A Priori Estimation of the Resolvent on Approximation of Born-Oppenheimer

${ }^{1}$ Sabria Bouheroum- Mentri and ${ }^{2}$ Amina Benbernou
${ }^{1}$ Department of Mathematics, University of Annaba B.P. 12 Annaba 23000 Algeria
${ }^{2}$ Department of Mathematics, University of Mostaganem B.P. 227 Mostaganem 27000 Algeria

Abstract

In this study, we estimate the resolvent of the two bodies Shrodinger operator perturbed by a potential of Coulombian type on Hilbert space when h tends to zero. Using the Feschbach method, we first distorted it and then reduced it to a diagonal matrix. We considered a case where two energy levels cross in the classical forbidden region. Under the assumption that the second energy level admits a non degenerate point well and virial conditions on the others levels, a good estimate of the resolvent were observed.

$\underline{\text { Key words: Distorsion, eigenvalues, estimation, resolvent, resonances }}$

INTRODUCTION

The Born-Oppenheimer approximation technical ${ }^{[1]}$ has instigated many works one can find in bibliography the recent papers like ${ }^{[2-5]}$.

It consists to study the behaviour of a many body systems, in the limit of small parameter h as the particles masses (masses of nuclei) tends to infinity; (see the references therein for more information), we can describe it with a Hamiltonian of type $\mathrm{P}=-\mathrm{h}^{2} \Delta_{\mathrm{x}}-\Delta_{\mathrm{y}}+\mathrm{V}(\mathrm{x}, \mathrm{y})$ on $\mathrm{L}^{2}\left(\mathrm{IR}_{\mathrm{x}}^{3} \times \mathrm{IR}_{\mathrm{y}}^{3 \mathrm{p}}\right)$, when h $\rightarrow 0$ and V denote the interaction potentials between the nuclei of the molecule and the nuclei electrons.
The idea is to replace the operator
$\mathrm{Q}(\mathrm{x})=-\Delta_{\mathrm{y}}+\mathrm{V}(\mathrm{x}, \mathrm{y})$ (in, $\mathrm{L}^{2}\left(\mathrm{IR}_{\mathrm{y}}^{3 \mathrm{p}}\right)^{x}$ fixed) by the so-called electronic levels which be a family of its discrete eigenvalues: $\lambda_{1}(x), \lambda_{2}(x), \lambda_{3}(x), \ldots$ and to study the operators P which can be approximativelly given by
$-\mathrm{h}^{2} \Delta_{\mathrm{x}}+\lambda_{\mathrm{j}}(\mathrm{x})$, on $\mathrm{L}^{2}\left(\mathrm{IR}_{\mathrm{x}}^{3}\right)$.
Martinez and Messirdi's works, are about spectral proprieties of P near the energy level E_{0} such that $\inf _{\mathrm{R}^{\mathrm{n}}} \lambda_{\mathrm{j}}$
$\leq \mathrm{E}_{0}$. Martinez in ${ }^{[6]}$, studies the case where $\lambda_{1}(\mathrm{x})$ admits a nondegenerate strict minimum at some energy level λ_{0}, the eigenvalues of P near λ_{0} admits a complete asymptotic expansion in half-powers of $h^{[2]}$.

Messerdi and Martinez ${ }^{[7]}$ considers the case where λ_{2} admits a minimum, such appears resonances for P. He gives an estimation of the resolvent of $O\left(\mathrm{~h}^{-1}\right)$ at the neighbourhood of 0 .

In this study we try to generalize this work to approximate the resolvent of P where V is a potential of Coulombian type at the neighbourhood of a point $\mathrm{x}_{0} \neq 0$.

In fact, we estimate the resolvent of the operator $\mathrm{F}_{\mu}^{\varsigma}$, given by a reduction of the distorted operator $\mathrm{P}_{\mu}^{\varsigma}$, of P modified by a truncature $\varsigma^{[8]}$; and we try to have a good evaluation of the order of $O\left(\mathrm{~h}^{-1 / 2}\right)$.

We apply the Feshbach method to study the distorted operator $\mathrm{P}_{\mu}^{\varsigma}$ which allows us to goback to the initial problem and we put the virial conditions on λ_{1} and λ_{3}.

Hypothesis and results

Hypothesis: Let the operator
$\mathrm{P}=-\mathrm{h}^{2} \Delta_{\mathrm{x}}-\Delta_{\mathrm{y}}+\mathrm{V}(\mathrm{x}, \mathrm{y})$
on $\mathrm{L}^{2}\left(\operatorname{IR}_{\mathrm{x}}^{3} \times \mathrm{IR}_{\mathrm{y}}^{3 \mathrm{p}}\right)$, when h tends to $0 . \quad V(x, y)$ $=\mathrm{V}\left(\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{p}}\right)$ is an interaction potential of Coulombian type
$V(x, y)=\frac{\alpha}{|x|}+\sum_{j=1}^{p}\left[\frac{\alpha_{j}^{+}}{\left|y_{j}+x\right|}+\frac{\alpha_{j}^{-}}{\left|y_{j}-x\right|}\right]+\sum_{\substack{j, k=1 \\ j \neq k}}^{p} \frac{\alpha_{j k}}{\left|y_{j}-y_{k}\right|}$
where $\alpha, \alpha_{\mathrm{j}}^{ \pm}, \alpha_{\mathrm{jk}}$ are real constants, $\alpha>0$ ($\alpha_{\mathrm{j}}^{ \pm}$is the charges of the nuclei).
It is well known that P with domain $\mathrm{H}^{2}\left(\mathrm{IR}_{\mathrm{x}}^{3} \times \mathrm{IR}_{\mathrm{y}}^{3 \mathrm{p}}\right)$ is essentially self-adjoint on
$L^{2}\left(\operatorname{RR}_{x}^{3} \times \operatorname{IR}_{y}^{3 p}\right)$.

Corresponding Author: Sabria Bouheroum- Mentri, Department of Mathematics, University of Annaba B.P. 12 Annaba 23000 Algeria

For $\quad \mathrm{x} \neq 0, \quad \mathrm{Q}(\mathrm{x})=-\Delta_{\mathrm{y}}+\mathrm{V}(\mathrm{x}, \mathrm{y})$ with domain and for $\left.\delta\right\rangle 0$, we also note by:
$H^{2}\left(\operatorname{IR}_{y}^{3 p}\right)$ is essentielly self-adjoint on $L^{2}\left(\operatorname{IR}_{y}^{3 p}\right)$

Remark 1.1: The domain of $Q(x)$ is independent of x. To describe our main results we introduce the following assumptions:
(H1) $\forall \mathrm{x} \in \mathrm{IR}^{3 \mathrm{n}} \backslash\{0\}$, \# $\sigma_{\text {disc }}(\mathrm{Q}(\mathrm{x})) \geq 3$
Let λ_{0} an energy level such that: $\lambda_{\mathrm{j}} \cap\left[-\infty, \lambda_{0}[\leq 3\right.$, denoting $\lambda_{1}(x), \lambda_{2}(x), \lambda_{3}(x)$ the first three eigenvalues of $Q(x)$.
(H2) we assume that the first tree eigenvalues λ_{j}, $\forall \mathrm{j} \in\{1,2,3\}$ are simple at infinity:
$|\mathrm{x}| \geq \mathrm{C} \Rightarrow \inf _{\mathrm{j}, \mathrm{k} \in\{1,2,3\}}\left|\lambda_{\mathrm{j}}(\mathrm{x})-\lambda_{\mathrm{k}}(\mathrm{x})\right| \geq \frac{1}{\mathrm{C}}$
and
$\left.\underset{\mathrm{j}, \mathrm{k} \in\{1,2,3\}}{\lim } \operatorname{dist}\left(\lambda_{\mathrm{j}}(\mathrm{x})-\lambda_{\mathrm{k}}(\mathrm{x})\right) \backslash\left\{\lambda_{1}(\mathrm{x}), \lambda_{2}(\mathrm{x}), \lambda_{3}(\mathrm{x})\right\}\right\rangle 0$
this means
$\left.\exists \delta_{1}\right\rangle 0, \forall \mathrm{x} \neq 0$, and $\quad \lambda \in \sigma(\mathrm{Q}(\mathrm{x})) \backslash\left\{\lambda_{1}(\mathrm{x}), \lambda_{2}(\mathrm{x}), \lambda_{3}(\mathrm{x})\right\}$, we have
$\inf _{1 \leq j \leq 3}\left|\lambda-\lambda_{j}(x)\right| \geq \delta_{1}$
Remark1.2: By Reed-Simon' results ${ }^{[9]}$, the first eigenvalue is automatically simple.
(H3) we suppose that $\exists \mathrm{c}\rangle 0$ such that

$$
\begin{equation*}
\forall \mathrm{x} \in \mathrm{IR}^{3} \backslash\{0\}, \quad \lambda_{\mathrm{j}} \leq \mathrm{c}+\frac{\alpha}{\mathrm{x}}, \quad \mathrm{j} \in\{1,2,3\} \tag{5}
\end{equation*}
$$

Remark 1.3: This hypothesis is still true for $\alpha_{ \pm}\langle 0$; λ_{1} also verifies (H3) and we can see with a simple computation that there exists c_{1} such that for all $x \neq 0$
$\lambda_{1}(\mathrm{x}) \geq-\mathrm{c}_{1}+\frac{\alpha}{|\mathrm{x}|}$
(H4) We are in the situation where $\lambda_{2}(x)$ admits a nondegenerate strict minimum; creating a potential well
of the shape $\Gamma:\left\{\begin{array}{l}v_{0}=\inf _{x \in \mathbb{R}-\{0\}} \lambda_{2}(x), \quad v_{0}\left\langle\lambda_{0}(x)\right. \\ \left.\left.\lambda_{2}^{-1}\left(v_{0}\right)=r_{0}, \lambda_{2}(x)\right\rangle 0, \quad \lambda_{2}^{\prime \prime}\left(r_{0}\right)\right\rangle 0\end{array}\right.$
$\exists \delta_{2}>0$ such that
$\forall \mathrm{x} \in \mathrm{R}^{3} \backslash\{0\}, \quad \lambda_{1}(\mathrm{x})+\delta_{2}\left\langle\min \left\{\lambda_{2}(\mathrm{x}), \lambda_{3}(\mathrm{x})\right\}\right.$
we note by

$$
K=\left\{x \in R, \lambda_{2}(x)=\lambda_{3}(x)\right\}
$$

$\mathrm{K}_{\delta}=\{\mathrm{x} \in \operatorname{IR}, \operatorname{dist}(\mathrm{x}, \mathrm{K}) \leq \delta\}$
Let $\left.\left.\delta_{0}\right\rangle \delta_{1}\right\rangle 0$ such that

* $\quad \mathrm{K}_{\delta_{0}} \backslash \mathrm{~K}_{\delta_{1}}$ is simply connex
* $\quad \mathrm{K}_{2 \delta_{0}} \cap \mathrm{U}=\varnothing$
* The connex composites of $\mathrm{IR}^{3} \backslash \mathrm{~K}_{\delta_{1}}$ are simply connex
(H5) Virial Conditions
It exists d$\rangle 0$ such that for $\mathrm{j} \in\{2,3\}$,
The resonances of P are obtained by an analytic distorsion introduced by Hunziker ${ }^{[8]}$ and so they are defined as complex numbers $\rho_{j}\left(j=1, \ldots, N_{0}\right)$ such that for all $\varepsilon\rangle 0$ and μ sufficiently small, $\operatorname{Im} \mu>0$ $\rho_{\mathrm{j}} \in \sigma_{\text {disc }}(\mathrm{P} \mu){ }^{[3]}$. We denote de set of the resonances of P by: $\sigma(\mathrm{P})=\underset{\mathrm{Im} \mu\langle 0, \mu\langle\varepsilon \varepsilon}{\cup} \sigma_{\text {disc }}\left(\mathrm{P}_{\mu}\right)$
Where P_{μ} is obtained by the analytic distorsion satisfying: $P_{\mu}=U_{\mu} P_{\mu} U_{\mu}^{-1}$. So, P_{μ} can be extended to small enough complex values of μ as an analytic family of type ${ }^{[9]}$.

The analytic distorsion U_{μ}, for μ small enough associated to v is defined on $\mathrm{C}_{0}^{\infty}\left(\operatorname{IR}_{\mathrm{x}}^{3} \times \mathrm{IR}_{\mathrm{y}}^{3 \mathrm{p}}\right)$ by $\mathrm{U}_{\mu} \varphi(\mathrm{x}, \mathrm{y})=\varphi\left(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}), \mathrm{y}_{1}+\mu \mathrm{v}\left(\mathrm{y}_{1}\right), \ldots, \mathrm{y}_{\mathrm{p}}+\mu \mathrm{v}\left(\mathrm{y}_{\mathrm{p}}\right)\right)|\mathrm{J}|^{1 / 2}$ where $\mathrm{J}=\mathrm{J}(\mathrm{x}, \mathrm{y})=\operatorname{det}\left(1+\mu \operatorname{Dv}(\mathrm{x}) \prod_{\mathrm{j}=1}^{\mathrm{p}} \operatorname{det}\left(1+\mu \mathrm{D}\left(\mathrm{y}_{\mathrm{j}}\right)\right)\right.$ is the Jacobien of the transformation $\Psi_{\mu}:(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}), \mathrm{y}_{1}+\mu \mathrm{v}(\mathrm{x}), \ldots, \mathrm{y}_{\mathrm{p}}+\mu \mathrm{v}(\mathrm{x})\right)$ and $v \in C^{\infty}\left(R^{3}\right)$ is a vector field satisfying :
$\exists N\rangle 0$, large enough such that: $\left\{\begin{array}{l}v(x)=0, \text { si }|x| \leq \frac{2}{N} \\ v(x)=x, \text { si }|x| \geq r_{0}-\varepsilon^{\prime}\end{array}\right.$
$\left(\varepsilon^{\prime}\right\rangle 0$, small enough, $\left.\left.\left|\mathrm{r}_{0}\right|\right\rangle \frac{3}{\mathrm{~N}}+\varepsilon^{\prime}\right)$.

Remark 1.4: The distorsion is close to the potential well.

We localise our operator near the well v_{0} by introducing a truncate function $\varsigma \in \mathrm{C}^{\infty}\left(\mathrm{IR}^{3}\right)$ satisfying:
$\left\{\begin{array}{l}\varsigma=1, \text { si }|x| \geq \frac{2}{N} \\ \varsigma=0, \text { si }|x| \leq \frac{3}{2 N}\end{array}\right.$
fixing $\left.\alpha_{0}\right\rangle \mathrm{v}_{0}$, we set
$\mathrm{Q}_{\mu}^{\varsigma}(\mathrm{x})=-\mathrm{U}_{\mu} \Delta_{\mathrm{y}} \mathrm{U}_{\mu}^{-1}+\varsigma(\mathrm{x}) \mathrm{V}_{\mu}(\mathrm{x}, \mathrm{y})+(1-\varsigma(\mathrm{x})) \alpha_{0}$
$\mathrm{V}_{\mu}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}), \mathrm{y}_{1}+\mu \mathrm{v}(\mathrm{x}), \ldots, \mathrm{y}_{\mathrm{p}}+\mu \mathrm{v}(\mathrm{x})\right)$
We also denote:
$\mathrm{P}_{\mu}^{\varsigma}=-\mathrm{h}^{2} \mathrm{U}_{\mu} \Delta_{\mathrm{x}} \mathrm{U}_{\mu}^{-1}+\mathrm{Q}_{\mu}^{\varsigma}(\mathrm{x})$
With domain $\mathrm{H}^{2}\left(\mathrm{IR}_{\mathrm{x}}^{3}\right)$.

Remark1.5: Like in ${ }^{[10]}$, near $v_{0}, \sigma\left(\mathrm{P}_{\mu}\right)$ and $\sigma\left(\mathrm{P}_{\mu}^{\varsigma}\right)$ coincide up to exponentially small error terms. For this we will study $\mathrm{P}_{\mu}^{\varsigma}$ instead of P_{μ}.

RESULTS

Here we write the results of our works as following:

Theorem 1.6: Under assumptions (H1) to (H5) and for $\mu \in \mathrm{C},|\mu|$ and h small enough, we have
$\left\|\left(\mathrm{F}_{\mu}^{\varsigma}-\mathrm{z}\right)^{-1}\right\|=\mathrm{O}\left(\mathrm{h}^{-1 / 2}\right)$
where F_{μ}^{ς} is the Feshbach reduced operator of P_{μ}^{ς} verifying
$\mathrm{F}_{\mu}^{\varsigma}=-\frac{\mathrm{h}^{2}}{(1+\mu)^{2}} \Delta_{\mathrm{x}} \mathrm{I}+\mathrm{M}_{\mu}^{\varsigma}+\tilde{\mathrm{R}}_{\mu}^{\varsigma}$ and the error $\tilde{\mathrm{R}}_{\mu}^{\varsigma}$ is satisfying: $\left\|\tilde{R}_{\mu}^{\varsigma}\right\|_{L\left(H^{m} \oplus H^{m}, H^{m-1} \oplus H^{m-1}\right.}=O\left(h^{2}\right)$
We need for our proof the main important theorem for the operator $\mathrm{P}_{2, \mu}^{\varsigma}$ which is the distorsion of the operator $\mathrm{P}_{2, \mu}$:
$\mathrm{P}_{2, \mu}^{\varsigma}=-\mathrm{h}^{2} \mathrm{U}_{\mu} \Delta_{\mathrm{x}} \mathrm{U}_{\mu}^{-1}+\lambda_{2}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}))$
at the neighbourhood of point x_{0} of the well such that ($\left.\forall \varepsilon^{\prime}\right\rangle 0$,small enough, $\left|\left|\mathrm{x}_{0}\right|\right\rangle \mathrm{r}_{0}+\varepsilon^{\prime}$), the distorsion $\mathrm{P}_{2, \mu}$ is in fact a dilatation of angle θ such that $\mathrm{e}^{\theta}=(1+\mu)$. We denote it by $\mathrm{P}_{2, \theta}{ }^{[11]}$ and is defined by
$\mathrm{P}_{2, \theta}=-\mathrm{h}^{2} \Delta_{\mathrm{x}}+\lambda_{2}\left(\mathrm{xe}^{\theta}\right)$
Let $e_{j}, j=1, \ldots, N_{0}$ be the eigenvalues of the operator $\left.\mathrm{P}_{0}=-\frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}}+\frac{1}{2} \lambda_{2}^{\prime \prime}\left(\mathrm{r}_{0}\right)\left(\mathrm{r}-\mathrm{r}_{0}\right)^{2}\right)$ and γ_{j} complex circles centred at $e_{j} h$.

Theorem 1.7: Under assumptions (H1)- (H5), for $\theta \in \mathrm{C},|\theta|$ and h small enough and for ($\left.\forall \varepsilon^{\prime}\right\rangle 0$,small enough, $\left|\left|x_{0}\right|\right\rangle r_{0}+\varepsilon^{\prime}$), the resolvent of the distorted operator defined by (9) satisfies the estimate
$\left\|\left(\mathrm{P}_{2, \theta}-\mathrm{z}\right)^{-1}\right\|=\mathrm{O}\left(\mathrm{h}^{-1 / 2}\right)$, uniformly for $z \in\left[-\varepsilon^{\prime}-x_{0}, C_{0} h-x_{0}\right]$ outside of the γ_{j}.

Before we prove this theorem, we introduce the socalled Grushin problem associated to the distorted operator P_{μ}.

The reduced Feshbach operator: Now, we try to reduce the operator $\mathrm{P}_{\mu}^{\varsigma}$ by the Feshbach method into a matricial operator of type: $-\frac{h^{2}}{(1+\mu)^{2}} \Delta_{x} I+M_{\mu}^{\varsigma}+\tilde{R}_{\mu}^{\varsigma}$
where M_{μ}^{ς} is the matrix of eigenvalues of Q_{μ}^{ς} and $\tilde{R}_{\mu}^{\varsigma}$ is the remainder of order $O\left(\mathrm{~h}^{2}\right)$

The study of the distorted operator $\mathrm{P}_{\mu}^{\varsigma}$: We begin our study by the operator $\mathrm{Q}_{\mu}^{\varsigma}$ which is defined by: $\mathrm{Q}_{\mu}^{\varsigma}=\mathrm{U}_{\mu} \mathrm{Q}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x})) \mathrm{U}_{\mu}^{-1}$
For $x \neq 0$, we denote also
$\tilde{Q}_{\mu}(\mathrm{x})=\mathrm{Q}_{\mu}(\mathrm{x})-\frac{\alpha}{|\mathrm{x}+\mu \mathrm{v}(\mathrm{x})|}$ and $\tilde{\lambda}_{\mathrm{j}}(\mathrm{x})=\lambda_{\mathrm{j}}-\frac{\alpha}{|\mathrm{x}|}, \mathrm{j} \in\{1,2,3\}$
Let C (x) be a family of continuous closed simple loop of C enclosing $\tilde{\lambda}_{\mathrm{j}}(\mathrm{x}), \mathrm{j} \in\{1,2,3\}$ and having the rest of $\sigma\left(\tilde{\mathrm{Q}}_{0}(\mathrm{x})\right)$ in its exterior. The gap condition (4) permits us to assume that:
$\min _{x \in \mathbb{R}^{3}} \operatorname{dist}\left(\gamma(\mathrm{x}), \sigma\left(\tilde{\mathrm{Q}}_{0}(\mathrm{x})\right) \geq \frac{\delta}{2}\right.$
Using the relation (6) and (H3), we can take C (x) compact in a set of C. So, we deduce from (11) the following result ${ }^{[3]}$.

Lemma 2.1

1. $\forall \mathrm{j}, \mathrm{k} \in \quad\{1, \ldots, \mathrm{p}\}, \quad \mathrm{j} \neq \mathrm{k}, \beta \in \mathrm{IN}^{3 \mathrm{p}}, \quad$ the operators $\frac{1}{\left|\mathrm{y}_{\mathrm{j}} \pm \mathrm{x}\right|}\left(\tilde{\mathrm{Q}}_{0}(\mathrm{x})-\mathrm{z}\right)^{-1}, \quad \frac{1}{\left|\mathrm{y}_{\mathrm{j}}-\mathrm{y}_{\mathrm{k}}\right|}\left(\tilde{\mathrm{Q}}_{0}(\mathrm{x})-\mathrm{z}\right)^{-1}$ and $\partial^{\beta}\left(\tilde{\mathrm{Q}}_{0}(\mathrm{x})-\mathrm{z}\right)^{-1}$ are uniformly bounded on $L^{2}\left(\operatorname{IR}_{y}^{3 p}\right), x \in \operatorname{IR}^{3}, z \in C(x)$
2. If $\mu \in$ small enough, then for $x \in \mathbb{R}^{3}, z \in$, the operator $\left(\tilde{Q}_{\mu}(x)-z\right)^{-1}$ exists and satisfies uniformly $\left(\tilde{\mathrm{Q}}_{\mu}(\mathrm{x})-\mathrm{z}\right)^{-1}-\left(\tilde{\mathrm{Q}}_{0}(\mathrm{x})-\mathrm{z}\right)^{-1}=\mathrm{O}|\mu|$.

Now we define for $\mu \in C$ small enough, the spectral projector associated to $\tilde{\mathrm{Q}}_{\mu}$ and the interior of $\mathrm{C}(\mathrm{x})$.
$\pi_{\mu}(\mathrm{x})=\frac{1}{2 \pi} \int_{\gamma(\mathrm{x})}\left(\mathrm{z}-\tilde{\mathrm{Q}}_{\mu}(\mathrm{x})\right)^{-1}$ and $\operatorname{rg} \pi_{\mu}=1$
This projector permits us to construct the Grushin problem associated to the operator $\mathrm{P}_{\mu}^{\varsigma}$.

Problem of Grushin associated with the operator $\mathrm{P}_{\mu}^{\varsigma}$: We begin this section by the result which is (lemma1-1 of ${ }^{[12]}$ and proposition 5-1 of ${ }^{[7]}$.

Proposition 2.2: Assume (H1), (1.7), (1.9), $(1,10)$ hold, then for $\mu \in C, z \in C$ small enough, there exist N functions $\omega_{\mathrm{k}, \mu}(\mathrm{x}, \mathrm{y}) \in \mathrm{C}^{0}\left(\mathrm{IR}^{3}, \mathrm{H}^{2}\left(\mathrm{IR}^{3 \mathrm{p}}\right)\right),(\mathrm{k}=1,2,3)$, depending analytically on $\mu \in$, such that
i. $\left\langle\omega_{j, \mu} \mid \omega_{\mathrm{k}, \mu}\right\rangle_{\mathrm{L}^{\mathrm{c}}\left(\mathbb{R}^{3 \mathrm{P}}\right)}=\delta_{\mathrm{j}, \mathrm{k}}$
ii. For $|x| \geq \frac{3}{N},\left(\omega_{k, \mu}\right)_{1 \leq k \leq 3}$ form a basis of $\operatorname{Ran} \pi_{\mu}(x)$ iii. $\in \mathrm{C}^{\infty}\left(\left\{|\mathrm{x}|<\frac{2}{\mathrm{~N}}\right\}, \mathrm{H}^{2}\left(\mathrm{IR}^{3 \mathrm{p}}\right)\right)$
iv. For $|x|$ large enough, $\omega_{\mathrm{k}, \mu}(\mathrm{x})(\mathrm{x})$ is an eigen function of $Q_{\mu}(x)$ associated with $\lambda_{\mathrm{k}}(\mathrm{x}+\mu \omega(\mathrm{x}))$
We first introduce the family $\left\{\omega_{1, \mu}, \omega_{2, \mu}, \omega_{3, \mu}\right\}$ of $\operatorname{Ran} \pi_{\mu}(\mathrm{x})$ depending analytically on μ for μ small enough and normalized in $L^{2}\left(\operatorname{IR}_{y}^{3 p}\right)$ by $\left\langle\omega_{\mathrm{i}, \mu}(\mathrm{x}), \omega_{\mathrm{j}, \overline{\mathrm{L}}}(\mathrm{x})\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}_{\mathrm{y}}^{3 \mathrm{j}}\right)}=\delta_{\mathrm{ij}}$ and then we associate the two following operators

$$
\begin{aligned}
& \mathrm{R}_{\mu}^{-}: \bigoplus_{1}^{3} \mathrm{~L}^{2}\left(\mathrm{IR}^{3}\right) \rightarrow \mathrm{L}^{2}\left(\mathrm{IR}^{3 \mathrm{p}}\right) \\
& \mathrm{u}^{-}=\left(\mathrm{u}_{1}^{-}, \mathrm{u}_{2}^{-}, \mathrm{u}_{3}^{-}\right) \rightarrow \mathrm{R}_{\mu}^{-} \mathrm{u}^{-}=\sum_{\mathrm{k}=1}^{3} \mathrm{u}_{\mathrm{k}}^{-} \omega_{\mathrm{k}, \mu}(\mathrm{x}) \\
& \mathrm{R}_{\mu}^{+}=\left(\mathrm{R}_{\mu}^{-}\right)^{*}: \mathrm{L}^{2}\left(\mathrm{IR}^{3 \mathrm{p}}\right) \rightarrow \oplus_{1}^{3} \mathrm{~L}^{2}\left(\mathrm{IR}^{3}\right) \\
& \mathrm{u}={ }^{\mathrm{t}}\left(\left\langle\mathrm{u}, \omega_{\bar{\mu}, 1}\right\rangle_{\mathrm{Y}},\left\langle\mathrm{u}, \omega_{\bar{\mu}, 2}\right\rangle_{\mathrm{Y}},\left\langle\mathrm{u}, \omega_{\bar{\mu}, 3}\right\rangle_{\mathrm{Y}}\right.
\end{aligned}
$$

where ${ }^{t} A$ denote the transposed of the operator A, $\langle., .\rangle_{\mathrm{Y}}$ the inner product on $\mathrm{L}^{2}\left(\operatorname{IR}^{3 \mathrm{p}}\right)$ and $\left\langle., \omega_{\bar{\mu}, 1}\right\rangle_{\mathrm{Y}}$ is the adjoin of the operator $L^{2}\left(\operatorname{IR}^{n}\right) \ni v \mapsto v_{\mu, j} \in L^{2}\left(\operatorname{IR}^{n+P}\right)$,
$\mathrm{u}_{\mu, \mathrm{k}}=\mathrm{u}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}))$ and we put $\hat{\pi}_{\mu}=1-\pi_{\mu}$, where $\pi_{\mu}=\left\langle u, \omega_{\bar{\mu}, 1}\right\rangle_{\mathrm{Y}} \omega_{\mu, 1}+\left\langle\mathrm{u}, \omega_{\bar{\mu}, 1}\right\rangle_{\mathrm{Y}} \omega_{\mu, 2}+\left\langle\mathrm{u}, \omega_{\bar{\mu}, 3}\right\rangle_{\mathrm{Y}} \omega_{\mu, 3}$.

As $\mathrm{P}_{\mu}^{\varsigma}$ and $\omega_{\mu, k}, \mathrm{k}=1,2,3$ have analytic extensions with μ, the Grushin problem is then defined, for $\mathrm{z} \in \mathrm{C}$, by:

$$
\mathrm{P}_{\mu}^{\varsigma}(\mathrm{z})=\left(\begin{array}{cc}
\mathrm{P}_{\mu}^{\varsigma}-\mathrm{z} & \mathrm{R}_{\mu}^{+} \tag{12}\\
\mathrm{R}_{\mu}^{-} & 0
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{P}_{\mu}^{\varsigma}-\mathrm{z} & \omega_{1, \mu} & \omega_{2, \mu} & \omega_{3, \mu} \\
\left\langle\cdot, \omega_{1, \mu}\right\rangle_{\mathrm{Y}} & 0 & 0 & 0 \\
\left\langle., \omega_{2, \mu}\right\rangle_{\mathrm{Y}} & 0 & 0 & 0 \\
\left\langle., \omega_{3, \mu}\right\rangle_{\mathrm{Y}} & 0 & 0 & 0
\end{array}\right)
$$

which sets on $\mathrm{H}^{2}\left(\mathrm{IR}^{3 \mathrm{p}}\right) \oplus\left(\stackrel{3}{\oplus} \mathrm{~L}^{2}\left(\operatorname{IR}^{3}\right)\right)$ to $\mathrm{L}^{2}\left(\mathrm{IR}^{3 \mathrm{p}}\right) \oplus\left(\oplus^{3} \mathrm{H}^{2}\left(\operatorname{IR}^{3}\right)\right)$
The following proposition, gives the inverse of the operator (12) by using a result of Grushin problem. This is proved $\mathrm{in}^{[3,6]}$.

Proposition 2.3: $\forall \mathrm{z} \in \mathrm{C}$ close enough to $\lambda_{0}, \mathrm{P}_{\mu}^{\varsigma}$ is invertible and we can write its inverse: $\mathrm{P}_{\mu}^{\varsigma-1}=\left(\begin{array}{cc}\mathrm{X}_{\mu}^{\varsigma} & \mathrm{X}_{\mu,+}^{\varsigma} \\ \mathrm{X}_{\mu,-}^{\varsigma} & \mathrm{X}_{\mu,-+}^{\varsigma}\end{array}\right)$,
With $X_{\mu}^{\varsigma}(z)=\left(P_{\mu}^{\prime \varsigma}-z\right)^{-1} \hat{\pi}_{\mu}(x)$ where $\left(P_{\mu}^{\prime \varsigma}-z\right)^{-1}$ is the bounded inverse of the restriction of $\hat{\pi}_{\mu}\left(\mathrm{P}_{\mu}^{\varsigma}-\mathrm{z}\right)$ to $\left\{u \in H^{2}\left(\operatorname{IR}^{3(n+p)}, \hat{\pi} u=u\right\}\right.$.
$X_{\mu,+}^{\varsigma}(z)=\left(\omega_{k, \mu}-X_{\mu}^{\varsigma}(z) P_{\mu}^{\varsigma}\left(. \omega_{k, \mu}\right)\right)_{1 \leq k \leq 3}$,
$X_{\mu,-}^{\varsigma}(z)={ }^{t}\left(\left\langle\left(1-P_{\mu}^{\varsigma}(z) X_{\mu}^{\varsigma}\right)(.), \omega_{k, \bar{\mu}}\right\rangle_{1 \leq k \leq 3}\right)$ and
$\mathrm{X}_{\mu,-+}^{\varsigma}(\mathrm{z})=\left(\mathrm{z} \delta_{\mathrm{jk}}-\left\langle\left(\mathrm{P}_{\mu}^{\varsigma}-\mathrm{P}_{\mu}^{\varsigma} \mathrm{X}_{\mu}^{\varsigma}(\mathrm{x}) \mathrm{P}_{\mu}^{\varsigma}\right)\left(. \omega_{\mathrm{j}, \mu}\right), \omega_{\mathrm{j}, \bar{\mu}}\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{3 \mathrm{P}}\right)}\right)_{1 \leq j, \mathrm{k} \leq 3}$

Remark 2.4

1. For $z \in C$, close enough to λ_{0}, we have $z \in \sigma\left(P_{\mu}^{\varsigma}\right)$ if and only if $\exists \mu,|\mu|$ small enough and $\operatorname{Im} \mu\rangle 0$, such that $\mathrm{z} \in \sigma_{\text {disc }}\left(\mathrm{X}_{\mu,-+}^{\varsigma}(\mathrm{z})\right)$ where $\mathrm{X}_{\mu,-+}^{\varsigma}(\mathrm{z}): \oplus_{1}^{3} \mathrm{H}^{2}\left(\mathrm{IR}^{3}\right) \rightarrow \mathrm{L}^{2}\left(\mathrm{IR}^{3}\right)$, is a pseudodifferential operator of principal symbol defined by the matrix:
$\mathrm{B}(\mathrm{x}, \xi, \mathrm{z})=\mathrm{zI}-\left(\left\langle\omega_{\mathrm{j}, \mu}(\mathrm{x}) \mid\left(\mathrm{t}_{\mu}(\xi)+\mathrm{Q}_{\mu}^{\xi}(\mathrm{x})\right) \omega_{\mathrm{k}, \mu}(\mathrm{x})\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{3}\right)}\right)_{1 \leq \mathrm{j}, \mathrm{k} \leq 3}$
and $t_{\mu}(\xi)$ is the principal symbol of $-h^{2} U_{\mu} \Delta_{x} U_{\mu}^{-1}$
2. $\quad z$ is a resonance of the operator $\mathrm{P}_{\mu}^{\varsigma}$ only and only if, $\exists \mu \in \mathrm{C},|\mu|$ small enough $\operatorname{Im} \mu\rangle 0$, such that: $0 \in \sigma_{\text {disc }}\left(\mathrm{X}_{\mu,-+}\right)$ or $0 \in \sigma_{\text {disc }}\left(\mathrm{F}_{\mu \mu,-+}^{\varsigma}\right)$ where $\mathrm{F}_{\mu}^{\varsigma}$ is the Feshbach operator $\left(\mathrm{F}_{\mu}^{\varsigma}=\mathrm{z}-\mathrm{X}_{-+\mu}^{\varsigma}\right)$ our goal is to takeback the initial problem to a problem on $\mathrm{L}^{2}\left(\mathrm{IR}^{3}\right) \oplus \mathrm{L}^{2}\left(\mathrm{IR}^{3}\right) \oplus \mathrm{L}^{2}\left(\mathrm{IR}^{3}\right)$.

Reduced Feshbach operator: To reduce the Feshbach operator in a matricial operator, we input:

$$
\begin{align*}
& \Phi_{\mu}^{\varsigma}=\mathrm{P}_{\mu}^{\varsigma}-\mathrm{P}_{\mu}^{\varsigma} \mathrm{X}_{\mu}^{\varsigma}(\mathrm{x}) \mathrm{P}_{\mu}^{\varsigma} \tag{13}\\
& \mathrm{F}_{\mu}^{\varsigma}=\left(\left\langle\Phi_{\mu}^{\varsigma}\left(. \omega_{\mathrm{j}, \mu}(\mathrm{x})\right) \mid \omega_{\mathrm{k}, \bar{\mu}}(\mathrm{x})\right\rangle_{\mathrm{Y}}\right)_{1 \leq \mathrm{j}, \mathrm{k} \leq 3} \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi_{1, \mu}^{\varsigma}(\mathrm{z})=\left(\left\langle\Phi_{\mu}^{\varsigma}\left(. \omega_{1, \mu}(\mathrm{x})\right) \mid \omega_{1, \bar{\mu}}(\mathrm{x})\right\rangle\right)_{1 \leq \mathrm{j}, \mathrm{k} \leq 3} \tag{15}
\end{equation*}
$$

The following proposition give us the estimation of the resolvent of the operator (15).

Proposition 2.5: For $z \in C,|z|$ small enough, $\mu \in C,|\mu|$ small enough, the operate or $\left(\Phi_{\mu}^{1 / \varsigma}(z)-z\right)$ is bijective for $\mathrm{H}^{2}\left(\mathrm{IR}^{3}\right)$ to $\mathrm{L}^{2}\left(\mathrm{IR}^{3}\right)$. Its inverse is extended for H^{m} in $\mathrm{H}^{\mathrm{m}+\mathrm{j}}$
$\mathrm{H}^{\mathrm{m}}=\mathrm{H}^{\mathrm{m}}\left(\mathrm{L}^{2}\left(\mathrm{IR}_{\mathrm{x}}^{\mathrm{n}}, \mathrm{L}^{2}\left(\mathrm{IR}^{\mathrm{p}}\right), \forall \mathrm{m} \in \mathrm{Z}\right.\right.$ and verify for $j=\{1,2,3\}, \mathrm{h}>0$ small enough:
$\left\|\left(\Phi_{1, \mu}^{\varsigma}(z)-z\right)^{-1}\right\|_{L\left(H^{m}, H^{m+j}\right)} \leq \frac{C(m)}{h^{j}(\operatorname{Im} \mu)}$
To prove this proposition, we first use a lemma $\mathrm{in}^{[3]}$, to prove the following lemma:

Lemma 2.6: $\forall \mathrm{m} \in \mathrm{Z}$, the operator $\mathrm{X}_{\mu}^{\varsigma}(\mathrm{z})$ is uniformely is extensible in a bounded operator on $\mathrm{H}^{\mathrm{m}}\left(\mathrm{L}^{2}\left(\mathrm{IR}_{\mathrm{x}}^{\mathrm{n}}\right), \mathrm{L}^{2}\left(\mathrm{IR}^{\mathrm{p}}\right)\right), \forall \mathrm{m} \in \mathrm{Z}$, for h$\rangle 0, \mathrm{z} \in \mathrm{Z}$ and μ $\in \mathrm{Z}$ small enough and
$\left\|\mathrm{X}_{\mu}^{\varsigma}\right\|_{\mathrm{L}\left(\mathrm{H}^{\mathrm{m}}, \mathrm{H}^{\mathrm{m}+2}\right)}=O\left(\mathrm{~h}^{-2}\right)$
See ${ }^{[3]}$ for the proof.
Lemma 2.7: We assume that
$\left\|\left(\mathrm{P}_{1, \mu}^{\varsigma}-\mathrm{z}\right)^{-1}\right\|_{\mathrm{L}^{2}\left(\mathrm{H}^{m}, \mathrm{H}^{m+j}\right)}=O\left(\frac{1}{\mathrm{~h}^{j} \operatorname{Im} \mu}\right)$
for $h\rangle 0, z \in C$ and $\mu \in C$ small enough, where
$P_{1, \mu}^{\varsigma}=-h^{2} \frac{1}{(1+\mu)^{2}} \Delta_{x}+\lambda_{1}(x+\mu v(x))-$
$h^{2} \frac{1}{(1+\mu)^{2}}\left\langle\Delta_{x}\left(. \omega_{1, \mu}(x)\left|\omega_{1, \bar{\mu}}(x)\right\rangle_{Y}-\right.\right.$
$-h^{2}\left\langle R_{\mu}\left(x, D_{x}\right)\left(. \omega_{1, \mu}(x)\left|\omega_{1, \bar{\mu}}(x)\right\rangle_{Y}\right.\right.$
$R_{\mu}\left(x, D_{x}\right)$, is an differiential operator of coefficients C^{∞} 。

Proof of lemma 2.7: Using (H5) we have: $\operatorname{Im} \frac{1}{(1+\mu)^{2}} \lambda_{1}(x+\mu v(x)) \leq-\frac{\operatorname{Im} \mu}{C_{1}}$, so

$$
\left\|\left(-\mathrm{h}^{2} \frac{1}{(1+\mu)^{2}} \Delta_{\mathrm{x}}+\lambda_{1}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}))-\mathrm{z}\right)^{-1}\right\|_{\mathrm{L}\left(\mathrm{~L}^{2}\left(\mathbb{R}^{\mathrm{R}}\right)\right)} \leq \frac{\mathrm{C}_{2}}{\operatorname{Im} \mu}
$$

and we easily deduce with a simple computation that

$$
\left\|\left(\mathrm{P}_{1, \mu}^{\mathrm{s}}-\mathrm{z}\right)^{-1}\right\|_{\mathrm{L}^{2}\left(\mathrm{H}^{\mathrm{m}}, \mathrm{H}^{\mathrm{m}+j}\right)}=O\left(\frac{1}{\mathrm{~h}^{\mathrm{j}} \operatorname{Im} \mu}\right)
$$

Proof of the proposition 2.5: From (13) and (15), we have $\Phi_{1, \mu}^{\varsigma}=\left\langle\left(\mathrm{P}_{\mu}^{\varsigma}-\mathrm{P}_{\mu}^{\varsigma} \mathrm{X}_{\mu}^{\varsigma}(\mathrm{z}) \mathrm{P}_{\mu}^{\varsigma}\left(. \omega_{1, \mu}(\mathrm{x})\left|\omega_{1, \bar{\mu}}(\mathrm{x})\right\rangle\right.\right.\right.$, then we subtitue P_{μ}^{ς} from (7) with
$\mathrm{U}_{\mu} \Delta_{\mathrm{x}} \mathrm{U}_{\mu}^{-1}=\frac{1}{(1+\mu)^{2}} \Delta_{\mathrm{x}}+\mathrm{R}_{\mu}\left(\mathrm{x}, \mathrm{D}_{\mathrm{x}}\right)$, where $\mathrm{R}_{\mu}\left(\mathrm{x}, \mathrm{D}_{\mathrm{x}}\right)$
is a second order differential operator with C^{∞} coefficients in ${ }^{x}$ with compact support, analytic in μ and whose derivative of any kind compared to x are $O(|\mu|)$: and we put
$\Lambda_{\mu}^{\varsigma}=\frac{1}{(1+\mu)^{4}}\left\langle\Delta_{\mathrm{x}} X_{\mu}^{\varsigma} \Delta_{\mathrm{x}}\left(. \omega_{1, \mu}(\mathrm{x})\right), \omega_{1, \bar{\mu}}(\mathrm{x})\right\rangle_{\mathrm{Y}}+$
$+\frac{1}{(1+\mu)^{2}}\left\langle\begin{array}{l}\left(R_{\mu}\left(x, D_{x}\right) X_{\mu}^{\varsigma} \Delta_{x}+\Delta_{x} X_{\mu}^{\varsigma} R_{\mu}\left(x, D_{x}\right)\right) \\ \left(. \omega_{1, \mu}(x)\right), \omega_{1, \bar{\mu}}(x)\end{array}\right\rangle_{Y}$.
Using the fact that
$\hat{\pi}_{\mu} \omega_{1, \mu}=0, X_{\mu}^{\varsigma}=\hat{\pi}_{\mu} X_{\mu}^{\varsigma} \hat{\pi}_{\mu},\left\langle\omega_{1, \mu}, \omega_{1, \bar{\mu}}\right\rangle=1$, we have: $\Phi_{1, \mu}^{\varsigma}(\mathrm{z})=\breve{\mathrm{P}}_{1, \mu}^{\varsigma}-\mathrm{h}^{4} \Lambda_{\mu}^{\varsigma}$, where
$\breve{\mathrm{P}}_{1, \mu}^{\varsigma}=-\mathrm{h}^{2} \frac{1}{(1+\mu)^{2}} \Delta_{\mathrm{x}}+\lambda_{1}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}))$
$-\frac{1}{(1+\mu)^{2}}\left\langle\Delta_{\mathrm{x}}\left(. \omega_{1, \mu}(\mathrm{x})\left|\omega_{1, \bar{\mu}}(\mathrm{x})\right\rangle_{\mathrm{Y}}\right.\right.$
$-\mathrm{h}^{2}\left\langle\mathrm{R}_{\mu}\left(\mathrm{x}, \mathrm{D}_{\mathrm{x}}\right)\left(. \omega_{1, \mu}(\mathrm{x})\left|\omega_{1, \bar{\mu}}(\mathrm{x})\right\rangle_{\mathrm{Y}}\right.\right.$

We have $\mathrm{R}_{\mathrm{x}}\left(\mathrm{x}, \mathrm{D}_{\mathrm{x}}\right)$ bounded, so $\Lambda_{\mu}^{\varsigma}$ is $O\left(\mathrm{~h}^{2}\right)$ from H^{m} to H^{m} and we also see from (H5) and lemma2.6 that: for h small enough, $\left\|\left(\mathrm{P}_{1, \mu}^{\varsigma}-\mathrm{z}\right)^{-1}\right\|_{\mathrm{L}\left(\mathrm{L}^{2}\right)}=O\left(\frac{1}{\operatorname{Im} \mu}\right)$, then, we deduce
$\left\|\left(\breve{\mathrm{P}}_{1, \mu}^{s}-\mathrm{z}\right)^{-1}\right\|_{L^{2}\left(\mathrm{H}^{\mathrm{m}}, \mathrm{H}^{\mathrm{m}+\mathrm{j}}\right)}=O\left(\frac{1}{\mathrm{~h}^{j} \operatorname{Im} \mu}\right)$. Finally we have:
$\left\|\left(\Phi_{1, \mu}^{\varsigma}(\mathrm{z})-\mathrm{z}\right)^{-1}\right\|_{\mathrm{L}\left(\mathrm{H}^{\mathrm{m}}, \mathrm{H}^{\mathrm{m}+j}\right)}=O\left(\frac{1}{\mathrm{~h}^{j} \operatorname{Im} \mu}\right)$

Proof of theorems

Proof of theorem 2.1: Proposition3.5 permits us to reduce the Feshbach operator $\mathrm{F}_{\mu}^{\varsigma}$ in a matricial operator
$2 \mathrm{x} 2, \mathrm{~A}_{\mu}^{\varsigma} \quad$, where $\mathrm{A}_{\mu}^{\varsigma}=\left\{\left\langle\Phi_{\mu}^{\varsigma}\left(. \omega_{\mathrm{i}, \mu}\right)+\mathrm{T}_{\mu}^{\mathrm{j}}\left(. \omega_{1, \mu}\right), \omega_{1, \bar{\mu}}\right\rangle_{\mathrm{Y}}\right\}_{\mathrm{i}, \mathrm{j}=2,3}$
Now, we consider a solution $\alpha=\alpha_{1} \oplus \alpha_{2} \oplus \alpha_{3} \in \mathrm{~L}^{2}\left(\mathrm{IR}^{\mathrm{n}}\right) \oplus \mathrm{L}^{2}\left(\mathrm{IR}^{\mathrm{n}}\right) \oplus \mathrm{L}^{2}\left(\mathrm{IR}^{\mathrm{n}}\right)$ of the equation: $\mathrm{F}_{\mu}^{\varsigma}(\mathrm{z}) \alpha=\mathrm{z} \alpha$
The operators T_{μ}^{j} are defined by: $\mathrm{T}_{\mu}^{\mathrm{j} \varsigma}(\mathrm{z}) \alpha_{\mathrm{j}}=-\left(\Phi_{\mu}^{1 \varsigma}(\mathrm{z})-\mathrm{z}\right)^{-1}\left\{\left\langle\Phi_{\mu}^{\varsigma}\left(\alpha_{\mathrm{j}} \omega_{\mathrm{j}, \mu}, \omega_{\mathrm{j}, \bar{\mu}}\right\rangle_{\mathrm{Y}}\right\}_{\mathrm{j}=2,3}\right.$,
hence, the spectral study of the Feshbach $\mathrm{F}_{\mu}^{\varsigma}$ becomes the study of the operator A_{μ}^{ς} on $L^{2}\left(\operatorname{IR}^{n}\right) \oplus L^{2}\left(\operatorname{IR}^{n}\right)$ by: $\alpha_{1}=-\left(\Phi_{\mu}^{\text {Ls }}(\mathrm{z})-\mathrm{z}\right)^{-1}=\left\{\left\langle\Phi_{\mu}^{\varsigma}\left(\alpha_{2} \omega_{2, \mu}, \omega_{2, \bar{\mu}}\right\rangle_{\mathrm{Y}}+\left\langle\Phi_{\mu}^{\varsigma}\left(\alpha_{2} \omega_{3, \mu}, \omega_{3, \bar{\mu}}\right\rangle_{\mathrm{Y}}\right\}\right.\right.$
Then the eigenvalues equation of $\mathrm{F}_{\mu}^{\varsigma}(\mathrm{z})$ becomes: $\left\{\begin{array}{c}\alpha_{1}=\left(\mathrm{T}_{\mu}^{2 \zeta}(\mathrm{z}) \oplus \mathrm{T}_{\mu}^{3 \zeta}(\mathrm{z})\right)\left(\alpha_{2} \oplus \alpha_{3}\right) \\ \mathrm{A}_{\mu}^{\varsigma}(\mathrm{z})\left(\alpha_{2} \oplus \alpha_{3}\right)=\mathrm{z}\left(\alpha_{2} \oplus \alpha_{3}\right)\end{array}\right.$
So we establish easily
$\mathrm{A}_{\mu}^{\varsigma}=-\mathrm{h}^{2} \frac{1}{(1+\mu)^{2}} \Delta_{\mathrm{x}}+\mathrm{M}_{\mu}^{\varsigma}+\tilde{R}_{\mu}^{\varsigma}$, where $\mathrm{M}_{\mu}^{\varsigma}$ is a diagonal matrix outside
of $\mathrm{K}_{2 \delta_{0}}$ and it equal to:
$\mathbf{M}_{\mu}^{\varsigma}=\left\{\left\langle\mathrm{Q}_{\mu}^{\varsigma}(\mathrm{x})\left(. \omega_{\mathrm{i}, \mu}\right) \mid \omega_{\mathrm{j}, \bar{\mu}}\right\rangle_{\mathrm{Y}}\right\}_{\mathrm{i}, \mathrm{j}=2,3}$
$=\left(\begin{array}{cc}\lambda_{2}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x})) & 0 \\ 0 & \lambda_{3}(\mathrm{x}+\mu \mathrm{v}(\mathrm{x}))\end{array}\right)$
where $\lambda_{2}(x+\mu v(x)), \lambda_{3}(x+\mu v(x))$ are the eigenvalues of $\mathrm{Q}_{\mu}^{\varsigma}, \forall \mathrm{x} \in \mathrm{IR}-\{0\}$
The remainder
$\left\|\tilde{\mathrm{R}}_{\mu}^{\varsigma}(\mathrm{z}, \mathrm{h})\right\|_{\mathrm{L}\left(\mathrm{H}^{\mathrm{m}} \oplus \mathrm{H}^{\mathrm{m}}, \mathrm{H}^{\mathrm{m}-1} \oplus \mathrm{H}^{\mathrm{m}-1}\right.}=O\left(\mathrm{~h}^{2}\right), \forall \mathrm{m} \in \mathrm{Z}$ uniformly
for $h>0$ and $z \in C$ closed to λ_{0}
At the end we prove the second result. To describe it, we apply a technical of Briet Combs Duclos ${ }^{[13]}$.
Let $\mathrm{J}_{\mathrm{i}} \in \mathrm{C}_{0}^{\infty}\left(\left|\mathrm{x}-\mathrm{x}_{0}\right| \leq \delta\right),(\delta\rangle 0$ fixed small enough and x_{0} a point of maximum) and $J_{e} \in C^{\infty}\left(I^{n}\right)$ such that: $\mathrm{J}_{\mathrm{i}}=1$ near x_{0} and $\mathrm{J}_{\mathrm{i}}^{2}+\mathrm{J}_{\mathrm{e}}^{2}=1$
J is an identification mapping such that:

$$
\begin{gathered}
\mathrm{J}: \mathrm{L}^{2}\left(\mathrm{IR}^{\mathrm{n}}\right) \oplus \mathrm{L}^{2}\left(\sup \mathrm{pJ} \mathrm{~J}_{\mathrm{e}}\right) \rightarrow \mathrm{L}^{2}\left(\mathrm{IR}^{\mathrm{n}}\right) \\
\mathrm{J}(\mathrm{u} \oplus \mathrm{w})=\mathrm{J}_{\mathrm{i}} \mathrm{u}+\mathrm{J}_{\mathrm{e}} \mathrm{w}
\end{gathered}
$$

It is easily proved that: $J J^{*}=1_{\mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{n}}\right)}$
Now, if we note $\mathrm{P}_{\mu}^{\Omega}$ the Dirichlet realisation of $\mathrm{P}_{\mu}^{\varsigma}$ on Ω, on $\Omega, \mathrm{x}=\mathrm{v}(\mathrm{x})$ and the distorsion $\mathrm{x}+\mu \mathrm{v}(\mathrm{x})=\mathrm{xe}^{\theta}$,
is an analytic dilatation (whose Dirichlet realisation is the operator $\mathrm{H}_{\mu}^{\varsigma}$ obtained for $\left.\varsigma=1\right)$). We set

$$
\mathrm{H}_{\theta}^{\mathrm{i}}=-\mathrm{h}^{2} \mathrm{e}^{-2 \theta} \Delta+\left\langle\lambda_{2}^{\prime \prime}\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right),\left(\mathrm{x}-\mathrm{x}_{0}\right)\right\rangle \mathrm{e}^{2 \theta}
$$

$$
\mathrm{H}_{\theta}=\mathrm{P}_{\theta}^{2}=-\mathrm{h}^{2} \mathrm{e}^{-2 \theta} \Delta+\lambda_{2}\left(\mathrm{xe}^{\theta}\right)
$$

$\mathrm{H}_{\theta}^{\mathrm{e}}=\left.\mathrm{H}_{\theta}\right|_{\mathrm{L}^{2}\left(\text { supp } \mathrm{J}_{\mathrm{e}}\right)}$, with Dirichlet conditions on $\partial \sup \mathrm{pJ}{ }_{\mathrm{e}}$
 $\left(\mathrm{H}_{\theta}^{\mathrm{e}}-\mathrm{z}\right)^{-1}$ is uniformly bounded for $|\mathrm{z}|$ and h small enough.
Before we prove the second result, we introduce the following lemma
Lemma 3.2: For all $\mathrm{p} \in[0,1],\left\||\mathrm{x}|^{\mathrm{p}}\left(\mathrm{H}_{\theta}^{\mathrm{i}}-\mathrm{z}\right)^{-1}\right\|_{L\left(\mathrm{~L}^{2}\right)}=$ $O\left(\mathrm{~h}^{\frac{\mathrm{p}}{2}-\frac{1}{2}}\right)$, uniformly for z outside of $\gamma(\mathrm{x})$ $\mathrm{z} \in\left[-\varepsilon-\mathrm{x}_{0}, \mathrm{C}_{0} \mathrm{~h}-\mathrm{x}_{0}\right]+\mathrm{i}\left[-\varepsilon-\mathrm{x}_{0}, \mathrm{C}_{0} \mathrm{~h}-\mathrm{x}_{0}\right]$,
$\operatorname{Im} \theta \geq 0$, and h small enough.

Proof of lemma 3.2: If we put $y=\frac{x-x_{0}}{\sqrt{h}}$, we can write $\mathrm{H}_{\mathrm{i}}^{\theta}$:
$\mathrm{H}_{\mathrm{i}}^{\theta}=\mathrm{hH}_{\mathrm{i}}^{0}$
where $\mathrm{H}_{\mathrm{i}}^{0}=-\mathrm{e}^{-2 \theta} \Delta_{\mathrm{y}}+\frac{1}{2}\left\langle\lambda "\left(\mathrm{x}_{0}\right) \mathrm{y}, \mathrm{y}\right\rangle+\mathrm{h}^{-1} \mathfrak{J}(\varepsilon)$,
with $\mathfrak{J}(\varepsilon)=\varepsilon\left(1+\left(\mathrm{x}-\mathrm{x}_{0}\right) \mathrm{e}^{\theta}+\frac{1}{2}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2} \mathrm{e}^{2 \theta}\right)$
It is enough to show that, for $\theta=i \alpha, \alpha \geq 0$, small enough. We have from (16)

$$
\begin{equation*}
|x|^{p}\left(H_{\theta}^{i}-z\right)^{-1}=h^{\frac{p}{2}-\frac{1}{2}}|y|^{2}\left(H_{\theta}^{0}-\mathrm{zh}^{-1}\right)^{-1} \tag{17}
\end{equation*}
$$

and the eigenvalues of the operator $\mathrm{H}_{\mathrm{i}}^{0}$ in
$\left.]-\infty, C_{0}-x_{0}\right]+i \operatorname{IR}$ are e_{1}, \ldots, e_{N}.
We distinguish three cases for $\mathrm{p}=0$.
1/ If $z \in\left[-\mathrm{Ch}-\mathrm{x}_{0}, \mathrm{C}_{0} \mathrm{~h}-\mathrm{x}_{0}\right]+\mathrm{i}\left[-\mathrm{Ch}-\mathrm{x}_{0}, \mathrm{C}_{0} \mathrm{~h}-\mathrm{x}_{0}\right]$: we deduce for all C $0,\left(\mathrm{H}_{\theta}^{0}-\mathrm{zh}^{-1}\right)^{-1}$ is bounded on L^{2} uniformly for z outside the γ_{j}, so (17) is verified.
2/ If $z \in\left[-\varepsilon-x_{0}, C_{0} h-x_{0}\right]+i\left[-\varepsilon-x_{0}, C h-x_{0}\right]:$ then for $u \in C_{0}^{\infty}\left(\operatorname{RR}^{n}\right)$:
$e^{2 \theta} H_{\theta}^{0}=-\Delta y+\frac{1}{2}\left\langle\lambda "\left(x_{0}\right) y, y\right\rangle e^{4 \theta}+$
$h^{-1}\left(z+\varepsilon\left(1+\left(x-x_{0}\right) e^{3 \theta}+\frac{1}{2}\left(x-x_{0}\right)^{2} e^{4 \theta}\right)\right.$
and
$\operatorname{Im}\left\langle\mathrm{e}^{2 \theta}\left(\mathrm{H}_{\theta}^{0}-\mathrm{zh}^{-1}\right) \mathrm{u}, \mathrm{u}\right\rangle=\frac{1}{2} \sin 4 \alpha\left\langle\left\langle\lambda \lambda^{\prime \prime}\left(\mathrm{x}_{0}\right) \mathrm{y}, \mathrm{y}\right\rangle \mathrm{u}, \mathrm{u}\right\rangle-$
$-\left[\mathrm{h}^{-1}\left(\mathrm{z} \sin 2 \alpha+\mathrm{Im} \mathrm{z} \cos 2 \alpha+\mathrm{h}^{-\frac{1}{2}}(\mathrm{y} \sin 3 \alpha+\mathrm{z} \cos 4 \alpha)\right]\|\mathrm{u}\|^{2}\right.$
We take particularly α small enough and C large enough such that: $\mathrm{C} \cos 2 \alpha>\mathrm{C}_{0} \sin 2 \alpha$
At least we obtained
$\left|\left\langle\mathrm{e}^{2 \theta}\left(\mathrm{H}_{\theta}^{0}-\mathrm{zh}^{-1}\right) \mathrm{u}, \mathrm{u}\right\rangle\right| \geq \mathrm{h}^{-\frac{1}{2}}\left(\mathrm{x}_{0} \sin 2 \alpha+\mathrm{y} \sin 3 \alpha\right)\|\mathrm{u}\|^{2}$ so
the result is also verified. It remain the case:
3/ If $z \in\left[-\varepsilon-x_{0},-C h-x_{0}\right]+i\left[-C h-x_{0}, C_{0} h-x_{0}\right]$:
$\operatorname{Re}\left\langle\mathrm{e}^{2 \theta}\left(\mathrm{H}_{\theta}^{0}-\mathrm{zh}^{-1}\right) \mathrm{u}, \mathrm{u}\right\rangle$
$\geq \mathrm{h}^{-\frac{1}{2}}(\operatorname{Rez} \cos 4 \alpha-\mathrm{Im} \mathrm{z} \sin 2 \alpha+\mathrm{y} \cos 3 \alpha)$
we deduce the estimation when $C>\mathrm{C}_{0}, \alpha$ small enough and C large enough such that $\cos 4 \alpha\rangle \sin 2 \alpha$
Now we consider the case when $\mathrm{p} \neq 0$,
$e^{2 \theta}\left(H_{\theta}^{0}-z h^{-1}\right)=-\Delta+\frac{1}{2} e^{4 \theta}\left\langle\lambda "\left(x_{0}\right) y, y\right\rangle$ and
$-\mathrm{zh}^{-1} \mathrm{e}^{2 \theta}+\mathrm{h}^{-1} \mathrm{e}^{2 \theta} \mathfrak{J}(\varepsilon)$
$\left\|-\Delta+\frac{1}{2} \mathrm{e}^{4 \theta}\left\langle\lambda "\left(\mathrm{x}_{0}\right) \mathrm{y}, \mathrm{y}\right\rangle-\mathrm{zh}^{-1} \mathrm{e}^{2 \theta}+\mathrm{h}^{-1} \mathrm{e}^{2 \theta} \mathfrak{J}(\varepsilon)\right\|$
$\geq\left\|\frac{1}{2} \cos 4 \alpha\left\langle\lambda "\left(x_{0}\right) y, y\right\rangle u\right\|_{L^{2}} \geq \frac{1}{C}|y|^{2}\|u\|_{L^{2}}$
if we put $u=\left(H_{\theta}^{0}-\mathrm{zh}^{-1}\right)^{-1} v$ the result is deduced from a priori standard estimation.

Proof of theorem 1.2: We put $\mathrm{H}_{\theta}^{\mathrm{d}}=\mathrm{H}_{\theta}^{\mathrm{i}} \oplus \mathrm{H}_{\theta}^{\mathrm{e}}$ and $\Pi=H_{\theta} J-\mathrm{JH}_{\theta}^{\mathrm{d}}$, for z outside the spectrum of H_{θ}, with a simple calculation we obtain:
$\left(\mathrm{H}_{\theta}-\mathrm{z}\right)^{-1}=\mathrm{J}\left(\mathrm{H}_{\theta}^{\mathrm{d}}-\mathrm{z}\right)^{-1} \mathrm{~J}^{*}\left(1+\Pi\left(\mathrm{H}_{\theta}^{\mathrm{d}}-\mathrm{z}\right)^{-1} \mathrm{~J}^{*}\right)^{-1}$
Using the lemma3.2 (with $\mathrm{p}=2$) and the lemma3.1of Briet Combs Duclos ${ }^{[13]}$, we can easily prove that: $\exists \beta\langle 1$ such that
$\left\|\Pi\left(\mathrm{H}_{\theta}^{\mathrm{d}}-\mathrm{z}\right)^{-1} \mathrm{~J}^{*}\right\| \leq \beta$
Using the lemma3.2 and (19), we obtain from (18) $\left\|\left(\mathrm{H}_{\theta}-\mathrm{z}\right)^{-1}\right\| \leq \mathrm{C}\left\|\left(\mathrm{H}_{\theta}^{\mathrm{d}}-\mathrm{z}\right)^{-1}\right\|$, finally the result is obtained from lemma3.2 and remark3.1

REFERENCES

1. Born, M. and R. Oppenheimer, 1927. Zur quanten theorie der moleklen. Annalen der Physic., 84: 457.
2. Combes, J.M., P. Duclos and R. Seiler, 1981. The Born-Oppenheimer Approximation, in Rigorous Atomic and Molecular Physics. Eds., G. Velo, A. Wightman, pp: 185-212, New York. Plenum.
3. Martinez, A., 1989. Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer. I.H.P, 49: 239-25.
4. Martinez, A., 1991. Résonances dans l'approximation de Born-Oppenheimer I. J. Diff. Equ., 91: 204-234.
5. Martinez, A., 1991. Résonances dans l'approximation de Born-Oppenheimer II, largeur des résonances. Comm. in Math. Phys., pp : 135.
6. Martinez, A., 1988. Estimation de l'effet tunnel pour le double puits II, états hautement excités. Bull SMF.
7. Martinez, A. and B. Messirdi, Resonances of Diatomic Molecules in the Born-Oppenheimer approximation.
8. Hunziker, W., 1986. Distorsion analyticity and molecular resonance curves. Annales de l'I.H.P. (Section Physique Théorique).
9. Reed, M. and B. Simon, 1978. Methods of Modern Mathematical Physics T1-T4. Academic Press.
10. Helffer, B. and J. Sjostrand, 1984. Multiple wells in the semi-classical limit I. Comm. Part. Diff. Equ., 9: 337-408.
11. Cycon, H., 1985. Resonances defined by modified dilatation. Helv. Phys. Acta, 58: 969-981.
12. Klein, M., A. Martinez, R. Seiler and X.P. Wang, 1992. On the Born-Oppenheimer expansion for polyatomic molecules. Commun. Math. Phys., pp: 607-639.
13. Briet, P., J.M. Combs and P. Duclos, 1987. On the localisation of resonances for Shrodinger operators in the semiclassical limit II. Comm. Part. Diff. Equ., 12: 201-222.
