theorem, 
Theorem 5, gives a necessary and sufficient condition 

for the specialization of Krammer’s representation of 
B3 to be irreducible. 
 

MATERIALS AND METHODS  
 
Definition 1[1]: The braid group on n �strings, Bn, is the 
abstract group with presentation Bn =  
 

1 n 1 i i 1 i i 1 i i 1

i j j i

, , / for i  1,...,  n 2,

if i j  2 
− + + +�σ σ σ σ σ = σ σ σ = −

σ σ = σ σ − ≥ �

�

 

 
 The generators 1, n 1, −σ σ� are called the standard 

generators of Bn. 
 Let us recall the Lawrence-Krammer representation 
of braid groups[3]. This is a representation of Bn in 
GL m  ( Ζ [t±1, q±1]) = Aut (V0), where m� = n (n-1)/2 and 
V0 is the free module of rank m over Ζ [t±1, q±1]. The 
representation is denoted by K (q,t). For simplicity, we 
write K instead of K(q, t). 
 
Definition 2[3]: With respect to i, j 1 i j n{x } ≤ ≤�

, the free 
basis of V0, the image of each Artin generator under 
Krammer’s representation is written as: 
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 Using the Magnus representation of subgroups of 
the automorphism group of a free group with three 
generators, we determine Krammer’s representation  
K(q,t): B3 � GL(3 ,� Ζ [q±1, t±1]) , where: 
 

2

1

tq 0 0
K( ) tq(q 1) 0 q

0 1 1 q

� �
	 


σ = −	 

	 
−� �

 

and 
 

2
2

2

1 q q 0
K( ) 1 0 tq (q 1)

0 0 tq

−� �
	 
σ = −	 

	 

� �

 

 
 Here Ζ [q±1, t±1] is the ring of Laurent polynomials 
on two variables. Specializing t� and q to non zero 
complex numbers, we consider the complex linear 
representation K (q,t): B3 � GL(3,C). We show that the 
only non-zero invariant subspace under the action of the 
specialization of Krammer’s representation of B3 

coincides with the vector space C3. Here, we regard 
M3(C) as acting from the left on column vectors so that 
eigenvectors and invariant subspaces lie in C3. 
 

RESULTS 
 

In this section, we find a necessary and sufficient 
condition for the irreducibility of Krammer’s 
representation of 3B .  

 
Theorem 3: For (q,t)∈ (C*)2, Krammer’s representation 
K(q, t):  B3 � GL (3,C) is irreducible if t ≠ -1, q3t ≠ 1 
and q3t2 ≠ 1. 
 
Proof: For simplicity, we write K(a) to denote  K(q, t) 
(a), where a ∈ B3

.  We consider the matrix that 
corresponds to the image of the element 1 2 1σ σ σ  under 
Krammer’s representation. Direct computations show 
that: 

4

3
1 2 1

2

0 0 q t
K( ) 0 q t 0

q t 0 0

� �
	 


σ σ σ = 	 

	 

� �

 

 
 The eigenvalues of K( 1 2 1σ σ σ ) are –q3t, q3t and q3t. 
Let us diagonalize the matrix corresponding to this 
element by an invertible matrix, say T and conjugate 
the matrices K(

1σ ), K( 2σ ) and K ( 2
1σ ) by the same 

matrix T. The invertible matrix  T is given by: 
 

q q 0
T 0 0 1

1 1 0

−� �
	 
= 	 

	 

� �

 

 
 In fact, a computation shows that: 
 

3

1 3
1 2 1

3

q t 0 0
T K( )T 0 q t 0

0 0 q t

−

� �−
	 


σ σ σ = 	 

	 

� �

 

 
 After conjugation by, we get that: 
 

2 2

1 2 2
1

2 2

1 q q t 1 q q t 1
1

T K( )T 1 q q t 1 q q t 1
2

2q( 1 qt q t) 2q(1 qt q t) 0

−

� �− + − −
	 


σ = − − − +	 

	 
− − − + − +� �

 

 
2 2

1 2 2
2

2 2

1 q q t 1 q q t 1
1

T K( )T 1 q q t 1 q q t 1
2

2q( 1 qt q t) 2q(1 qt q t) 0

−

� �− + − + + −
	 


σ = − + + − +	 

	 
− − + − +� �

 

 
and 

.
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 For   simplicity,   we   still    call T−1 K ( 1 2 1σ σ σ ) T 
by K ( 1 2 1σ σ σ ), T−1K (

1σ )T  by  K (
1σ ) T−1K ( 2σ ) T by 

K( 2σ ) and T −1K (
1σ

2)T  by K (
1σ

2). 
 Now, suppose that S is a non-zero invariant 
subspace of the matrices K(

1σ ), K( 2σ ) and K(
1σ

2). We 
show, under the conditions of the hypothesis, that the 

subspace S becomes the vector space C 3  spanned by 
the  standard  unit  vectors e1 = (1, 0, 0), e2 = (0, 1, 0) 
and e3 = (0, 0, 1). 
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 From the diagonal form of K( 1 2 1σ σ σ ), we see that 
the subspace S contains at least one of e1 or 
ue2+ve3, �where (u, v) ≠  (0, 0). We consider the 
following two cases: 
 
Case 1: Assume that e1 ∈ S. Then we have that 
K(

1σ )(e1) ∈ S, which implies that: 
 

(1- q �-q2 t)e 2 − 2q (−1 − qt�+ q2t)e3 ∈ S (1) 
 
 Also, we have that K(

1σ
2)(e1) ∈S, which implies 

that: 
 
(1−q+q2+q2t−q3t−q4t2)e2−2q(q−1)(q3t2+1)e3 ∈ S (2) 
 
 Notice that if 1 −q−q2t = 0 then −1−qt+q2t ≠  0 
using the hypothesis and so e3 ∈S. Likewise, if 1 − 
q+q2+q2t−q3t−q4t2 = 0 then (q−1) (q3t2+1) ≠ 0 and so e3 
∈S. 
 Thus, we may assume that 1−q−q2t ≠  0 and 
1−q+q2+q2t−q3t−q4t2 ≠  0. (1) and (2) imply that −2q2 
(1+t)(q3t−1)e3 ∈ S and so, by our hypothesis, we get 
that: 
 

e3∈S 
 
 Having proved that e3∈S, we have that K(

1σ ) (e3) 
∈ S. This implies that e2 ∈ S. Hence, we conclude that 
S = C3. 
 
Case  2:  Next  we  assume  that  ue2+ve3  ∈  S where 
(u, v) ≠ (0, 0). Again, we have that K(

1σ ) (ue2+ve3)∈S, 
which implies that: 
 

[(1−q−q2t)u+v]e 1 + [(1−q+q2t)u+v]e2 + 2q(1−q�t+q2t) u 

e3 ∈ S (3) 
 
 Likewise, we have that K( 2σ ) ( ue2+ve3) ∈S, which 
implies that: 
 
[(−1+q+q2t) u−v] e1+[(1−q+q2t)u+v] e2+2q(1−qt+q2t) 
ue3 ∈ S (4) 
 Subtracting (4) from (3), we get that [(1�
q−q2t)u+v]e1∈S. 
 If (1−q−q2t)u+v ≠  0 then e1∈S and so we apply 
case 1. 
 If (1−q−q2t) u+v = 0 then (3) implies that (qt) 
e2+(1−qt+q2t) e3 ∈ S. 

 Having that e2+(−1+q+q2t)e3∈S, we get that 
(1−q3t2)e3∈S. By our hypothesis, we get that e3 ∈ S. It 
follows that e2 and e1 are also in S. Therefore, as in case 

1, we get that S = C 3 . 
 Next, our purpose is to find a necessary and 
sufficient condition that guarantees the irreducibility of 
the complex specialization of Krammer’s representation 
of B3. We will show that the condition in Theorem 3 
stands as a necessary condition for irreducibility as 
well. Therefore, we present our next theorem. 
 
Theorem 4: The complex specialization of Krammer’s 
representation K (q, t): B3 � GL (3, C) is reducible 
under any of the following conditions: 
 
• t = −1 
• q3t = 1 
• q3t2 = 1 
 
Proof: Under each of the conditions of our hypothesis, 
we will find an invariant subspace under the action of 
the complex specialization of Krammer’s representation 
of B3. Recall that the matrices K(

1σ ) and K( 2σ ) that 
will be used in the proof are the ones given in 
Definition 2: 
 
• Assume that t�= −1. Consider the two cases whether 

or not q2 = −1 
 
Case 1: If q2 ≠ −1 then we take the invariant subspace 
as the one generated by the eigenvectors of K(

1σ ), 
namely, m and n. Here m = (0, q, 1)T and n = (−(q2+1), 
−q2 +q−1, 1)T, where, T is the transpose. More 

precisely, we have that K( 2σ )(m) = −
4

2

q
m

q 1+
 

2

2

q
n

q 1
−

+
, K( 2σ ) (n) = −(q2 + 2

1
)m

q 1+
+ 2

1
n

q 1+
. 

 
Case 2: If q2 = −1 then we take the invariant subspace 
to be the one generated by m�= (0, q, 1)T and B = (-1, -1, 
0)T. To see this: 
 
K(

1σ )(m) = m, K(
1σ ) (B) = B−m, K( 2σ ) (m) = B+m, 
K( 2σ )(B) = B 

 
• Assume  that  q3t = 1.  If  q2t = 1  then  q �= 1 = t 

and so the subspace generated by (1, 1, 1)T is 
invariant. Without loss of generality, we assume 
that q2t ≠  1. Here, we consider the two cases 
whether or not qt = −1. 
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Case 1: If qt ≠ −1 then we take the invariant subspace 
to be the one generated by the eigenvectors of K(

1σ ), 

namely m = (0, -1, 1)T, n = (
( 2q t 1)(qt 1)

t(q 1)

− +
−

, tq2+q−1, 

1)T. To see this: 
 

K( 2σ )(m) = (q2t+ 2 2

qt(q 1) qt(q 1)
)m n

(q t 1)(tq 1) (q t 1)(tq 1)
− −−

− + − +
 

 
and 
 

K( 2σ ) (n) = (q2t+ 2 2

1 q q 1
)m n

(q t 1)(tq 1) (q t 1)(tq 1)
− −+

− + − +
 

 
Case 2: If qt� = −1 then we take the invariant subspace 
to be the one generated by m = (0, −1, 1)T and n = (1, q, 
0)T. To see this: 
 

K(
1σ ) (m) = −qm, K(

1σ ) (n) = 1
(n m)

q
− , K( 2σ ) (m) 

= 1
q

(n+m), � K( 2σ )(n) = −qn 

 
• Assume that q3t2 = 1. We take the 1-dimensional 

invariant subspace to be the one generated by the 
vector n�= (q, q2 t+q−1, 1)T. This is true because 
K(

1σ )(n) = (q2t) n and K( 2σ )(n) = (q2t)n. 
 
 Combining Theorem 3 and Theorem 4, we obtain 
our main theorem. 
 
Theorem 5: For (q, t)∈(C*)2 , the specialization of 
Krammer’s representation K (q,t): B3 � GL (3, C) is 
irreducible if and only if t ≠ −1,q3t ≠ 1 and q3t2 ≠  1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION 
 
 So far in the literature, a criterion for the 
irreducibility of  linear representations of the braid 
group, Bn,  of degree n-1 was found. Our goal was to 
extend this work to Krammer’s representation of higher 
degree, namely, n (n − 1)/2. Our main result is a partial 
result that gives a criterion for the irreducibility of 
Krammer's representation only in the case  n = 3. 
 

CONCLUSION 
 
 We have determined the irreducible complex 
specializations of the faithful Krammer’s 
representations of the braid group, B3. A future work is 
to try to characterize all irreducible Krammer’s 
representations of Bn for any value of n. 
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